| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Primary bucket allocation code |
| 4 | * |
| 5 | * Copyright 2012 Google, Inc. |
| 6 | * |
| 7 | * Allocation in bcache is done in terms of buckets: |
| 8 | * |
| 9 | * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in |
| 10 | * btree pointers - they must match for the pointer to be considered valid. |
| 11 | * |
| 12 | * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a |
| 13 | * bucket simply by incrementing its gen. |
| 14 | * |
| 15 | * The gens (along with the priorities; it's really the gens are important but |
| 16 | * the code is named as if it's the priorities) are written in an arbitrary list |
| 17 | * of buckets on disk, with a pointer to them in the journal header. |
| 18 | * |
| 19 | * When we invalidate a bucket, we have to write its new gen to disk and wait |
| 20 | * for that write to complete before we use it - otherwise after a crash we |
| 21 | * could have pointers that appeared to be good but pointed to data that had |
| 22 | * been overwritten. |
| 23 | * |
| 24 | * Since the gens and priorities are all stored contiguously on disk, we can |
| 25 | * batch this up: We fill up the free_inc list with freshly invalidated buckets, |
| 26 | * call prio_write(), and when prio_write() finishes we pull buckets off the |
| 27 | * free_inc list. |
| 28 | * |
| 29 | * free_inc isn't the only freelist - if it was, we'd often to sleep while |
| 30 | * priorities and gens were being written before we could allocate. c->free is a |
| 31 | * smaller freelist, and buckets on that list are always ready to be used. |
| 32 | * |
| 33 | * There is another freelist, because sometimes we have buckets that we know |
| 34 | * have nothing pointing into them - these we can reuse without waiting for |
| 35 | * priorities to be rewritten. These come from freed btree nodes and buckets |
| 36 | * that garbage collection discovered no longer had valid keys pointing into |
| 37 | * them (because they were overwritten). That's the unused list - buckets on the |
| 38 | * unused list move to the free list. |
| 39 | * |
| 40 | * It's also important to ensure that gens don't wrap around - with respect to |
| 41 | * either the oldest gen in the btree or the gen on disk. This is quite |
| 42 | * difficult to do in practice, but we explicitly guard against it anyways - if |
| 43 | * a bucket is in danger of wrapping around we simply skip invalidating it that |
| 44 | * time around, and we garbage collect or rewrite the priorities sooner than we |
| 45 | * would have otherwise. |
| 46 | * |
| 47 | * bch_bucket_alloc() allocates a single bucket from a specific cache. |
| 48 | * |
| 49 | * bch_bucket_alloc_set() allocates one bucket from different caches |
| 50 | * out of a cache set. |
| 51 | * |
| 52 | * free_some_buckets() drives all the processes described above. It's called |
| 53 | * from bch_bucket_alloc() and a few other places that need to make sure free |
| 54 | * buckets are ready. |
| 55 | * |
| 56 | * invalidate_buckets_(lru|fifo)() find buckets that are available to be |
| 57 | * invalidated, and then invalidate them and stick them on the free_inc list - |
| 58 | * in either lru or fifo order. |
| 59 | */ |
| 60 | |
| 61 | #include "bcache.h" |
| 62 | #include "btree.h" |
| 63 | |
| 64 | #include <linux/blkdev.h> |
| 65 | #include <linux/kthread.h> |
| 66 | #include <linux/random.h> |
| 67 | #include <trace/events/bcache.h> |
| 68 | |
| 69 | #define MAX_OPEN_BUCKETS 128 |
| 70 | |
| 71 | /* Bucket heap / gen */ |
| 72 | |
| 73 | uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) |
