| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * |
| 4 | * Copyright (C) 2009, 2010 ARM Limited |
| 5 | * |
| 6 | * Author: Will Deacon <will.deacon@arm.com> |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, |
| 11 | * using the CPU's debug registers. |
| 12 | */ |
| 13 | #define pr_fmt(fmt) "hw-breakpoint: " fmt |
| 14 | |
| 15 | #include <linux/errno.h> |
| 16 | #include <linux/hardirq.h> |
| 17 | #include <linux/perf_event.h> |
| 18 | #include <linux/hw_breakpoint.h> |
| 19 | #include <linux/smp.h> |
| 20 | #include <linux/cfi.h> |
| 21 | #include <linux/cpu_pm.h> |
| 22 | #include <linux/coresight.h> |
| 23 | |
| 24 | #include <asm/cacheflush.h> |
| 25 | #include <asm/cputype.h> |
| 26 | #include <asm/current.h> |
| 27 | #include <asm/hw_breakpoint.h> |
| 28 | #include <asm/traps.h> |
| 29 | |
| 30 | /* Breakpoint currently in use for each BRP. */ |
| 31 | static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]); |
| 32 | |
| 33 | /* Watchpoint currently in use for each WRP. */ |
| 34 | static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]); |
| 35 | |
| 36 | /* Number of BRP/WRP registers on this CPU. */ |
| 37 | static int core_num_brps __ro_after_init; |
| 38 | static int core_num_wrps __ro_after_init; |
| 39 | |
| 40 | /* Debug architecture version. */ |
| 41 | static u8 debug_arch __ro_after_init; |
| 42 | |
| 43 | /* Does debug architecture support OS Save and Restore? */ |
| 44 | static bool has_ossr __ro_after_init; |
| 45 | |
| 46 | /* Maximum supported watchpoint length. */ |
| 47 | static u8 max_watchpoint_len __ro_after_init; |
| 48 | |
| 49 | #define READ_WB_REG_CASE(OP2, M, VAL) \ |
| 50 | case ((OP2 << 4) + M): \ |
| 51 | ARM_DBG_READ(c0, c ## M, OP2, VAL); \ |
| 52 | break |
| 53 | |
| 54 | #define WRITE_WB_REG_CASE(OP2, M, VAL) \ |
| 55 | case ((OP2 << 4) + M): \ |
| 56 | ARM_DBG_WRITE(c0, c ## M, OP2, VAL); \ |
| 57 | break |
| 58 | |
| 59 | #define GEN_READ_WB_REG_CASES(OP2, VAL) \ |
| 60 | READ_WB_REG_CASE(OP2, 0, VAL); \ |
| 61 | READ_WB_REG_CASE(OP2, 1, VAL); \ |
| 62 | READ_WB_REG_CASE(OP2, 2, VAL); \ |
| 63 | READ_WB_REG_CASE(OP2, 3, VAL); \ |
| 64 | READ_WB_REG_CASE(OP2, 4, VAL); \ |
| 65 | READ_WB_REG_CASE(OP2, 5, VAL); \ |
| 66 | READ_WB_REG_CASE(OP2, 6, VAL); \ |
| 67 | READ_WB_REG_CASE(OP2, 7, VAL); \ |
| 68 | READ_WB_REG_CASE(OP2, 8, VAL); \ |
| 69 | READ_WB_REG_CASE(OP2, 9, VAL); \ |
| 70 | READ_WB_REG_CASE(OP2, 10, VAL); \ |
| 71 | READ_WB_REG_CASE(OP2, 11, VAL); \ |
| 72 | READ_WB_REG_CASE(OP2, 12, VAL); \ |
| 73 | READ_WB_REG_CASE(OP2, 13, VAL); \ |
| 74 | READ_WB_REG_CASE(OP2, 14, VAL); \ |
| 75 | READ_WB_REG_CASE(OP2, 15, VAL) |
| 76 | |
| 77 | #define GEN_WRITE_WB_REG_CASES(OP2, VAL) \ |
| 78 | WRITE_WB_REG_CASE(OP2, 0, VAL); \ |
| 79 | WRITE_WB_REG_CASE(OP2, 1, VAL); \ |
| 80 | WRITE_WB_REG_CASE(OP2, 2, VAL); \ |
| 81 | WRITE_WB_REG_CASE(OP2, 3, VAL); \ |
| 82 | WRITE_WB_REG_CASE(OP2, 4, VAL); \ |
| 83 | WRITE_WB_REG_CASE(OP2, 5, VAL); \ |
| 84 | WRITE_WB_REG_CASE(OP2, 6, VAL); \ |
| 85 | WRITE_WB_REG_CASE(OP2, 7, VAL); \ |
| 86 | WRITE_WB_REG_CASE(OP2, 8, VAL); \ |
| 87 | WRITE_WB_REG_CASE(OP2, 9, VAL); \ |
| 88 | WRITE_WB_REG_CASE(OP2, 10, VAL); \ |
| 89 | WRITE_WB_REG_CASE(OP2, 11, VAL); \ |
| 90 | WRITE_WB_REG_CASE(OP2, 12, VAL); \ |
| 91 | WRITE_WB_REG_CASE(OP2, 13, VAL); \ |
| 92 | WRITE_WB_REG_CASE(OP2, 14, VAL); \ |
| 93 | WRITE_WB_REG_CASE(OP2, 15, VAL) |
| 94 | |
| 95 | static u32 read_wb_reg(int n) |
| 96 | { |
| 97 | u32 val = 0; |
| 98 | |
| 99 | switch (n) { |
| 100 | GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val); |
| 101 | GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val); |
| 102 | GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val); |
| 103 | GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val); |
| 104 | default: |
| 105 | pr_warn("attempt to read from unknown breakpoint register %d\n" , |
| 106 | n); |
| 107 | } |
| 108 | |
| 109 | return val; |
| 110 | } |
| 111 | |
| 112 | static void write_wb_reg(int n, u32 val) |
| 113 | { |
| 114 | switch (n) { |
| 115 | GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val); |
| 116 | GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val); |
| 117 | GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val); |
| 118 | GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val); |
| 119 | default: |
| 120 | pr_warn("attempt to write to unknown breakpoint register %d\n" , |
| 121 | n); |
| 122 | } |
| 123 | isb(); |
| 124 | } |
| 125 | |
| 126 | /* Determine debug architecture. */ |
| 127 | static u8 get_debug_arch(void) |
| 128 | { |
| 129 | u32 didr; |
| 130 | |
| 131 | /* Do we implement the extended CPUID interface? */ |
| 132 | if (((read_cpuid_id() >> 16) & 0xf) != 0xf) { |
| 133 | pr_warn_once("CPUID feature registers not supported. " |
| 134 | "Assuming v6 debug is present.\n" ); |
| 135 | return ARM_DEBUG_ARCH_V6; |
| 136 | } |
| 137 | |
| 138 | ARM_DBG_READ(c0, c0, 0, didr); |
| 139 | return (didr >> 16) & 0xf; |
| 140 | } |
| 141 | |
| 142 | u8 arch_get_debug_arch(void) |
| 143 | { |
| 144 | return debug_arch; |
| 145 | } |
| 146 | |
| 147 | static int debug_arch_supported(void) |
| 148 | { |
| 149 | u8 arch = get_debug_arch(); |
| 150 | |
| 151 | /* We don't support the memory-mapped interface. */ |
