| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/arch/alpha/kernel/time.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds |
| 6 | * |
| 7 | * This file contains the clocksource time handling. |
| 8 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| 9 | * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| 10 | * 1997-01-09 Adrian Sun |
| 11 | * use interval timer if CONFIG_RTC=y |
| 12 | * 1997-10-29 John Bowman (bowman@math.ualberta.ca) |
| 13 | * fixed tick loss calculation in timer_interrupt |
| 14 | * (round system clock to nearest tick instead of truncating) |
| 15 | * fixed algorithm in time_init for getting time from CMOS clock |
| 16 | * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) |
| 17 | * fixed algorithm in do_gettimeofday() for calculating the precise time |
| 18 | * from processor cycle counter (now taking lost_ticks into account) |
| 19 | * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> |
| 20 | * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM |
| 21 | */ |
| 22 | #include <linux/errno.h> |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/sched.h> |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/param.h> |
| 27 | #include <linux/string.h> |
| 28 | #include <linux/mm.h> |
| 29 | #include <linux/delay.h> |
| 30 | #include <linux/ioport.h> |
| 31 | #include <linux/irq.h> |
| 32 | #include <linux/interrupt.h> |
| 33 | #include <linux/init.h> |
| 34 | #include <linux/bcd.h> |
| 35 | #include <linux/profile.h> |
| 36 | #include <linux/irq_work.h> |
| 37 | |
| 38 | #include <linux/uaccess.h> |
| 39 | #include <asm/io.h> |
| 40 | #include <asm/hwrpb.h> |
| 41 | |
| 42 | #include <linux/mc146818rtc.h> |
| 43 | #include <linux/time.h> |
| 44 | #include <linux/timex.h> |
| 45 | #include <linux/clocksource.h> |
| 46 | #include <linux/clockchips.h> |
| 47 | |
| 48 | #include "proto.h" |
| 49 | #include "irq_impl.h" |
| 50 | |
| 51 | DEFINE_SPINLOCK(rtc_lock); |
| 52 | EXPORT_SYMBOL(rtc_lock); |
| 53 | |
| 54 | unsigned long est_cycle_freq; |
| 55 | |
| 56 | #ifdef CONFIG_IRQ_WORK |
| 57 | |
| 58 | DEFINE_PER_CPU(u8, irq_work_pending); |
| 59 | |
| 60 | #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) |
| 61 | #define test_irq_work_pending() __this_cpu_read(irq_work_pending) |
| 62 | #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) |
| 63 | |
| 64 | void arch_irq_work_raise(void) |
| 65 | { |
| 66 | set_irq_work_pending_flag(); |
| 67 | } |
| 68 | |
| 69 | #else /* CONFIG_IRQ_WORK */ |
| 70 | |
| 71 | #define test_irq_work_pending() 0 |
| 72 | #define clear_irq_work_pending() |
| 73 | |
| 74 | #endif /* CONFIG_IRQ_WORK */ |
| 75 | |
| 76 | |
| 77 | static inline __u32 rpcc(void) |
| 78 | { |
| 79 | return __builtin_alpha_rpcc(); |
| 80 | } |
| 81 | |
| 82 | |
| 83 | |
| 84 | /* |
| 85 | * The RTC as a clock_event_device primitive. |
| 86 | */ |
| 87 | |
| 88 | static DEFINE_PER_CPU(struct clock_event_device, cpu_ce); |
| 89 | |
| 90 | irqreturn_t |
| 91 | rtc_timer_interrupt(int irq, void *dev) |
| 92 | { |
| 93 | int cpu = smp_processor_id(); |
| 94 | struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); |
| 95 | |