| 74 | { |
| 75 | uint8_t ret = ++b->gen; |
| 76 | |
| 77 | ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); |
| 78 | WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); |
| 79 | |
| 80 | return ret; |
| 81 | } |
| 82 | |
| 83 | void bch_rescale_priorities(struct cache_set *c, int sectors) |
| 84 | { |
| 85 | struct cache *ca; |
| 86 | struct bucket *b; |
| 87 | unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024; |
| 88 | int r; |
| 89 | |
| 90 | atomic_sub(i: sectors, v: &c->rescale); |
| 91 | |
| 92 | do { |
| 93 | r = atomic_read(v: &c->rescale); |
| 94 | |
| 95 | if (r >= 0) |
| 96 | return; |
| 97 | } while (atomic_cmpxchg(v: &c->rescale, old: r, new: r + next) != r); |
| 98 | |
| 99 | mutex_lock(&c->bucket_lock); |
| 100 | |
| 101 | c->min_prio = USHRT_MAX; |
| 102 | |
| 103 | ca = c->cache; |
| 104 | for_each_bucket(b, ca) |
| 105 | if (b->prio && |
| 106 | b->prio != BTREE_PRIO && |
| 107 | !atomic_read(v: &b->pin)) { |
| 108 | b->prio--; |
| 109 | c->min_prio = min(c->min_prio, b->prio); |
| 110 | } |
| 111 | |
| 112 | mutex_unlock(lock: &c->bucket_lock); |
| 113 | } |
| 114 | |
| 115 | /* |
| 116 | * Background allocation thread: scans for buckets to be invalidated, |
| 117 | * invalidates them, rewrites prios/gens (marking them as invalidated on disk), |
| 118 | * then puts them on the various freelists. |
| 119 | */ |
| 120 | |
| 121 | static inline bool can_inc_bucket_gen(struct bucket *b) |
| 122 | { |
| 123 | return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; |
| 124 | } |
| 125 | |
| 126 | bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) |
| 127 | { |
| 128 | return (ca->set->gc_mark_valid || b->reclaimable_in_gc) && |
| 129 | ((!GC_MARK(k: b) || GC_MARK(k: b) == GC_MARK_RECLAIMABLE) && |
| 130 | !atomic_read(v: &b->pin) && can_inc_bucket_gen(b)); |
| 131 | } |
| 132 | |
| 133 | void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) |
| 134 | { |
| 135 | lockdep_assert_held(&ca->set->bucket_lock); |
| 136 | BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); |
| 137 | |
| 138 | if (GC_SECTORS_USED(k: b)) |
| 139 | trace_bcache_invalidate(ca, bucket: b - ca->buckets); |
| 140 | |
| 141 | bch_inc_gen(ca, b); |
| 142 | b->prio = INITIAL_PRIO; |
| 143 | atomic_inc(v: &b->pin); |
| 144 | b->reclaimable_in_gc = 0; |
| 145 | } |
| 146 | |
| 147 | static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) |
| 148 | { |
| 149 | __bch_invalidate_one_bucket(ca, b); |
| 150 | |
| 151 | fifo_push(&ca->free_inc, b - ca->buckets); |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * Determines what order we're going to reuse buckets, smallest bucket_prio() |
| 156 | * first: we also take into account the number of sectors of live data in that |
| 157 | * bucket, and in order for that multiply to make sense we have to scale bucket |
| 158 | * |
| 159 | * Thus, we scale the bucket priorities so that the bucket with the smallest |
| 160 | * prio is worth 1/8th of what INITIAL_PRIO is worth. |
| 161 | */ |
| 162 | |
| 163 | #define bucket_prio(b) \ |
| 164 | ({ \ |
| 165 | unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ |
| 166 | \ |
| 167 | (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ |
| 168 | }) |
| 169 | |
| 170 | #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) |
| 171 | #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) |
| 172 | |
| 173 | static void invalidate_buckets_lru(struct cache *ca) |
| 174 | { |
| 175 | struct bucket *b; |
| 176 | ssize_t i; |
| 177 | |
| 178 | ca->heap.used = 0; |
| 179 | |
| 180 | for_each_bucket(b, ca) { |