| 152 | return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) || |
| 153 | arch >= ARM_DEBUG_ARCH_V7_1; |
| 154 | } |
| 155 | |
| 156 | /* Can we determine the watchpoint access type from the fsr? */ |
| 157 | static int debug_exception_updates_fsr(void) |
| 158 | { |
| 159 | return get_debug_arch() >= ARM_DEBUG_ARCH_V8; |
| 160 | } |
| 161 | |
| 162 | /* Determine number of WRP registers available. */ |
| 163 | static int get_num_wrp_resources(void) |
| 164 | { |
| 165 | u32 didr; |
| 166 | ARM_DBG_READ(c0, c0, 0, didr); |
| 167 | return ((didr >> 28) & 0xf) + 1; |
| 168 | } |
| 169 | |
| 170 | /* Determine number of BRP registers available. */ |
| 171 | static int get_num_brp_resources(void) |
| 172 | { |
| 173 | u32 didr; |
| 174 | ARM_DBG_READ(c0, c0, 0, didr); |
| 175 | return ((didr >> 24) & 0xf) + 1; |
| 176 | } |
| 177 | |
| 178 | /* Does this core support mismatch breakpoints? */ |
| 179 | static int core_has_mismatch_brps(void) |
| 180 | { |
| 181 | return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 && |
| 182 | get_num_brp_resources() > 1); |
| 183 | } |
| 184 | |
| 185 | /* Determine number of usable WRPs available. */ |
| 186 | static int get_num_wrps(void) |
| 187 | { |
| 188 | /* |
| 189 | * On debug architectures prior to 7.1, when a watchpoint fires, the |
| 190 | * only way to work out which watchpoint it was is by disassembling |
| 191 | * the faulting instruction and working out the address of the memory |
| 192 | * access. |
| 193 | * |
| 194 | * Furthermore, we can only do this if the watchpoint was precise |
| 195 | * since imprecise watchpoints prevent us from calculating register |
| 196 | * based addresses. |
| 197 | * |
| 198 | * Providing we have more than 1 breakpoint register, we only report |
| 199 | * a single watchpoint register for the time being. This way, we always |
| 200 | * know which watchpoint fired. In the future we can either add a |
| 201 | * disassembler and address generation emulator, or we can insert a |
| 202 | * check to see if the DFAR is set on watchpoint exception entry |
| 203 | * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows |
| 204 | * that it is set on some implementations]. |
| 205 | */ |
| 206 | if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1) |
| 207 | return 1; |
| 208 | |
| 209 | return get_num_wrp_resources(); |
| 210 | } |
| 211 | |
| 212 | /* Determine number of usable BRPs available. */ |
| 213 | static int get_num_brps(void) |
| 214 | { |
| 215 | int brps = get_num_brp_resources(); |
| 216 | return core_has_mismatch_brps() ? brps - 1 : brps; |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * In order to access the breakpoint/watchpoint control registers, |
| 221 | * we must be running in debug monitor mode. Unfortunately, we can |
| 222 | * be put into halting debug mode at any time by an external debugger |
| 223 | * but there is nothing we can do to prevent that. |
| 224 | */ |
| 225 | static int monitor_mode_enabled(void) |
| 226 | { |
| 227 | u32 dscr; |
| 228 | ARM_DBG_READ(c0, c1, 0, dscr); |
| 229 | return !!(dscr & ARM_DSCR_MDBGEN); |
| 230 | } |
| 231 | |
| 232 | static int enable_monitor_mode(void) |
| 233 | { |
| 234 | u32 dscr; |
| 235 | ARM_DBG_READ(c0, c1, 0, dscr); |
| 236 | |
| 237 | /* If monitor mode is already enabled, just return. */ |
| 238 | if (dscr & ARM_DSCR_MDBGEN) |
| 239 | goto out; |
| 240 | |
| 241 | /* Write to the corresponding DSCR. */ |
| 242 | switch (get_debug_arch()) { |
| 243 | case ARM_DEBUG_ARCH_V6: |
| 244 | case ARM_DEBUG_ARCH_V6_1: |
| 245 | ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN)); |
| 246 | break; |
| 247 | case ARM_DEBUG_ARCH_V7_ECP14: |
| 248 | case ARM_DEBUG_ARCH_V7_1: |
| 249 | case ARM_DEBUG_ARCH_V8: |
| 250 | case ARM_DEBUG_ARCH_V8_1: |
| 251 | case ARM_DEBUG_ARCH_V8_2: |
| 252 | case ARM_DEBUG_ARCH_V8_4: |
| 253 | ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN)); |
| 254 | isb(); |
| 255 | break; |
| 256 | default: |
| 257 | return -ENODEV; |
| 258 | } |
| 259 | |
| 260 | /* Check that the write made it through. */ |
| 261 | ARM_DBG_READ(c0, c1, 0, dscr); |
| 262 | if (!(dscr & ARM_DSCR_MDBGEN)) { |
| 263 | pr_warn_once("Failed to enable monitor mode on CPU %d.\n" , |
| 264 | smp_processor_id()); |
| 265 | return -EPERM; |
| 266 | } |
| 267 | |
| 268 | out: |
| 269 | return 0; |
| 270 | } |
| 271 | |
| 272 | int hw_breakpoint_slots(int type) |
| 273 | { |
| 274 | if (!debug_arch_supported()) |
| 275 | return 0; |
| 276 | |
| 277 | /* |
| 278 | * We can be called early, so don't rely on |
| 279 | * our static variables being initialised. |
| 280 | */ |
| 281 | switch (type) { |
| 282 | case TYPE_INST: |
| 283 | return get_num_brps(); |
| 284 | case TYPE_DATA: |
| 285 | return get_num_wrps(); |
| 286 | default: |
| 287 | pr_warn("unknown slot type: %d\n" , type); |
| 288 | return 0; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | /* |
| 293 | * Check if 8-bit byte-address select is available. |
| 294 | * This clobbers WRP 0. |
| 295 | */ |
| 296 | static u8 get_max_wp_len(void) |
| 297 | { |
| 298 | u32 ctrl_reg; |
| 299 | struct arch_hw_breakpoint_ctrl ctrl; |
| 300 | u8 size = 4; |
| 301 | |
| 302 | if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14) |
| 303 | goto out; |
| 304 | |
| 305 | memset(&ctrl, 0, sizeof(ctrl)); |