| 96 | /* Don't run the hook for UNUSED or SHUTDOWN. */ |
| 97 | if (likely(clockevent_state_periodic(ce))) |
| 98 | ce->event_handler(ce); |
| 99 | |
| 100 | if (test_irq_work_pending()) { |
| 101 | clear_irq_work_pending(); |
| 102 | irq_work_run(); |
| 103 | } |
| 104 | |
| 105 | return IRQ_HANDLED; |
| 106 | } |
| 107 | |
| 108 | static int |
| 109 | rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce) |
| 110 | { |
| 111 | /* This hook is for oneshot mode, which we don't support. */ |
| 112 | return -EINVAL; |
| 113 | } |
| 114 | |
| 115 | static void __init |
| 116 | init_rtc_clockevent(void) |
| 117 | { |
| 118 | int cpu = smp_processor_id(); |
| 119 | struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); |
| 120 | |
| 121 | *ce = (struct clock_event_device){ |
| 122 | .name = "rtc" , |
| 123 | .features = CLOCK_EVT_FEAT_PERIODIC, |
| 124 | .rating = 100, |
| 125 | .cpumask = cpumask_of(cpu), |
| 126 | .set_next_event = rtc_ce_set_next_event, |
| 127 | }; |
| 128 | |
| 129 | clockevents_config_and_register(dev: ce, CONFIG_HZ, min_delta: 0, max_delta: 0); |
| 130 | } |
| 131 | |
| 132 | |
| 133 | /* |
| 134 | * The QEMU clock as a clocksource primitive. |
| 135 | */ |
| 136 | |
| 137 | static u64 |
| 138 | qemu_cs_read(struct clocksource *cs) |
| 139 | { |
| 140 | return qemu_get_vmtime(); |
| 141 | } |
| 142 | |
| 143 | static struct clocksource qemu_cs = { |
| 144 | .name = "qemu" , |
| 145 | .rating = 400, |
| 146 | .read = qemu_cs_read, |
| 147 | .mask = CLOCKSOURCE_MASK(64), |
| 148 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 149 | .max_idle_ns = LONG_MAX |
| 150 | }; |
| 151 | |
| 152 | |
| 153 | /* |
| 154 | * The QEMU alarm as a clock_event_device primitive. |
| 155 | */ |
| 156 | |
| 157 | static int qemu_ce_shutdown(struct clock_event_device *ce) |
| 158 | { |
| 159 | /* The mode member of CE is updated for us in generic code. |
| 160 | Just make sure that the event is disabled. */ |
| 161 | qemu_set_alarm_abs(0); |
| 162 | return 0; |
| 163 | } |
| 164 | |
| 165 | static int |
| 166 | qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce) |
| 167 | { |
| 168 | qemu_set_alarm_rel(evt); |
| 169 | return 0; |
| 170 | } |
| 171 | |
| 172 | static irqreturn_t |
| 173 | qemu_timer_interrupt(int irq, void *dev) |
| 174 | { |
| 175 | int cpu = smp_processor_id(); |
| 176 | struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); |
| 177 | |
| 178 | ce->event_handler(ce); |
| 179 | return IRQ_HANDLED; |
| 180 | } |
| 181 | |
| 182 | static void __init |
| 183 | init_qemu_clockevent(void) |
| 184 | { |
| 185 | int cpu = smp_processor_id(); |
| 186 | struct clock_event_device *ce = &per_cpu(cpu_ce, cpu); |
| 187 | |
| 188 | *ce = (struct clock_event_device){ |
| 189 | .name = "qemu" , |
| 190 | .features = CLOCK_EVT_FEAT_ONESHOT, |
| 191 | .rating = 400, |
| 192 | .cpumask = cpumask_of(cpu), |
| 193 | .set_state_shutdown = qemu_ce_shutdown, |
| 194 | .set_state_oneshot = qemu_ce_shutdown, |
| 195 | .tick_resume = qemu_ce_shutdown, |
| 196 | .set_next_event = qemu_ce_set_next_event, |
| 197 | }; |
| 198 | |
| 199 | clockevents_config_and_register(dev: ce, NSEC_PER_SEC, min_delta: 1000, LONG_MAX); |
| 200 | } |