| 181 | if (!bch_can_invalidate_bucket(ca, b)) |
| 182 | continue; |
| 183 | |
| 184 | if (!heap_full(&ca->heap)) |
| 185 | heap_add(&ca->heap, b, bucket_max_cmp); |
| 186 | else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { |
| 187 | ca->heap.data[0] = b; |
| 188 | heap_sift(&ca->heap, 0, bucket_max_cmp); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | for (i = ca->heap.used / 2 - 1; i >= 0; --i) |
| 193 | heap_sift(&ca->heap, i, bucket_min_cmp); |
| 194 | |
| 195 | while (!fifo_full(&ca->free_inc)) { |
| 196 | if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { |
| 197 | /* |
| 198 | * We don't want to be calling invalidate_buckets() |
| 199 | * multiple times when it can't do anything |
| 200 | */ |
| 201 | ca->invalidate_needs_gc = 1; |
| 202 | wake_up_gc(c: ca->set); |
| 203 | return; |
| 204 | } |
| 205 | |
| 206 | bch_invalidate_one_bucket(ca, b); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | static void invalidate_buckets_fifo(struct cache *ca) |
| 211 | { |
| 212 | struct bucket *b; |
| 213 | size_t checked = 0; |
| 214 | |
| 215 | while (!fifo_full(&ca->free_inc)) { |
| 216 | if (ca->fifo_last_bucket < ca->sb.first_bucket || |
| 217 | ca->fifo_last_bucket >= ca->sb.nbuckets) |
| 218 | ca->fifo_last_bucket = ca->sb.first_bucket; |
| 219 | |
| 220 | b = ca->buckets + ca->fifo_last_bucket++; |
| 221 | |
| 222 | if (bch_can_invalidate_bucket(ca, b)) |
| 223 | bch_invalidate_one_bucket(ca, b); |
| 224 | |
| 225 | if (++checked >= ca->sb.nbuckets) { |
| 226 | ca->invalidate_needs_gc = 1; |
| 227 | wake_up_gc(c: ca->set); |
| 228 | return; |
| 229 | } |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | static void invalidate_buckets_random(struct cache *ca) |
| 234 | { |
| 235 | struct bucket *b; |
| 236 | size_t checked = 0; |
| 237 | |
| 238 | while (!fifo_full(&ca->free_inc)) { |
| 239 | size_t n; |
| 240 | |
| 241 | get_random_bytes(buf: &n, len: sizeof(n)); |
| 242 | |
| 243 | n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); |
| 244 | n += ca->sb.first_bucket; |
| 245 | |
| 246 | b = ca->buckets + n; |
| 247 | |
| 248 | if (bch_can_invalidate_bucket(ca, b)) |
| 249 | bch_invalidate_one_bucket(ca, b); |
| 250 | |
| 251 | if (++checked >= ca->sb.nbuckets / 2) { |
| 252 | ca->invalidate_needs_gc = 1; |
| 253 | wake_up_gc(c: ca->set); |
| 254 | return; |
| 255 | } |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | static void invalidate_buckets(struct cache *ca) |
| 260 | { |
| 261 | BUG_ON(ca->invalidate_needs_gc); |
| 262 | |
| 263 | switch (CACHE_REPLACEMENT(k: &ca->sb)) { |
| 264 | case CACHE_REPLACEMENT_LRU: |
| 265 | invalidate_buckets_lru(ca); |
| 266 | break; |
| 267 | case CACHE_REPLACEMENT_FIFO: |
| 268 | invalidate_buckets_fifo(ca); |
| 269 | break; |
| 270 | case CACHE_REPLACEMENT_RANDOM: |
| 271 | invalidate_buckets_random(ca); |
| 272 | break; |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | #define allocator_wait(ca, cond) \ |
| 277 | do { \ |
| 278 | while (1) { \ |
| 279 | set_current_state(TASK_INTERRUPTIBLE); \ |
| 280 | if (cond) \ |
| 281 | break; \ |
| 282 | \ |
| 283 | mutex_unlock(&(ca)->set->bucket_lock); \ |
| 284 | if (kthread_should_stop() || \ |
| 285 | test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) { \ |
| 286 | set_current_state(TASK_RUNNING); \ |
| 287 | goto out; \ |
| 288 | } \ |
| 289 | \ |
| 290 | schedule(); \ |
| 291 | mutex_lock(&(ca)->set->bucket_lock); \ |
| 292 | } \ |
| 293 | __set_current_state(TASK_RUNNING); \ |
| 294 | } while (0) |
| 295 | |
| 296 | static int bch_allocator_push(struct cache *ca, long bucket) |
| 297 | { |
| 298 | unsigned int i; |