| 306 | ctrl.len = ARM_BREAKPOINT_LEN_8; |
| 307 | ctrl_reg = encode_ctrl_reg(ctrl); |
| 308 | |
| 309 | write_wb_reg(ARM_BASE_WVR, 0); |
| 310 | write_wb_reg(ARM_BASE_WCR, ctrl_reg); |
| 311 | if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg) |
| 312 | size = 8; |
| 313 | |
| 314 | out: |
| 315 | return size; |
| 316 | } |
| 317 | |
| 318 | u8 arch_get_max_wp_len(void) |
| 319 | { |
| 320 | return max_watchpoint_len; |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * Install a perf counter breakpoint. |
| 325 | */ |
| 326 | int arch_install_hw_breakpoint(struct perf_event *bp) |
| 327 | { |
| 328 | struct arch_hw_breakpoint *info = counter_arch_bp(bp); |
| 329 | struct perf_event **slot, **slots; |
| 330 | int i, max_slots, ctrl_base, val_base; |
| 331 | u32 addr, ctrl; |
| 332 | |
| 333 | addr = info->address; |
| 334 | ctrl = encode_ctrl_reg(info->ctrl) | 0x1; |
| 335 | |
| 336 | if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) { |
| 337 | /* Breakpoint */ |
| 338 | ctrl_base = ARM_BASE_BCR; |
| 339 | val_base = ARM_BASE_BVR; |
| 340 | slots = this_cpu_ptr(bp_on_reg); |
| 341 | max_slots = core_num_brps; |
| 342 | } else { |
| 343 | /* Watchpoint */ |
| 344 | ctrl_base = ARM_BASE_WCR; |
| 345 | val_base = ARM_BASE_WVR; |
| 346 | slots = this_cpu_ptr(wp_on_reg); |
| 347 | max_slots = core_num_wrps; |
| 348 | } |
| 349 | |
| 350 | for (i = 0; i < max_slots; ++i) { |
| 351 | slot = &slots[i]; |
| 352 | |
| 353 | if (!*slot) { |
| 354 | *slot = bp; |
| 355 | break; |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | if (i == max_slots) { |
| 360 | pr_warn("Can't find any breakpoint slot\n" ); |
| 361 | return -EBUSY; |
| 362 | } |
| 363 | |
| 364 | /* Override the breakpoint data with the step data. */ |
| 365 | if (info->step_ctrl.enabled) { |
| 366 | addr = info->trigger & ~0x3; |
| 367 | ctrl = encode_ctrl_reg(info->step_ctrl); |
| 368 | if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) { |
| 369 | i = 0; |
| 370 | ctrl_base = ARM_BASE_BCR + core_num_brps; |
| 371 | val_base = ARM_BASE_BVR + core_num_brps; |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | /* Setup the address register. */ |
| 376 | write_wb_reg(n: val_base + i, val: addr); |
| 377 | |
| 378 | /* Setup the control register. */ |
| 379 | write_wb_reg(n: ctrl_base + i, val: ctrl); |
| 380 | return 0; |
| 381 | } |
| 382 | |
| 383 | void arch_uninstall_hw_breakpoint(struct perf_event *bp) |
| 384 | { |
| 385 | struct arch_hw_breakpoint *info = counter_arch_bp(bp); |
| 386 | struct perf_event **slot, **slots; |
| 387 | int i, max_slots, base; |
| 388 | |
| 389 | if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) { |
| 390 | /* Breakpoint */ |
| 391 | base = ARM_BASE_BCR; |
| 392 | slots = this_cpu_ptr(bp_on_reg); |
| 393 | max_slots = core_num_brps; |
| 394 | } else { |
| 395 | /* Watchpoint */ |
| 396 | base = ARM_BASE_WCR; |
| 397 | slots = this_cpu_ptr(wp_on_reg); |
| 398 | max_slots = core_num_wrps; |
| 399 | } |
| 400 | |
| 401 | /* Remove the breakpoint. */ |
| 402 | for (i = 0; i < max_slots; ++i) { |
| 403 | slot = &slots[i]; |
| 404 | |
| 405 | if (*slot == bp) { |
| 406 | *slot = NULL; |
| 407 | break; |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | if (i == max_slots) { |
| 412 | pr_warn("Can't find any breakpoint slot\n" ); |
| 413 | return; |
| 414 | } |
| 415 | |
| 416 | /* Ensure that we disable the mismatch breakpoint. */ |
| 417 | if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE && |
| 418 | info->step_ctrl.enabled) { |
| 419 | i = 0; |
| 420 | base = ARM_BASE_BCR + core_num_brps; |
| 421 | } |
| 422 | |
| 423 | /* Reset the control register. */ |
| 424 | write_wb_reg(n: base + i, val: 0); |
| 425 | } |
| 426 | |
| 427 | static int get_hbp_len(u8 hbp_len) |
| 428 | { |
| 429 | unsigned int len_in_bytes = 0; |
| 430 | |
| 431 | switch (hbp_len) { |
| 432 | case ARM_BREAKPOINT_LEN_1: |
| 433 | len_in_bytes = 1; |
| 434 | break; |
| 435 | case ARM_BREAKPOINT_LEN_2: |
| 436 | len_in_bytes = 2; |
| 437 | break; |
| 438 | case ARM_BREAKPOINT_LEN_4: |
| 439 | len_in_bytes = 4; |
| 440 | break; |
| 441 | case ARM_BREAKPOINT_LEN_8: |
| 442 | len_in_bytes = 8; |
| 443 | break; |
| 444 | } |
| 445 | |
| 446 | return len_in_bytes; |
| 447 | } |
| 448 | |
| 449 | /* |
| 450 | * Check whether bp virtual address is in kernel space. |
| 451 | */ |
| 452 | int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) |
| 453 | { |
| 454 | unsigned int len; |
| 455 | unsigned long va; |
| 456 | |
| 457 | va = hw->address; |
| 458 | len = get_hbp_len(hbp_len: hw->ctrl.len); |
| 459 | |
| 460 | return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE); |
| 461 | } |
| 462 | |
| 463 | /* |
| 464 | * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl. |
| 465 | * Hopefully this will disappear when ptrace can bypass the conversion |
| 466 | * to generic breakpoint descriptions. |
| 467 | */ |
| 468 | int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl, |
| 469 | int *gen_len, int *gen_type) |
| 470 | { |
| 471 | /* Type */ |
| 472 | switch (ctrl.type) { |
| 473 | case ARM_BREAKPOINT_EXECUTE: |
| 474 | *gen_type = HW_BREAKPOINT_X; |
| 475 | break; |
| 476 | case ARM_BREAKPOINT_LOAD: |
| 477 | *gen_type = HW_BREAKPOINT_R; |
| 478 | break; |
