| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/arch/m68k/kernel/process.c |
| 4 | * |
| 5 | * Copyright (C) 1995 Hamish Macdonald |
| 6 | * |
| 7 | * 68060 fixes by Jesper Skov |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * This file handles the architecture-dependent parts of process handling.. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/errno.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/sched.h> |
| 17 | #include <linux/sched/debug.h> |
| 18 | #include <linux/sched/task.h> |
| 19 | #include <linux/sched/task_stack.h> |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/mm.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/fs.h> |
| 24 | #include <linux/smp.h> |
| 25 | #include <linux/stddef.h> |
| 26 | #include <linux/unistd.h> |
| 27 | #include <linux/ptrace.h> |
| 28 | #include <linux/user.h> |
| 29 | #include <linux/reboot.h> |
| 30 | #include <linux/init_task.h> |
| 31 | #include <linux/mqueue.h> |
| 32 | #include <linux/rcupdate.h> |
| 33 | #include <linux/syscalls.h> |
| 34 | #include <linux/uaccess.h> |
| 35 | #include <linux/elfcore.h> |
| 36 | |
| 37 | #include <asm/traps.h> |
| 38 | #include <asm/machdep.h> |
| 39 | #include <asm/setup.h> |
| 40 | |
| 41 | #include "process.h" |
| 42 | |
| 43 | asmlinkage void ret_from_fork(void); |
| 44 | asmlinkage void ret_from_kernel_thread(void); |
| 45 | |
| 46 | void arch_cpu_idle(void) |
| 47 | { |
| 48 | #if defined(MACH_ATARI_ONLY) |
| 49 | /* block out HSYNC on the atari (falcon) */ |
| 50 | __asm__("stop #0x2200" : : : "cc" ); |
| 51 | #else |
| 52 | __asm__("stop #0x2000" : : : "cc" ); |
| 53 | #endif |
| 54 | } |
| 55 | |
| 56 | void machine_restart(char * __unused) |
| 57 | { |
| 58 | if (mach_reset) |
| 59 | mach_reset(); |
| 60 | for (;;); |
| 61 | } |
| 62 | |
| 63 | void machine_halt(void) |
| 64 | { |
| 65 | if (mach_halt) |
| 66 | mach_halt(); |
| 67 | for (;;); |
| 68 | } |
| 69 | |
| 70 | void machine_power_off(void) |
| 71 | { |
| 72 | do_kernel_power_off(); |
| 73 | for (;;); |
| 74 | } |
| 75 | |
| 76 | void (*pm_power_off)(void); |
| 77 | EXPORT_SYMBOL(pm_power_off); |
| 78 | |
| 79 | void show_regs(struct pt_regs * regs) |
| 80 | { |
| 81 | pr_info("Format %02x Vector: %04x PC: %08lx Status: %04x %s\n" , |
| 82 | regs->format, regs->vector, regs->pc, regs->sr, |
| 83 | print_tainted()); |
| 84 | pr_info("ORIG_D0: %08lx D0: %08lx A2: %08lx A1: %08lx\n" , |
| 85 | regs->orig_d0, regs->d0, regs->a2, regs->a1); |
| 86 | pr_info("A0: %08lx D5: %08lx D4: %08lx\n" , regs->a0, regs->d5, |
| 87 | regs->d4); |
| 88 | pr_info("D3: %08lx D2: %08lx D1: %08lx\n" , regs->d3, regs->d2, |
| 89 | regs->d1); |
| 90 | if (!(regs->sr & PS_S)) |
| 91 | pr_info("USP: %08lx\n" , rdusp()); |
| 92 | } |
| 93 | |
| 94 | void flush_thread(void) |
| 95 | { |
| 96 | current->thread.fc = USER_DATA; |
| 97 | #ifdef CONFIG_FPU |
| 98 | if (!FPU_IS_EMU) { |
| 99 | unsigned long zero = 0; |
| 100 | asm volatile("frestore %0" : :"m" (zero)); |
| 101 | } |
| 102 | #endif |
| 103 | } |
| 104 | |
| 105 | /* |
| 106 | * Why not generic sys_clone, you ask? m68k passes all arguments on stack. |
| 107 | * And we need all registers saved, which means a bunch of stuff pushed |