| 299 | |
| 300 | /* Prios/gens are actually the most important reserve */ |
| 301 | if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) |
| 302 | return true; |
| 303 | |
| 304 | for (i = 0; i < RESERVE_NR; i++) |
| 305 | if (fifo_push(&ca->free[i], bucket)) |
| 306 | return true; |
| 307 | |
| 308 | return false; |
| 309 | } |
| 310 | |
| 311 | static int bch_allocator_thread(void *arg) |
| 312 | { |
| 313 | struct cache *ca = arg; |
| 314 | |
| 315 | mutex_lock(&ca->set->bucket_lock); |
| 316 | |
| 317 | while (1) { |
| 318 | /* |
| 319 | * First, we pull buckets off of the unused and free_inc lists, |
| 320 | * then we add the bucket to the free list: |
| 321 | */ |
| 322 | while (1) { |
| 323 | long bucket; |
| 324 | |
| 325 | if (!fifo_pop(&ca->free_inc, bucket)) |
| 326 | break; |
| 327 | |
| 328 | allocator_wait(ca, bch_allocator_push(ca, bucket)); |
| 329 | wake_up(&ca->set->btree_cache_wait); |
| 330 | wake_up(&ca->set->bucket_wait); |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * We've run out of free buckets, we need to find some buckets |
| 335 | * we can invalidate. First, invalidate them in memory and add |
| 336 | * them to the free_inc list: |
| 337 | */ |
| 338 | |
| 339 | retry_invalidate: |
| 340 | allocator_wait(ca, !ca->invalidate_needs_gc); |
| 341 | invalidate_buckets(ca); |
| 342 | |
| 343 | /* |
| 344 | * Now, we write their new gens to disk so we can start writing |
| 345 | * new stuff to them: |
| 346 | */ |
| 347 | allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); |
| 348 | if (CACHE_SYNC(k: &ca->sb)) { |
| 349 | /* |
| 350 | * This could deadlock if an allocation with a btree |
| 351 | * node locked ever blocked - having the btree node |
| 352 | * locked would block garbage collection, but here we're |
| 353 | * waiting on garbage collection before we invalidate |
| 354 | * and free anything. |
| 355 | * |
| 356 | * But this should be safe since the btree code always |
| 357 | * uses btree_check_reserve() before allocating now, and |
| 358 | * if it fails it blocks without btree nodes locked. |
| 359 | */ |
| 360 | if (!fifo_full(&ca->free_inc)) |
| 361 | goto retry_invalidate; |
| 362 | |
| 363 | if (bch_prio_write(ca, wait: false) < 0) { |
| 364 | ca->invalidate_needs_gc = 1; |
| 365 | wake_up_gc(c: ca->set); |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | out: |
| 370 | wait_for_kthread_stop(); |
| 371 | return 0; |
| 372 | } |
| 373 | |
| 374 | /* Allocation */ |
| 375 | |
| 376 | long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait) |
| 377 | { |
| 378 | DEFINE_WAIT(w); |
| 379 | struct bucket *b; |
| 380 | long r; |
| 381 | |
| 382 | |
| 383 | /* No allocation if CACHE_SET_IO_DISABLE bit is set */ |
| 384 | if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags))) |
| 385 | return -1; |
| 386 | |
| 387 | /* fastpath */ |
| 388 | if (fifo_pop(&ca->free[RESERVE_NONE], r) || |
| 389 | fifo_pop(&ca->free[reserve], r)) |
| 390 | goto out; |
| 391 | |
| 392 | if (!wait) { |
| 393 | trace_bcache_alloc_fail(ca, reserve); |
| 394 | return -1; |
| 395 | } |
| 396 | |
| 397 | do { |
| 398 | prepare_to_wait(wq_head: &ca->set->bucket_wait, wq_entry: &w, |
| 399 | TASK_UNINTERRUPTIBLE); |
| 400 | |
| 401 | mutex_unlock(lock: &ca->set->bucket_lock); |
| 402 | |
| 403 | atomic_inc(v: &ca->set->bucket_wait_cnt); |
| 404 | schedule(); |
| 405 | atomic_dec(v: &ca->set->bucket_wait_cnt); |
| 406 | |
| 407 | mutex_lock(&ca->set->bucket_lock); |
| 408 | } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && |
| 409 | !fifo_pop(&ca->free[reserve], r)); |
| 410 | |