| 479 | case ARM_BREAKPOINT_STORE: |
| 480 | *gen_type = HW_BREAKPOINT_W; |
| 481 | break; |
| 482 | case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE: |
| 483 | *gen_type = HW_BREAKPOINT_RW; |
| 484 | break; |
| 485 | default: |
| 486 | return -EINVAL; |
| 487 | } |
| 488 | |
| 489 | /* Len */ |
| 490 | switch (ctrl.len) { |
| 491 | case ARM_BREAKPOINT_LEN_1: |
| 492 | *gen_len = HW_BREAKPOINT_LEN_1; |
| 493 | break; |
| 494 | case ARM_BREAKPOINT_LEN_2: |
| 495 | *gen_len = HW_BREAKPOINT_LEN_2; |
| 496 | break; |
| 497 | case ARM_BREAKPOINT_LEN_4: |
| 498 | *gen_len = HW_BREAKPOINT_LEN_4; |
| 499 | break; |
| 500 | case ARM_BREAKPOINT_LEN_8: |
| 501 | *gen_len = HW_BREAKPOINT_LEN_8; |
| 502 | break; |
| 503 | default: |
| 504 | return -EINVAL; |
| 505 | } |
| 506 | |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | /* |
| 511 | * Construct an arch_hw_breakpoint from a perf_event. |
| 512 | */ |
| 513 | static int arch_build_bp_info(struct perf_event *bp, |
| 514 | const struct perf_event_attr *attr, |
| 515 | struct arch_hw_breakpoint *hw) |
| 516 | { |
| 517 | /* Type */ |
| 518 | switch (attr->bp_type) { |
| 519 | case HW_BREAKPOINT_X: |
| 520 | hw->ctrl.type = ARM_BREAKPOINT_EXECUTE; |
| 521 | break; |
| 522 | case HW_BREAKPOINT_R: |
| 523 | hw->ctrl.type = ARM_BREAKPOINT_LOAD; |
| 524 | break; |
| 525 | case HW_BREAKPOINT_W: |
| 526 | hw->ctrl.type = ARM_BREAKPOINT_STORE; |
| 527 | break; |
| 528 | case HW_BREAKPOINT_RW: |
| 529 | hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE; |
| 530 | break; |
| 531 | default: |
| 532 | return -EINVAL; |
| 533 | } |
| 534 | |
| 535 | /* Len */ |
| 536 | switch (attr->bp_len) { |
| 537 | case HW_BREAKPOINT_LEN_1: |
| 538 | hw->ctrl.len = ARM_BREAKPOINT_LEN_1; |
| 539 | break; |
| 540 | case HW_BREAKPOINT_LEN_2: |
| 541 | hw->ctrl.len = ARM_BREAKPOINT_LEN_2; |
| 542 | break; |
| 543 | case HW_BREAKPOINT_LEN_4: |
| 544 | hw->ctrl.len = ARM_BREAKPOINT_LEN_4; |
| 545 | break; |
| 546 | case HW_BREAKPOINT_LEN_8: |
| 547 | hw->ctrl.len = ARM_BREAKPOINT_LEN_8; |
| 548 | if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE) |
| 549 | && max_watchpoint_len >= 8) |
| 550 | break; |
| 551 | fallthrough; |
| 552 | default: |
| 553 | return -EINVAL; |
| 554 | } |
| 555 | |
| 556 | /* |
| 557 | * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes. |
| 558 | * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported |
| 559 | * by the hardware and must be aligned to the appropriate number of |
| 560 | * bytes. |
| 561 | */ |
| 562 | if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE && |
| 563 | hw->ctrl.len != ARM_BREAKPOINT_LEN_2 && |
| 564 | hw->ctrl.len != ARM_BREAKPOINT_LEN_4) |
| 565 | return -EINVAL; |
| 566 | |
| 567 | /* Address */ |
| 568 | hw->address = attr->bp_addr; |
| 569 | |
| 570 | /* Privilege */ |
| 571 | hw->ctrl.privilege = ARM_BREAKPOINT_USER; |
| 572 | if (arch_check_bp_in_kernelspace(hw)) |
| 573 | hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV; |
| 574 | |
| 575 | /* Enabled? */ |
| 576 | hw->ctrl.enabled = !attr->disabled; |
| 577 | |
| 578 | /* Mismatch */ |
| 579 | hw->ctrl.mismatch = 0; |
| 580 | |
| 581 | return 0; |
| 582 | } |
| 583 | |
| 584 | /* |
| 585 | * Validate the arch-specific HW Breakpoint register settings. |
| 586 | */ |
| 587 | int hw_breakpoint_arch_parse(struct perf_event *bp, |
| 588 | const struct perf_event_attr *attr, |
| 589 | struct arch_hw_breakpoint *hw) |
| 590 | { |
| 591 | int ret = 0; |
| 592 | u32 offset, alignment_mask = 0x3; |
| 593 | |
| 594 | /* Ensure that we are in monitor debug mode. */ |
| 595 | if (!monitor_mode_enabled()) |
| 596 | return -ENODEV; |
| 597 | |
| 598 | /* Build the arch_hw_breakpoint. */ |
| 599 | ret = arch_build_bp_info(bp, attr, hw); |
| 600 | if (ret) |
| 601 | goto out; |
| 602 | |
| 603 | /* Check address alignment. */ |
| 604 | if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8) |
| 605 | alignment_mask = 0x7; |
| 606 | offset = hw->address & alignment_mask; |
| 607 | switch (offset) { |
| 608 | case 0: |
| 609 | /* Aligned */ |
| 610 | break; |
| 611 | case 1: |
| 612 | case 2: |
| 613 | /* Allow halfword watchpoints and breakpoints. */ |
| 614 | if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2) |
| 615 | break; |
| 616 | fallthrough; |
| 617 | case 3: |
| 618 | /* Allow single byte watchpoint. */ |
| 619 | if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1) |
| 620 | break; |
| 621 | fallthrough; |
| 622 | default: |
| 623 | ret = -EINVAL; |
| 624 | goto out; |
| 625 | } |
| 626 | |
| 627 | hw->address &= ~alignment_mask; |
| 628 | hw->ctrl.len <<= offset; |
| 629 | |
| 630 | if (is_default_overflow_handler(event: bp)) { |
| 631 | /* |
| 632 | * Mismatch breakpoints are required for single-stepping |
| 633 | * breakpoints. |
| 634 | */ |
| 635 | if (!core_has_mismatch_brps()) |
| 636 | return -EINVAL; |
| 637 | |
| 638 | /* We don't allow mismatch breakpoints in kernel space. */ |
| 639 | if (arch_check_bp_in_kernelspace(hw)) |
| 640 | return -EPERM; |
| 641 | |
| 642 | /* |
| 643 | * Per-cpu breakpoints are not supported by our stepping |
| 644 | * mechanism. |
| 645 | */ |
| 646 | if (!bp->hw.target) |
| 647 | return -EINVAL; |
| 648 | |
| 649 | /* |
| 650 | * We only support specific access types if the fsr |