| 108 | * on top of pt_regs, which means that sys_clone() arguments would be |
| 109 | * buried. We could, of course, copy them, but it's too costly for no |
| 110 | * good reason - generic clone() would have to copy them *again* for |
| 111 | * kernel_clone() anyway. So in this case it's actually better to pass pt_regs * |
| 112 | * and extract arguments for kernel_clone() from there. Eventually we might |
| 113 | * go for calling kernel_clone() directly from the wrapper, but only after we |
| 114 | * are finished with kernel_clone() prototype conversion. |
| 115 | */ |
| 116 | asmlinkage int m68k_clone(struct pt_regs *regs) |
| 117 | { |
| 118 | /* regs will be equal to current_pt_regs() */ |
| 119 | struct kernel_clone_args args = { |
| 120 | .flags = (u32)(regs->d1) & ~CSIGNAL, |
| 121 | .pidfd = (int __user *)regs->d3, |
| 122 | .child_tid = (int __user *)regs->d4, |
| 123 | .parent_tid = (int __user *)regs->d3, |
| 124 | .exit_signal = regs->d1 & CSIGNAL, |
| 125 | .stack = regs->d2, |
| 126 | .tls = regs->d5, |
| 127 | }; |
| 128 | |
| 129 | return kernel_clone(kargs: &args); |
| 130 | } |
| 131 | |
| 132 | /* |
| 133 | * Because extra registers are saved on the stack after the sys_clone3() |
| 134 | * arguments, this C wrapper extracts them from pt_regs * and then calls the |
| 135 | * generic sys_clone3() implementation. |
| 136 | */ |
| 137 | asmlinkage int m68k_clone3(struct pt_regs *regs) |
| 138 | { |
| 139 | return sys_clone3((struct clone_args __user *)regs->d1, regs->d2); |
| 140 | } |
| 141 | |
| 142 | int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) |
| 143 | { |
| 144 | u64 clone_flags = args->flags; |
| 145 | unsigned long usp = args->stack; |
| 146 | unsigned long tls = args->tls; |
| 147 | struct fork_frame { |
| 148 | struct switch_stack sw; |
| 149 | struct pt_regs regs; |
| 150 | } *frame; |
| 151 | |
| 152 | frame = (struct fork_frame *) (task_stack_page(task: p) + THREAD_SIZE) - 1; |
| 153 | |
| 154 | p->thread.ksp = (unsigned long)frame; |
| 155 | p->thread.esp0 = (unsigned long)&frame->regs; |
| 156 | |
| 157 | /* |
| 158 | * Must save the current SFC/DFC value, NOT the value when |
| 159 | * the parent was last descheduled - RGH 10-08-96 |
| 160 | */ |
| 161 | p->thread.fc = USER_DATA; |
| 162 | |
| 163 | if (unlikely(args->fn)) { |
| 164 | /* kernel thread */ |
| 165 | memset(frame, 0, sizeof(struct fork_frame)); |
| 166 | frame->regs.sr = PS_S; |
| 167 | frame->sw.a3 = (unsigned long)args->fn; |
| 168 | frame->sw.d7 = (unsigned long)args->fn_arg; |
| 169 | frame->sw.retpc = (unsigned long)ret_from_kernel_thread; |
| 170 | p->thread.usp = 0; |
| 171 | return 0; |
| 172 | } |
| 173 | memcpy(frame, container_of(current_pt_regs(), struct fork_frame, regs), |
| 174 | sizeof(struct fork_frame)); |
| 175 | frame->regs.d0 = 0; |
| 176 | frame->sw.retpc = (unsigned long)ret_from_fork; |
| 177 | p->thread.usp = usp ?: rdusp(); |
| 178 | |
| 179 | if (clone_flags & CLONE_SETTLS) |
| 180 | task_thread_info(p)->tp_value = tls; |
| 181 | |
| 182 | #ifdef CONFIG_FPU |
| 183 | if (!FPU_IS_EMU) { |
| 184 | /* Copy the current fpu state */ |
| 185 | asm volatile ("fsave %0" : : "m" (p->thread.fpstate[0]) : "memory" ); |
| 186 | |