| 411 | finish_wait(wq_head: &ca->set->bucket_wait, wq_entry: &w); |
| 412 | out: |
| 413 | if (ca->alloc_thread) |
| 414 | wake_up_process(tsk: ca->alloc_thread); |
| 415 | |
| 416 | trace_bcache_alloc(ca, bucket: reserve); |
| 417 | |
| 418 | if (expensive_debug_checks(ca->set)) { |
| 419 | size_t iter; |
| 420 | long i; |
| 421 | unsigned int j; |
| 422 | |
| 423 | for (iter = 0; iter < prio_buckets(ca) * 2; iter++) |
| 424 | BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); |
| 425 | |
| 426 | for (j = 0; j < RESERVE_NR; j++) |
| 427 | fifo_for_each(i, &ca->free[j], iter) |
| 428 | BUG_ON(i == r); |
| 429 | fifo_for_each(i, &ca->free_inc, iter) |
| 430 | BUG_ON(i == r); |
| 431 | } |
| 432 | |
| 433 | b = ca->buckets + r; |
| 434 | |
| 435 | BUG_ON(atomic_read(&b->pin) != 1); |
| 436 | |
| 437 | SET_GC_SECTORS_USED(k: b, v: ca->sb.bucket_size); |
| 438 | |
| 439 | if (reserve <= RESERVE_PRIO) { |
| 440 | SET_GC_MARK(k: b, GC_MARK_METADATA); |
| 441 | SET_GC_MOVE(k: b, v: 0); |
| 442 | b->prio = BTREE_PRIO; |
| 443 | } else { |
| 444 | SET_GC_MARK(k: b, GC_MARK_RECLAIMABLE); |
| 445 | SET_GC_MOVE(k: b, v: 0); |
| 446 | b->prio = INITIAL_PRIO; |
| 447 | } |
| 448 | |
| 449 | if (ca->set->avail_nbuckets > 0) { |
| 450 | ca->set->avail_nbuckets--; |
| 451 | bch_update_bucket_in_use(c: ca->set, stats: &ca->set->gc_stats); |
| 452 | } |
| 453 | |
| 454 | return r; |
| 455 | } |
| 456 | |
| 457 | void __bch_bucket_free(struct cache *ca, struct bucket *b) |
| 458 | { |
| 459 | SET_GC_MARK(k: b, v: 0); |
| 460 | SET_GC_SECTORS_USED(k: b, v: 0); |
| 461 | |
| 462 | if (ca->set->avail_nbuckets < ca->set->nbuckets) { |
| 463 | ca->set->avail_nbuckets++; |
| 464 | bch_update_bucket_in_use(c: ca->set, stats: &ca->set->gc_stats); |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | void bch_bucket_free(struct cache_set *c, struct bkey *k) |
| 469 | { |
| 470 | unsigned int i; |
| 471 | |
| 472 | for (i = 0; i < KEY_PTRS(k); i++) |
| 473 | __bch_bucket_free(ca: c->cache, b: PTR_BUCKET(c, k, ptr: i)); |
| 474 | } |
| 475 | |
| 476 | int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, |
| 477 | struct bkey *k, bool wait) |
| 478 | { |
| 479 | struct cache *ca; |
| 480 | long b; |
| 481 | |
| 482 | /* No allocation if CACHE_SET_IO_DISABLE bit is set */ |
| 483 | if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) |
| 484 | return -1; |
| 485 | |
| 486 | lockdep_assert_held(&c->bucket_lock); |
| 487 | |
| 488 | bkey_init(k); |
| 489 | |
| 490 | ca = c->cache; |
| 491 | b = bch_bucket_alloc(ca, reserve, wait); |
| 492 | if (b < 0) |
| 493 | return -1; |
| 494 | |
| 495 | k->ptr[0] = MAKE_PTR(ca->buckets[b].gen, |
| 496 | bucket_to_sector(c, b), |
| 497 | ca->sb.nr_this_dev); |
| 498 | |
| 499 | SET_KEY_PTRS(k, v: 1); |
| 500 | |
| 501 | return 0; |
| 502 | } |
| 503 | |
| 504 | int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, |
| 505 | struct bkey *k, bool wait) |
| 506 | { |
| 507 | int ret; |
| 508 | |
| 509 | mutex_lock(&c->bucket_lock); |
| 510 | ret = __bch_bucket_alloc_set(c, reserve, k, wait); |
| 511 | mutex_unlock(lock: &c->bucket_lock); |
| 512 | return ret; |
| 513 | } |
| 514 | |
| 515 | /* Sector allocator */ |
| 516 | |
| 517 | struct open_bucket { |
| 518 | struct list_head list; |
| 519 | unsigned int last_write_point; |
| 520 | unsigned int sectors_free; |
| 521 | BKEY_PADDED(key); |
| 522 | }; |
| 523 | |
| 524 | /* |
| 525 | * We keep multiple buckets open for writes, and try to segregate different |
| 526 | * write streams for better cache utilization: first we try to segregate flash |
| 527 | * only volume write streams from cached devices, secondly we look for a bucket |