| 201 | |
| 202 | |
| 203 | void __init |
| 204 | common_init_rtc(void) |
| 205 | { |
| 206 | unsigned char x, sel = 0; |
| 207 | |
| 208 | /* Reset periodic interrupt frequency. */ |
| 209 | #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200 |
| 210 | x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; |
| 211 | /* Test includes known working values on various platforms |
| 212 | where 0x26 is wrong; we refuse to change those. */ |
| 213 | if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { |
| 214 | sel = RTC_REF_CLCK_32KHZ + 6; |
| 215 | } |
| 216 | #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32 |
| 217 | sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ); |
| 218 | #else |
| 219 | # error "Unknown HZ from arch/alpha/Kconfig" |
| 220 | #endif |
| 221 | if (sel) { |
| 222 | printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n" , |
| 223 | CONFIG_HZ, sel); |
| 224 | CMOS_WRITE(sel, RTC_FREQ_SELECT); |
| 225 | } |
| 226 | |
| 227 | /* Turn on periodic interrupts. */ |
| 228 | x = CMOS_READ(RTC_CONTROL); |
| 229 | if (!(x & RTC_PIE)) { |
| 230 | printk("Turning on RTC interrupts.\n" ); |
| 231 | x |= RTC_PIE; |
| 232 | x &= ~(RTC_AIE | RTC_UIE); |
| 233 | CMOS_WRITE(x, RTC_CONTROL); |
| 234 | } |
| 235 | (void) CMOS_READ(RTC_INTR_FLAGS); |
| 236 | |
| 237 | outb(value: 0x36, port: 0x43); /* pit counter 0: system timer */ |
| 238 | outb(value: 0x00, port: 0x40); |
| 239 | outb(value: 0x00, port: 0x40); |
| 240 | |
| 241 | outb(value: 0xb6, port: 0x43); /* pit counter 2: speaker */ |
| 242 | outb(value: 0x31, port: 0x42); |
| 243 | outb(value: 0x13, port: 0x42); |
| 244 | |
| 245 | init_rtc_irq(NULL); |
| 246 | } |
| 247 | |
| 248 | |
| 249 | #ifndef CONFIG_ALPHA_WTINT |
| 250 | /* |
| 251 | * The RPCC as a clocksource primitive. |
| 252 | * |
| 253 | * While we have free-running timecounters running on all CPUs, and we make |
| 254 | * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter |
| 255 | * with the wall clock, that initialization isn't kept up-to-date across |
| 256 | * different time counters in SMP mode. Therefore we can only use this |
| 257 | * method when there's only one CPU enabled. |
| 258 | * |
| 259 | * When using the WTINT PALcall, the RPCC may shift to a lower frequency, |
| 260 | * or stop altogether, while waiting for the interrupt. Therefore we cannot |
| 261 | * use this method when WTINT is in use. |
| 262 | */ |
| 263 | |
| 264 | static u64 read_rpcc(struct clocksource *cs) |
| 265 | { |
| 266 | return rpcc(); |
| 267 | } |
| 268 | |
| 269 | static struct clocksource clocksource_rpcc = { |
| 270 | .name = "rpcc" , |
| 271 | .rating = 300, |
| 272 | .read = read_rpcc, |
| 273 | .mask = CLOCKSOURCE_MASK(32), |
| 274 | .flags = CLOCK_SOURCE_IS_CONTINUOUS |
| 275 | }; |
| 276 | #endif /* ALPHA_WTINT */ |
| 277 | |
| 278 | |
| 279 | /* Validate a computed cycle counter result against the known bounds for |
| 280 | the given processor core. There's too much brokenness in the way of |
| 281 | timing hardware for any one method to work everywhere. :-( |
| 282 | |
| 283 | Return 0 if the result cannot be trusted, otherwise return the argument. */ |
| 284 | |