| 651 | * reports them. |
| 652 | */ |
| 653 | if (!debug_exception_updates_fsr() && |
| 654 | (hw->ctrl.type == ARM_BREAKPOINT_LOAD || |
| 655 | hw->ctrl.type == ARM_BREAKPOINT_STORE)) |
| 656 | return -EINVAL; |
| 657 | } |
| 658 | |
| 659 | out: |
| 660 | return ret; |
| 661 | } |
| 662 | |
| 663 | /* |
| 664 | * Enable/disable single-stepping over the breakpoint bp at address addr. |
| 665 | */ |
| 666 | static void enable_single_step(struct perf_event *bp, u32 addr) |
| 667 | { |
| 668 | struct arch_hw_breakpoint *info = counter_arch_bp(bp); |
| 669 | |
| 670 | arch_uninstall_hw_breakpoint(bp); |
| 671 | info->step_ctrl.mismatch = 1; |
| 672 | info->step_ctrl.len = ARM_BREAKPOINT_LEN_4; |
| 673 | info->step_ctrl.type = ARM_BREAKPOINT_EXECUTE; |
| 674 | info->step_ctrl.privilege = info->ctrl.privilege; |
| 675 | info->step_ctrl.enabled = 1; |
| 676 | info->trigger = addr; |
| 677 | arch_install_hw_breakpoint(bp); |
| 678 | } |
| 679 | |
| 680 | static void disable_single_step(struct perf_event *bp) |
| 681 | { |
| 682 | arch_uninstall_hw_breakpoint(bp); |
| 683 | counter_arch_bp(bp)->step_ctrl.enabled = 0; |
| 684 | arch_install_hw_breakpoint(bp); |
| 685 | } |
| 686 | |
| 687 | /* |
| 688 | * Arm32 hardware does not always report a watchpoint hit address that matches |
| 689 | * one of the watchpoints set. It can also report an address "near" the |
| 690 | * watchpoint if a single instruction access both watched and unwatched |
| 691 | * addresses. There is no straight-forward way, short of disassembling the |
| 692 | * offending instruction, to map that address back to the watchpoint. This |
| 693 | * function computes the distance of the memory access from the watchpoint as a |
| 694 | * heuristic for the likelyhood that a given access triggered the watchpoint. |
| 695 | * |
| 696 | * See this same function in the arm64 platform code, which has the same |
| 697 | * problem. |
| 698 | * |
| 699 | * The function returns the distance of the address from the bytes watched by |
| 700 | * the watchpoint. In case of an exact match, it returns 0. |
| 701 | */ |
| 702 | static u32 get_distance_from_watchpoint(unsigned long addr, u32 val, |
| 703 | struct arch_hw_breakpoint_ctrl *ctrl) |
| 704 | { |
| 705 | u32 wp_low, wp_high; |
| 706 | u32 lens, lene; |
| 707 | |
| 708 | lens = __ffs(ctrl->len); |
| 709 | lene = __fls(word: ctrl->len); |
| 710 | |
| 711 | wp_low = val + lens; |
| 712 | wp_high = val + lene; |
| 713 | if (addr < wp_low) |
| 714 | return wp_low - addr; |
| 715 | else if (addr > wp_high) |
| 716 | return addr - wp_high; |
| 717 | else |
| 718 | return 0; |
| 719 | } |
| 720 | |
| 721 | static int watchpoint_fault_on_uaccess(struct pt_regs *regs, |
| 722 | struct arch_hw_breakpoint *info) |
| 723 | { |
| 724 | return !user_mode(regs) && info->ctrl.privilege == ARM_BREAKPOINT_USER; |
| 725 | } |
| 726 | |
| 727 | static void watchpoint_handler(unsigned long addr, unsigned int fsr, |
| 728 | struct pt_regs *regs) |
| 729 | { |
| 730 | int i, access, closest_match = 0; |
| 731 | u32 min_dist = -1, dist; |
| 732 | u32 val, ctrl_reg; |
| 733 | struct perf_event *wp, **slots; |
| 734 | struct arch_hw_breakpoint *info; |
| 735 | struct arch_hw_breakpoint_ctrl ctrl; |
| 736 | |
| 737 | slots = this_cpu_ptr(wp_on_reg); |
| 738 | |
| 739 | /* |
| 740 | * Find all watchpoints that match the reported address. If no exact |
| 741 | * match is found. Attribute the hit to the closest watchpoint. |
| 742 | */ |
| 743 | rcu_read_lock(); |
| 744 | for (i = 0; i < core_num_wrps; ++i) { |
| 745 | wp = slots[i]; |
| 746 | if (wp == NULL) |
| 747 | continue; |
| 748 | |
| 749 | /* |
| 750 | * The DFAR is an unknown value on debug architectures prior |
| 751 | * to 7.1. Since we only allow a single watchpoint on these |
| 752 | * older CPUs, we can set the trigger to the lowest possible |
| 753 | * faulting address. |
| 754 | */ |
| 755 | if (debug_arch < ARM_DEBUG_ARCH_V7_1) { |
| 756 | BUG_ON(i > 0); |
| 757 | info = counter_arch_bp(bp: wp); |
| 758 | info->trigger = wp->attr.bp_addr; |
| 759 | } else { |
| 760 | /* Check that the access type matches. */ |
| 761 | if (debug_exception_updates_fsr()) { |
| 762 | access = (fsr & ARM_FSR_ACCESS_MASK) ? |
| 763 | HW_BREAKPOINT_W : HW_BREAKPOINT_R; |
| 764 | if (!(access & hw_breakpoint_type(bp: wp))) |
| 765 | continue; |
| 766 | } |
| 767 | |
| 768 | val = read_wb_reg(ARM_BASE_WVR + i); |
| 769 | ctrl_reg = read_wb_reg(ARM_BASE_WCR + i); |
| 770 | decode_ctrl_reg(ctrl_reg, &ctrl); |
| 771 | dist = get_distance_from_watchpoint(addr, val, ctrl: &ctrl); |
| 772 | if (dist < min_dist) { |
| 773 | min_dist = dist; |
| 774 | closest_match = i; |
| 775 | } |
| 776 | /* Is this an exact match? */ |
| 777 | if (dist != 0) |
| 778 | continue; |
| 779 | |
| 780 | /* We have a winner. */ |
| 781 | info = counter_arch_bp(bp: wp); |
| 782 | info->trigger = addr; |
| 783 | } |
| 784 | |
| 785 | pr_debug("watchpoint fired: address = 0x%x\n" , info->trigger); |
| 786 | |
| 787 | /* |
| 788 | * If we triggered a user watchpoint from a uaccess routine, |
| 789 | * then handle the stepping ourselves since userspace really |
| 790 | * can't help us with this. |
| 791 | */ |
| 792 | if (watchpoint_fault_on_uaccess(regs, info)) |
| 793 | goto step; |
| 794 | |