| 528 | * where the last write to it was sequential with the current write, and |
| 529 | * failing that we look for a bucket that was last used by the same task. |
| 530 | * |
| 531 | * The ideas is if you've got multiple tasks pulling data into the cache at the |
| 532 | * same time, you'll get better cache utilization if you try to segregate their |
| 533 | * data and preserve locality. |
| 534 | * |
| 535 | * For example, dirty sectors of flash only volume is not reclaimable, if their |
| 536 | * dirty sectors mixed with dirty sectors of cached device, such buckets will |
| 537 | * be marked as dirty and won't be reclaimed, though the dirty data of cached |
| 538 | * device have been written back to backend device. |
| 539 | * |
| 540 | * And say you've starting Firefox at the same time you're copying a |
| 541 | * bunch of files. Firefox will likely end up being fairly hot and stay in the |
| 542 | * cache awhile, but the data you copied might not be; if you wrote all that |
| 543 | * data to the same buckets it'd get invalidated at the same time. |
| 544 | * |
| 545 | * Both of those tasks will be doing fairly random IO so we can't rely on |
| 546 | * detecting sequential IO to segregate their data, but going off of the task |
| 547 | * should be a sane heuristic. |
| 548 | */ |
| 549 | static struct open_bucket *pick_data_bucket(struct cache_set *c, |
| 550 | const struct bkey *search, |
| 551 | unsigned int write_point, |
| 552 | struct bkey *alloc) |
| 553 | { |
| 554 | struct open_bucket *ret, *ret_task = NULL; |
| 555 | |
| 556 | list_for_each_entry_reverse(ret, &c->data_buckets, list) |
| 557 | if (UUID_FLASH_ONLY(k: &c->uuids[KEY_INODE(k: &ret->key)]) != |
| 558 | UUID_FLASH_ONLY(k: &c->uuids[KEY_INODE(k: search)])) |
| 559 | continue; |
| 560 | else if (!bkey_cmp(l: &ret->key, r: search)) |
| 561 | goto found; |
| 562 | else if (ret->last_write_point == write_point) |
| 563 | ret_task = ret; |
| 564 | |
| 565 | ret = ret_task ?: list_first_entry(&c->data_buckets, |
| 566 | struct open_bucket, list); |
| 567 | found: |
| 568 | if (!ret->sectors_free && KEY_PTRS(k: alloc)) { |
| 569 | ret->sectors_free = c->cache->sb.bucket_size; |
| 570 | bkey_copy(&ret->key, alloc); |
| 571 | bkey_init(k: alloc); |
| 572 | } |
| 573 | |
| 574 | if (!ret->sectors_free) |
| 575 | ret = NULL; |
| 576 | |
| 577 | return ret; |
| 578 | } |
| 579 | |
| 580 | /* |
| 581 | * Allocates some space in the cache to write to, and k to point to the newly |
| 582 | * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the |
| 583 | * end of the newly allocated space). |
| 584 | * |
| 585 | * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many |
| 586 | * sectors were actually allocated. |
| 587 | * |
| 588 | * If s->writeback is true, will not fail. |
| 589 | */ |
| 590 | bool bch_alloc_sectors(struct cache_set *c, |
| 591 | struct bkey *k, |
| 592 | unsigned int sectors, |
| 593 | unsigned int write_point, |
| 594 | unsigned int write_prio, |
| 595 | bool wait) |
| 596 | { |
| 597 | struct open_bucket *b; |
| 598 | BKEY_PADDED(key) alloc; |
| 599 | unsigned int i; |
| 600 | |
| 601 | /* |
| 602 | * We might have to allocate a new bucket, which we can't do with a |
| 603 | * spinlock held. So if we have to allocate, we drop the lock, allocate |
| 604 | * and then retry. KEY_PTRS() indicates whether alloc points to |
| 605 | * allocated bucket(s). |
| 606 | */ |
| 607 | |
| 608 | bkey_init(k: &alloc.key); |
| 609 | spin_lock(lock: &c->data_bucket_lock); |
| 610 | |
| 611 | while (!(b = pick_data_bucket(c, search: k, write_point, alloc: &alloc.key))) { |