| 285 | static unsigned long __init |
| 286 | validate_cc_value(unsigned long cc) |
| 287 | { |
| 288 | static struct bounds { |
| 289 | unsigned int min, max; |
| 290 | } cpu_hz[] __initdata = { |
| 291 | [EV3_CPU] = { 50000000, 200000000 }, /* guess */ |
| 292 | [EV4_CPU] = { 100000000, 300000000 }, |
| 293 | [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ |
| 294 | [EV45_CPU] = { 200000000, 300000000 }, |
| 295 | [EV5_CPU] = { 250000000, 433000000 }, |
| 296 | [EV56_CPU] = { 333000000, 667000000 }, |
| 297 | [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ |
| 298 | [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ |
| 299 | [EV6_CPU] = { 466000000, 600000000 }, |
| 300 | [EV67_CPU] = { 600000000, 750000000 }, |
| 301 | [EV68AL_CPU] = { 750000000, 940000000 }, |
| 302 | [EV68CB_CPU] = { 1000000000, 1333333333 }, |
| 303 | /* None of the following are shipping as of 2001-11-01. */ |
| 304 | [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ |
| 305 | [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ |
| 306 | [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ |
| 307 | [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ |
| 308 | }; |
| 309 | |
| 310 | /* Allow for some drift in the crystal. 10MHz is more than enough. */ |
| 311 | const unsigned int deviation = 10000000; |
| 312 | |
| 313 | struct percpu_struct *cpu; |
| 314 | unsigned int index; |
| 315 | |
| 316 | cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); |
| 317 | index = cpu->type & 0xffffffff; |
| 318 | |
| 319 | /* If index out of bounds, no way to validate. */ |
| 320 | if (index >= ARRAY_SIZE(cpu_hz)) |
| 321 | return cc; |
| 322 | |
| 323 | /* If index contains no data, no way to validate. */ |
| 324 | if (cpu_hz[index].max == 0) |
| 325 | return cc; |
| 326 | |
| 327 | if (cc < cpu_hz[index].min - deviation |
| 328 | || cc > cpu_hz[index].max + deviation) |
| 329 | return 0; |
| 330 | |
| 331 | return cc; |
| 332 | } |
| 333 | |
| 334 | |
| 335 | /* |
| 336 | * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from |
| 337 | * arch/i386/time.c. |
| 338 | */ |
| 339 | |
| 340 | #define CALIBRATE_LATCH 0xffff |
| 341 | #define TIMEOUT_COUNT 0x100000 |
| 342 | |
| 343 | static unsigned long __init |
| 344 | calibrate_cc_with_pit(void) |
| 345 | { |
| 346 | int cc, count = 0; |
| 347 | |
| 348 | /* Set the Gate high, disable speaker */ |
| 349 | outb(value: (inb(port: 0x61) & ~0x02) | 0x01, port: 0x61); |
| 350 | |
| 351 | /* |
| 352 | * Now let's take care of CTC channel 2 |
| 353 | * |
| 354 | * Set the Gate high, program CTC channel 2 for mode 0, |
| 355 | * (interrupt on terminal count mode), binary count, |
| 356 | * load 5 * LATCH count, (LSB and MSB) to begin countdown. |
| 357 | */ |
| 358 | outb(value: 0xb0, port: 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ |
| 359 | outb(CALIBRATE_LATCH & 0xff, port: 0x42); /* LSB of count */ |
| 360 | outb(CALIBRATE_LATCH >> 8, port: 0x42); /* MSB of count */ |
| 361 | |
| 362 | cc = rpcc(); |
| 363 | do { |
| 364 | count++; |
| 365 | } while ((inb(port: 0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); |
| 366 | cc = rpcc() - cc; |
| 367 | |