| 795 | perf_bp_event(event: wp, data: regs); |
| 796 | |
| 797 | /* |
| 798 | * Defer stepping to the overflow handler if one is installed. |
| 799 | * Otherwise, insert a temporary mismatch breakpoint so that |
| 800 | * we can single-step over the watchpoint trigger. |
| 801 | */ |
| 802 | if (!is_default_overflow_handler(event: wp)) |
| 803 | continue; |
| 804 | step: |
| 805 | enable_single_step(bp: wp, addr: instruction_pointer(regs)); |
| 806 | } |
| 807 | |
| 808 | if (min_dist > 0 && min_dist != -1) { |
| 809 | /* No exact match found. */ |
| 810 | wp = slots[closest_match]; |
| 811 | info = counter_arch_bp(bp: wp); |
| 812 | info->trigger = addr; |
| 813 | pr_debug("watchpoint fired: address = 0x%x\n" , info->trigger); |
| 814 | perf_bp_event(event: wp, data: regs); |
| 815 | if (is_default_overflow_handler(event: wp)) |
| 816 | enable_single_step(bp: wp, addr: instruction_pointer(regs)); |
| 817 | } |
| 818 | |
| 819 | rcu_read_unlock(); |
| 820 | } |
| 821 | |
| 822 | static void watchpoint_single_step_handler(unsigned long pc) |
| 823 | { |
| 824 | int i; |
| 825 | struct perf_event *wp, **slots; |
| 826 | struct arch_hw_breakpoint *info; |
| 827 | |
| 828 | slots = this_cpu_ptr(wp_on_reg); |
| 829 | |
| 830 | for (i = 0; i < core_num_wrps; ++i) { |
| 831 | rcu_read_lock(); |
| 832 | |
| 833 | wp = slots[i]; |
| 834 | |
| 835 | if (wp == NULL) |
| 836 | goto unlock; |
| 837 | |
| 838 | info = counter_arch_bp(bp: wp); |
| 839 | if (!info->step_ctrl.enabled) |
| 840 | goto unlock; |
| 841 | |
| 842 | /* |
| 843 | * Restore the original watchpoint if we've completed the |
| 844 | * single-step. |
| 845 | */ |
| 846 | if (info->trigger != pc) |
| 847 | disable_single_step(bp: wp); |
| 848 | |
| 849 | unlock: |
| 850 | rcu_read_unlock(); |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs) |
| 855 | { |
| 856 | int i; |
| 857 | u32 ctrl_reg, val, addr; |
| 858 | struct perf_event *bp, **slots; |
| 859 | struct arch_hw_breakpoint *info; |
| 860 | struct arch_hw_breakpoint_ctrl ctrl; |
| 861 | |
| 862 | slots = this_cpu_ptr(bp_on_reg); |
| 863 | |
| 864 | /* The exception entry code places the amended lr in the PC. */ |
| 865 | addr = regs->ARM_pc; |
| 866 | |
| 867 | /* Check the currently installed breakpoints first. */ |
| 868 | for (i = 0; i < core_num_brps; ++i) { |
| 869 | rcu_read_lock(); |
| 870 | |
| 871 | bp = slots[i]; |
| 872 | |
| 873 | if (bp == NULL) |
| 874 | goto unlock; |
| 875 | |
| 876 | info = counter_arch_bp(bp); |
| 877 | |
| 878 | /* Check if the breakpoint value matches. */ |
| 879 | val = read_wb_reg(ARM_BASE_BVR + i); |
| 880 | if (val != (addr & ~0x3)) |
| 881 | goto mismatch; |
| 882 | |
| 883 | /* Possible match, check the byte address select to confirm. */ |
| 884 | ctrl_reg = read_wb_reg(ARM_BASE_BCR + i); |
| 885 | decode_ctrl_reg(ctrl_reg, &ctrl); |
| 886 | if ((1 << (addr & 0x3)) & ctrl.len) { |
| 887 | info->trigger = addr; |
| 888 | pr_debug("breakpoint fired: address = 0x%x\n" , addr); |
| 889 | perf_bp_event(event: bp, data: regs); |
| 890 | if (is_default_overflow_handler(event: bp)) |
| 891 | enable_single_step(bp, addr); |
| 892 | goto unlock; |
| 893 | } |
| 894 | |
| 895 | mismatch: |
| 896 | /* If we're stepping a breakpoint, it can now be restored. */ |
| 897 | if (info->step_ctrl.enabled) |
| 898 | disable_single_step(bp); |
| 899 | unlock: |
| 900 | rcu_read_unlock(); |
| 901 | } |
| 902 | |
| 903 | /* Handle any pending watchpoint single-step breakpoints. */ |
| 904 | watchpoint_single_step_handler(pc: addr); |
| 905 | } |
| 906 | |
| 907 | #ifdef CONFIG_CFI |
| 908 | static void hw_breakpoint_cfi_handler(struct pt_regs *regs) |
| 909 | { |
| 910 | /* |
| 911 | * TODO: implementing target and type to pass to CFI using the more |
| 912 | * elaborate report_cfi_failure() requires compiler work. To be able |
| 913 | * to properly extract target information the compiler needs to |
| 914 | * emit a stable instructions sequence for the CFI checks so we can |
| 915 | * decode the instructions preceding the trap and figure out which |
| 916 | * registers were used. |
| 917 | */ |
| 918 | |
| 919 | switch (report_cfi_failure_noaddr(regs, instruction_pointer(regs))) { |
| 920 | case BUG_TRAP_TYPE_BUG: |
| 921 | die("Oops - CFI" , regs, 0); |
| 922 | break; |
| 923 | case BUG_TRAP_TYPE_WARN: |
| 924 | /* Skip the breaking instruction */ |
| 925 | instruction_pointer(regs) += 4; |
| 926 | break; |
| 927 | default: |
| 928 | die("Unknown CFI error" , regs, 0); |
| 929 | break; |
| 930 | } |
| 931 | } |
| 932 | #else |
| 933 | static void hw_breakpoint_cfi_handler(struct pt_regs *regs) |
| 934 | { |
| 935 | } |
| 936 | #endif |
| 937 | |
| 938 | /* |
| 939 | * Called from either the Data Abort Handler [watchpoint] or the |
| 940 | * Prefetch Abort Handler [breakpoint] with interrupts disabled. |
| 941 | */ |
| 942 | static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr, |
| 943 | struct pt_regs *regs) |
| 944 | { |
| 945 | int ret = 0; |
| 946 | u32 dscr; |
| 947 | |
| 948 | preempt_disable(); |
| 949 | |
| 950 | if (interrupts_enabled(regs)) |
| 951 | local_irq_enable(); |
| 952 | |
| 953 | /* We only handle watchpoints and hardware breakpoints. */ |
| 954 | ARM_DBG_READ(c0, c1, 0, dscr); |
| 955 | |
| 956 | /* Perform perf callbacks. */ |