| 187 | if (!CPU_IS_060 ? p->thread.fpstate[0] : p->thread.fpstate[2]) { |
| 188 | if (CPU_IS_COLDFIRE) { |
| 189 | asm volatile ("fmovemd %/fp0-%/fp7,%0\n\t" |
| 190 | "fmovel %/fpiar,%1\n\t" |
| 191 | "fmovel %/fpcr,%2\n\t" |
| 192 | "fmovel %/fpsr,%3" |
| 193 | : |
| 194 | : "m" (p->thread.fp[0]), |
| 195 | "m" (p->thread.fpcntl[0]), |
| 196 | "m" (p->thread.fpcntl[1]), |
| 197 | "m" (p->thread.fpcntl[2]) |
| 198 | : "memory" ); |
| 199 | } else { |
| 200 | asm volatile ("fmovemx %/fp0-%/fp7,%0\n\t" |
| 201 | "fmoveml %/fpiar/%/fpcr/%/fpsr,%1" |
| 202 | : |
| 203 | : "m" (p->thread.fp[0]), |
| 204 | "m" (p->thread.fpcntl[0]) |
| 205 | : "memory" ); |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | /* Restore the state in case the fpu was busy */ |
| 210 | asm volatile ("frestore %0" : : "m" (p->thread.fpstate[0])); |
| 211 | } |
| 212 | #endif /* CONFIG_FPU */ |
| 213 | |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | /* Fill in the fpu structure for a core dump. */ |
| 218 | int elf_core_copy_task_fpregs(struct task_struct *t, elf_fpregset_t *fpu) |
| 219 | { |
| 220 | if (FPU_IS_EMU) { |
| 221 | int i; |
| 222 | |
| 223 | memcpy(fpu->fpcntl, current->thread.fpcntl, 12); |
| 224 | memcpy(fpu->fpregs, current->thread.fp, 96); |
| 225 | /* Convert internal fpu reg representation |
| 226 | * into long double format |
| 227 | */ |
| 228 | for (i = 0; i < 24; i += 3) |
| 229 | fpu->fpregs[i] = ((fpu->fpregs[i] & 0xffff0000) << 15) | |
| 230 | ((fpu->fpregs[i] & 0x0000ffff) << 16); |
| 231 | return 1; |
| 232 | } |
| 233 | |
| 234 | if (IS_ENABLED(CONFIG_FPU)) { |
| 235 | char fpustate[216]; |
| 236 | |
| 237 | /* First dump the fpu context to avoid protocol violation. */ |
| 238 | asm volatile ("fsave %0" :: "m" (fpustate[0]) : "memory" ); |
| 239 | if (!CPU_IS_060 ? !fpustate[0] : !fpustate[2]) |
| 240 | return 0; |
| 241 | |
| 242 | if (CPU_IS_COLDFIRE) { |
| 243 | asm volatile ("fmovel %/fpiar,%0\n\t" |
| 244 | "fmovel %/fpcr,%1\n\t" |
| 245 | "fmovel %/fpsr,%2\n\t" |
| 246 | "fmovemd %/fp0-%/fp7,%3" |
| 247 | : |
| 248 | : "m" (fpu->fpcntl[0]), |
| 249 | "m" (fpu->fpcntl[1]), |
| 250 | "m" (fpu->fpcntl[2]), |
| 251 | "m" (fpu->fpregs[0]) |
| 252 | : "memory" ); |
| 253 | } else { |
| 254 | asm volatile ("fmovem %/fpiar/%/fpcr/%/fpsr,%0" |
| 255 | : |
| 256 | : "m" (fpu->fpcntl[0]) |
| 257 | : "memory" ); |
| 258 | asm volatile ("fmovemx %/fp0-%/fp7,%0" |
| 259 | : |
| 260 | : "m" (fpu->fpregs[0]) |
| 261 | : "memory" ); |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | return 1; |
| 266 | } |
| 267 | |
| 268 | unsigned long __get_wchan(struct task_struct *p) |
| 269 | { |
| 270 | unsigned long fp, pc; |
| 271 | unsigned long stack_page; |
| 272 | int count = 0; |
| 273 | |
| 274 | stack_page = (unsigned long)task_stack_page(task: p); |
| 275 | fp = ((struct switch_stack *)p->thread.ksp)->a6; |
| 276 | do { |
| 277 | if (fp < stack_page+sizeof(struct thread_info) || |
| 278 | fp >= 8184+stack_page) |
| 279 | return 0; |
| 280 | pc = ((unsigned long *)fp)[1]; |
| 281 | if (!in_sched_functions(addr: pc)) |
| 282 | return pc; |
| 283 | fp = *(unsigned long *) fp; |
| 284 | } while (count++ < 16); |
| 285 | return 0; |
| 286 | } |
| 287 | |