| 368 | /* Error: ECTCNEVERSET or ECPUTOOFAST. */ |
| 369 | if (count <= 1 || count == TIMEOUT_COUNT) |
| 370 | return 0; |
| 371 | |
| 372 | return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); |
| 373 | } |
| 374 | |
| 375 | /* The Linux interpretation of the CMOS clock register contents: |
| 376 | When the Update-In-Progress (UIP) flag goes from 1 to 0, the |
| 377 | RTC registers show the second which has precisely just started. |
| 378 | Let's hope other operating systems interpret the RTC the same way. */ |
| 379 | |
| 380 | static unsigned long __init |
| 381 | rpcc_after_update_in_progress(void) |
| 382 | { |
| 383 | do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); |
| 384 | do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); |
| 385 | |
| 386 | return rpcc(); |
| 387 | } |
| 388 | |
| 389 | void __init |
| 390 | time_init(void) |
| 391 | { |
| 392 | unsigned int cc1, cc2; |
| 393 | unsigned long cycle_freq, tolerance; |
| 394 | long diff; |
| 395 | |
| 396 | if (alpha_using_qemu) { |
| 397 | clocksource_register_hz(cs: &qemu_cs, NSEC_PER_SEC); |
| 398 | init_qemu_clockevent(); |
| 399 | init_rtc_irq(handler: qemu_timer_interrupt); |
| 400 | return; |
| 401 | } |
| 402 | |
| 403 | /* Calibrate CPU clock -- attempt #1. */ |
| 404 | if (!est_cycle_freq) |
| 405 | est_cycle_freq = validate_cc_value(cc: calibrate_cc_with_pit()); |
| 406 | |
| 407 | cc1 = rpcc(); |
| 408 | |
| 409 | /* Calibrate CPU clock -- attempt #2. */ |
| 410 | if (!est_cycle_freq) { |
| 411 | cc1 = rpcc_after_update_in_progress(); |
| 412 | cc2 = rpcc_after_update_in_progress(); |
| 413 | est_cycle_freq = validate_cc_value(cc: cc2 - cc1); |
| 414 | cc1 = cc2; |
| 415 | } |
| 416 | |
| 417 | cycle_freq = hwrpb->cycle_freq; |
| 418 | if (est_cycle_freq) { |
| 419 | /* If the given value is within 250 PPM of what we calculated, |
| 420 | accept it. Otherwise, use what we found. */ |
| 421 | tolerance = cycle_freq / 4000; |
| 422 | diff = cycle_freq - est_cycle_freq; |
| 423 | if (diff < 0) |
| 424 | diff = -diff; |
| 425 | if ((unsigned long)diff > tolerance) { |
| 426 | cycle_freq = est_cycle_freq; |
| 427 | printk("HWRPB cycle frequency bogus. " |
| 428 | "Estimated %lu Hz\n" , cycle_freq); |
| 429 | } else { |
| 430 | est_cycle_freq = 0; |
| 431 | } |
| 432 | } else if (! validate_cc_value (cc: cycle_freq)) { |
| 433 | printk("HWRPB cycle frequency bogus, " |
| 434 | "and unable to estimate a proper value!\n" ); |
| 435 | } |
| 436 | |
| 437 | /* See above for restrictions on using clocksource_rpcc. */ |
| 438 | #ifndef CONFIG_ALPHA_WTINT |
| 439 | if (hwrpb->nr_processors == 1) |
| 440 | clocksource_register_hz(cs: &clocksource_rpcc, hz: cycle_freq); |
| 441 | #endif |
| 442 | |
| 443 | /* Startup the timer source. */ |
| 444 | alpha_mv.init_rtc(); |
| 445 | init_rtc_clockevent(); |
| 446 | } |
| 447 | |
| 448 | /* Initialize the clock_event_device for secondary cpus. */ |
| 449 | #ifdef CONFIG_SMP |
| 450 | void __init |
| 451 | init_clockevent(void) |
| 452 | { |
| 453 | if (alpha_using_qemu) |
| 454 | init_qemu_clockevent(); |
| 455 | else |
| 456 | init_rtc_clockevent(); |
| 457 | } |
| 458 | #endif |
| 459 | |