| 957 | switch (ARM_DSCR_MOE(dscr)) { |
| 958 | case ARM_ENTRY_BREAKPOINT: |
| 959 | breakpoint_handler(unknown: addr, regs); |
| 960 | break; |
| 961 | case ARM_ENTRY_ASYNC_WATCHPOINT: |
| 962 | WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n" ); |
| 963 | fallthrough; |
| 964 | case ARM_ENTRY_SYNC_WATCHPOINT: |
| 965 | watchpoint_handler(addr, fsr, regs); |
| 966 | break; |
| 967 | case ARM_ENTRY_CFI_BREAKPOINT: |
| 968 | hw_breakpoint_cfi_handler(regs); |
| 969 | break; |
| 970 | default: |
| 971 | ret = 1; /* Unhandled fault. */ |
| 972 | } |
| 973 | |
| 974 | preempt_enable(); |
| 975 | |
| 976 | return ret; |
| 977 | } |
| 978 | |
| 979 | #ifdef CONFIG_ARM_ERRATA_764319 |
| 980 | static int oslsr_fault; |
| 981 | |
| 982 | static int debug_oslsr_trap(struct pt_regs *regs, unsigned int instr) |
| 983 | { |
| 984 | oslsr_fault = 1; |
| 985 | instruction_pointer(regs) += 4; |
| 986 | return 0; |
| 987 | } |
| 988 | |
| 989 | static struct undef_hook debug_oslsr_hook = { |
| 990 | .instr_mask = 0xffffffff, |
| 991 | .instr_val = 0xee115e91, |
| 992 | .fn = debug_oslsr_trap, |
| 993 | }; |
| 994 | #endif |
| 995 | |
| 996 | /* |
| 997 | * One-time initialisation. |
| 998 | */ |
| 999 | static cpumask_t debug_err_mask; |
| 1000 | |
| 1001 | static int debug_reg_trap(struct pt_regs *regs, unsigned int instr) |
| 1002 | { |
| 1003 | int cpu = smp_processor_id(); |
| 1004 | |
| 1005 | pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n" , |
| 1006 | instr, cpu); |
| 1007 | |
| 1008 | /* Set the error flag for this CPU and skip the faulting instruction. */ |
| 1009 | cpumask_set_cpu(cpu, dstp: &debug_err_mask); |
| 1010 | instruction_pointer(regs) += 4; |
| 1011 | return 0; |
| 1012 | } |
| 1013 | |
| 1014 | static struct undef_hook debug_reg_hook = { |
| 1015 | .instr_mask = 0x0fe80f10, |
| 1016 | .instr_val = 0x0e000e10, |
| 1017 | .fn = debug_reg_trap, |
| 1018 | }; |
| 1019 | |
| 1020 | /* Does this core support OS Save and Restore? */ |
| 1021 | static bool core_has_os_save_restore(void) |
| 1022 | { |
| 1023 | u32 oslsr; |
| 1024 | |
| 1025 | switch (get_debug_arch()) { |
| 1026 | case ARM_DEBUG_ARCH_V7_1: |
| 1027 | return true; |
| 1028 | case ARM_DEBUG_ARCH_V7_ECP14: |
| 1029 | #ifdef CONFIG_ARM_ERRATA_764319 |
| 1030 | oslsr_fault = 0; |
| 1031 | register_undef_hook(&debug_oslsr_hook); |
| 1032 | ARM_DBG_READ(c1, c1, 4, oslsr); |
| 1033 | unregister_undef_hook(&debug_oslsr_hook); |
| 1034 | if (oslsr_fault) |
| 1035 | return false; |
| 1036 | #else |
| 1037 | ARM_DBG_READ(c1, c1, 4, oslsr); |
| 1038 | #endif |
| 1039 | if (oslsr & ARM_OSLSR_OSLM0) |
| 1040 | return true; |
| 1041 | fallthrough; |
| 1042 | default: |
| 1043 | return false; |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | static void reset_ctrl_regs(unsigned int cpu) |
| 1048 | { |
| 1049 | int i, raw_num_brps, err = 0; |
| 1050 | u32 val; |
| 1051 | |
| 1052 | /* |
| 1053 | * v7 debug contains save and restore registers so that debug state |
| 1054 | * can be maintained across low-power modes without leaving the debug |
| 1055 | * logic powered up. It is IMPLEMENTATION DEFINED whether we can access |
| 1056 | * the debug registers out of reset, so we must unlock the OS Lock |
| 1057 | * Access Register to avoid taking undefined instruction exceptions |
| 1058 | * later on. |
| 1059 | */ |
| 1060 | switch (debug_arch) { |
| 1061 | case ARM_DEBUG_ARCH_V6: |
| 1062 | case ARM_DEBUG_ARCH_V6_1: |
| 1063 | /* ARMv6 cores clear the registers out of reset. */ |
| 1064 | goto out_mdbgen; |
| 1065 | case ARM_DEBUG_ARCH_V7_ECP14: |
| 1066 | /* |
| 1067 | * Ensure sticky power-down is clear (i.e. debug logic is |
| 1068 | * powered up). |
| 1069 | */ |
| 1070 | ARM_DBG_READ(c1, c5, 4, val); |
| 1071 | if ((val & 0x1) == 0) |
| 1072 | err = -EPERM; |
| 1073 | |
| 1074 | if (!has_ossr) |
| 1075 | goto clear_vcr; |
| 1076 | break; |
| 1077 | case ARM_DEBUG_ARCH_V7_1: |
| 1078 | /* |
| 1079 | * Ensure the OS double lock is clear. |
| 1080 | */ |
| 1081 | ARM_DBG_READ(c1, c3, 4, val); |
| 1082 | if ((val & 0x1) == 1) |
| 1083 | err = -EPERM; |
| 1084 | break; |
| 1085 | } |
| 1086 | |
| 1087 | if (err) { |
| 1088 | pr_warn_once("CPU %d debug is powered down!\n" , cpu); |
| 1089 | cpumask_or(dstp: &debug_err_mask, src1p: &debug_err_mask, cpumask_of(cpu)); |
| 1090 | return; |
| 1091 | } |
| 1092 | |
| 1093 | /* |
| 1094 | * Unconditionally clear the OS lock by writing a value |
| 1095 | * other than CS_LAR_KEY to the access register. |
| 1096 | */ |
| 1097 | ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK); |
| 1098 | isb(); |
| 1099 | |
| 1100 | /* |
| 1101 | * Clear any configured vector-catch events before |
| 1102 | * enabling monitor mode. |
| 1103 | */ |
| 1104 | clear_vcr: |
| 1105 | ARM_DBG_WRITE(c0, c7, 0, 0); |
| 1106 | isb(); |
| 1107 | |
| 1108 | if (cpumask_intersects(src1p: &debug_err_mask, cpumask_of(cpu))) { |
| 1109 | pr_warn_once("CPU %d failed to disable vector catch\n" , cpu); |
| 1110 | return; |
| 1111 | } |
| 1112 | |
| 1113 | /* |
| 1114 | * The control/value register pairs are UNKNOWN out of reset so |
| 1115 | * clear them to avoid spurious debug events. |
| 1116 | */ |
| 1117 | raw_num_brps = get_num_brp_resources(); |
| 1118 | for (i = 0; i < raw_num_brps; ++i) { |
| 1119 | write_wb_reg(ARM_BASE_BCR + i, 0UL); |