| 612 | unsigned int watermark = write_prio |
| 613 | ? RESERVE_MOVINGGC |
| 614 | : RESERVE_NONE; |
| 615 | |
| 616 | spin_unlock(lock: &c->data_bucket_lock); |
| 617 | |
| 618 | if (bch_bucket_alloc_set(c, reserve: watermark, k: &alloc.key, wait)) |
| 619 | return false; |
| 620 | |
| 621 | spin_lock(lock: &c->data_bucket_lock); |
| 622 | } |
| 623 | |
| 624 | /* |
| 625 | * If we had to allocate, we might race and not need to allocate the |
| 626 | * second time we call pick_data_bucket(). If we allocated a bucket but |
| 627 | * didn't use it, drop the refcount bch_bucket_alloc_set() took: |
| 628 | */ |
| 629 | if (KEY_PTRS(k: &alloc.key)) |
| 630 | bkey_put(c, k: &alloc.key); |
| 631 | |
| 632 | for (i = 0; i < KEY_PTRS(k: &b->key); i++) |
| 633 | EBUG_ON(ptr_stale(c, &b->key, i)); |
| 634 | |
| 635 | /* Set up the pointer to the space we're allocating: */ |
| 636 | |
| 637 | for (i = 0; i < KEY_PTRS(k: &b->key); i++) |
| 638 | k->ptr[i] = b->key.ptr[i]; |
| 639 | |
| 640 | sectors = min(sectors, b->sectors_free); |
| 641 | |
| 642 | SET_KEY_OFFSET(k, v: KEY_OFFSET(k) + sectors); |
| 643 | SET_KEY_SIZE(k, v: sectors); |
| 644 | SET_KEY_PTRS(k, v: KEY_PTRS(k: &b->key)); |
| 645 | |
| 646 | /* |
| 647 | * Move b to the end of the lru, and keep track of what this bucket was |
| 648 | * last used for: |
| 649 | */ |
| 650 | list_move_tail(list: &b->list, head: &c->data_buckets); |
| 651 | bkey_copy_key(dest: &b->key, src: k); |
| 652 | b->last_write_point = write_point; |
| 653 | |
| 654 | b->sectors_free -= sectors; |
| 655 | |
| 656 | for (i = 0; i < KEY_PTRS(k: &b->key); i++) { |
| 657 | SET_PTR_OFFSET(k: &b->key, i, v: PTR_OFFSET(k: &b->key, i) + sectors); |
| 658 | |
| 659 | atomic_long_add(i: sectors, |
| 660 | v: &c->cache->sectors_written); |
| 661 | } |
| 662 | |
| 663 | if (b->sectors_free < c->cache->sb.block_size) |
| 664 | b->sectors_free = 0; |
| 665 | |
| 666 | /* |
| 667 | * k takes refcounts on the buckets it points to until it's inserted |
| 668 | * into the btree, but if we're done with this bucket we just transfer |
| 669 | * get_data_bucket()'s refcount. |
| 670 | */ |
| 671 | if (b->sectors_free) |
| 672 | for (i = 0; i < KEY_PTRS(k: &b->key); i++) |
| 673 | atomic_inc(v: &PTR_BUCKET(c, k: &b->key, ptr: i)->pin); |
| 674 | |
| 675 | spin_unlock(lock: &c->data_bucket_lock); |
| 676 | return true; |
| 677 | } |
| 678 | |
| 679 | /* Init */ |
| 680 | |
| 681 | void bch_open_buckets_free(struct cache_set *c) |
| 682 | { |
| 683 | struct open_bucket *b; |
| 684 | |
| 685 | while (!list_empty(head: &c->data_buckets)) { |
| 686 | b = list_first_entry(&c->data_buckets, |
| 687 | struct open_bucket, list); |
| 688 | list_del(entry: &b->list); |
| 689 | kfree(objp: b); |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | int bch_open_buckets_alloc(struct cache_set *c) |
| 694 | { |
| 695 | int i; |
| 696 | |
| 697 | spin_lock_init(&c->data_bucket_lock); |
| 698 | |
| 699 | for (i = 0; i < MAX_OPEN_BUCKETS; i++) { |
| 700 | struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); |
| 701 | |
| 702 | if (!b) |
| 703 | return -ENOMEM; |
| 704 | |
| 705 | list_add(new: &b->list, head: &c->data_buckets); |
| 706 | } |
| 707 | |
| 708 | return 0; |
| 709 | } |
| 710 | |
| 711 | int bch_cache_allocator_start(struct cache *ca) |
| 712 | { |
| 713 | struct task_struct *k = kthread_run(bch_allocator_thread, |
| 714 | ca, "bcache_allocator" ); |
| 715 | if (IS_ERR(ptr: k)) |
| 716 | return PTR_ERR(ptr: k); |
| 717 | |
| 718 | ca->alloc_thread = k; |
| 719 | return 0; |
| 720 | } |
| 721 | |