| 1120 | write_wb_reg(ARM_BASE_BVR + i, 0UL); |
| 1121 | } |
| 1122 | |
| 1123 | for (i = 0; i < core_num_wrps; ++i) { |
| 1124 | write_wb_reg(ARM_BASE_WCR + i, 0UL); |
| 1125 | write_wb_reg(ARM_BASE_WVR + i, 0UL); |
| 1126 | } |
| 1127 | |
| 1128 | if (cpumask_intersects(src1p: &debug_err_mask, cpumask_of(cpu))) { |
| 1129 | pr_warn_once("CPU %d failed to clear debug register pairs\n" , cpu); |
| 1130 | return; |
| 1131 | } |
| 1132 | |
| 1133 | /* |
| 1134 | * Have a crack at enabling monitor mode. We don't actually need |
| 1135 | * it yet, but reporting an error early is useful if it fails. |
| 1136 | */ |
| 1137 | out_mdbgen: |
| 1138 | if (enable_monitor_mode()) |
| 1139 | cpumask_or(dstp: &debug_err_mask, src1p: &debug_err_mask, cpumask_of(cpu)); |
| 1140 | } |
| 1141 | |
| 1142 | static int dbg_reset_online(unsigned int cpu) |
| 1143 | { |
| 1144 | local_irq_disable(); |
| 1145 | reset_ctrl_regs(cpu); |
| 1146 | local_irq_enable(); |
| 1147 | return 0; |
| 1148 | } |
| 1149 | |
| 1150 | #ifdef CONFIG_CPU_PM |
| 1151 | static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action, |
| 1152 | void *v) |
| 1153 | { |
| 1154 | if (action == CPU_PM_EXIT) |
| 1155 | reset_ctrl_regs(smp_processor_id()); |
| 1156 | |
| 1157 | return NOTIFY_OK; |
| 1158 | } |
| 1159 | |
| 1160 | static struct notifier_block dbg_cpu_pm_nb = { |
| 1161 | .notifier_call = dbg_cpu_pm_notify, |
| 1162 | }; |
| 1163 | |
| 1164 | static void __init pm_init(void) |
| 1165 | { |
| 1166 | cpu_pm_register_notifier(&dbg_cpu_pm_nb); |
| 1167 | } |
| 1168 | #else |
| 1169 | static inline void pm_init(void) |
| 1170 | { |
| 1171 | } |
| 1172 | #endif |
| 1173 | |
| 1174 | static int __init arch_hw_breakpoint_init(void) |
| 1175 | { |
| 1176 | int ret; |
| 1177 | |
| 1178 | debug_arch = get_debug_arch(); |
| 1179 | |
| 1180 | if (!debug_arch_supported()) { |
| 1181 | pr_info("debug architecture 0x%x unsupported.\n" , debug_arch); |
| 1182 | return 0; |
| 1183 | } |
| 1184 | |
| 1185 | /* |
| 1186 | * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD |
| 1187 | * whenever a WFI is issued, even if the core is not powered down, in |
| 1188 | * violation of the architecture. When DBGPRSR.SPD is set, accesses to |
| 1189 | * breakpoint and watchpoint registers are treated as undefined, so |
| 1190 | * this results in boot time and runtime failures when these are |
| 1191 | * accessed and we unexpectedly take a trap. |
| 1192 | * |
| 1193 | * It's not clear if/how this can be worked around, so we blacklist |
| 1194 | * Scorpion CPUs to avoid these issues. |
| 1195 | */ |
| 1196 | if (read_cpuid_part() == ARM_CPU_PART_SCORPION) { |
| 1197 | pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n" ); |
| 1198 | return 0; |
| 1199 | } |
| 1200 | |
| 1201 | has_ossr = core_has_os_save_restore(); |
| 1202 | |
| 1203 | /* Determine how many BRPs/WRPs are available. */ |
| 1204 | core_num_brps = get_num_brps(); |
| 1205 | core_num_wrps = get_num_wrps(); |
| 1206 | |
| 1207 | /* |
| 1208 | * We need to tread carefully here because DBGSWENABLE may be |
| 1209 | * driven low on this core and there isn't an architected way to |
| 1210 | * determine that. |
| 1211 | */ |
| 1212 | cpus_read_lock(); |
| 1213 | register_undef_hook(&debug_reg_hook); |
| 1214 | |
| 1215 | /* |
| 1216 | * Register CPU notifier which resets the breakpoint resources. We |
| 1217 | * assume that a halting debugger will leave the world in a nice state |
| 1218 | * for us. |
| 1219 | */ |
| 1220 | ret = cpuhp_setup_state_cpuslocked(state: CPUHP_AP_ONLINE_DYN, |
| 1221 | name: "arm/hw_breakpoint:online" , |
| 1222 | startup: dbg_reset_online, NULL); |
| 1223 | unregister_undef_hook(&debug_reg_hook); |
| 1224 | if (WARN_ON(ret < 0) || !cpumask_empty(srcp: &debug_err_mask)) { |
| 1225 | core_num_brps = 0; |
| 1226 | core_num_wrps = 0; |
| 1227 | if (ret > 0) |
| 1228 | cpuhp_remove_state_nocalls_cpuslocked(state: ret); |
| 1229 | cpus_read_unlock(); |
| 1230 | return 0; |
| 1231 | } |
| 1232 | |
| 1233 | pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n" , |
| 1234 | core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " : |
| 1235 | "" , core_num_wrps); |
| 1236 | |
| 1237 | /* Work out the maximum supported watchpoint length. */ |
| 1238 | max_watchpoint_len = get_max_wp_len(); |
| 1239 | pr_info("maximum watchpoint size is %u bytes.\n" , |
| 1240 | max_watchpoint_len); |
| 1241 | |
| 1242 | /* Register debug fault handler. */ |
| 1243 | hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP, |
| 1244 | TRAP_HWBKPT, "watchpoint debug exception" ); |
| 1245 | hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP, |
| 1246 | TRAP_HWBKPT, "breakpoint debug exception" ); |
| 1247 | cpus_read_unlock(); |
| 1248 | |
| 1249 | /* Register PM notifiers. */ |
| 1250 | pm_init(); |
| 1251 | return 0; |
| 1252 | } |
| 1253 | arch_initcall(arch_hw_breakpoint_init); |
| 1254 | |
| 1255 | void hw_breakpoint_pmu_read(struct perf_event *bp) |
| 1256 | { |
| 1257 | } |
| 1258 | |
| 1259 | /* |
| 1260 | * Dummy function to register with die_notifier. |
| 1261 | */ |
| 1262 | int hw_breakpoint_exceptions_notify(struct notifier_block *unused, |
| 1263 | unsigned long val, void *data) |
| 1264 | { |
| 1265 | return NOTIFY_DONE; |
| 1266 | } |
| 1267 | |