| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_SCHED_H |
| 3 | #define _LINUX_SCHED_H |
| 4 | |
| 5 | /* |
| 6 | * Define 'struct task_struct' and provide the main scheduler |
| 7 | * APIs (schedule(), wakeup variants, etc.) |
| 8 | */ |
| 9 | |
| 10 | #include <uapi/linux/sched.h> |
| 11 | |
| 12 | #include <asm/current.h> |
| 13 | #include <asm/processor.h> |
| 14 | #include <linux/thread_info.h> |
| 15 | #include <linux/preempt.h> |
| 16 | #include <linux/cpumask_types.h> |
| 17 | |
| 18 | #include <linux/cache.h> |
| 19 | #include <linux/irqflags_types.h> |
| 20 | #include <linux/smp_types.h> |
| 21 | #include <linux/pid_types.h> |
| 22 | #include <linux/sem_types.h> |
| 23 | #include <linux/shm.h> |
| 24 | #include <linux/kmsan_types.h> |
| 25 | #include <linux/mutex_types.h> |
| 26 | #include <linux/plist_types.h> |
| 27 | #include <linux/hrtimer_types.h> |
| 28 | #include <linux/timer_types.h> |
| 29 | #include <linux/seccomp_types.h> |
| 30 | #include <linux/nodemask_types.h> |
| 31 | #include <linux/refcount_types.h> |
| 32 | #include <linux/resource.h> |
| 33 | #include <linux/latencytop.h> |
| 34 | #include <linux/sched/prio.h> |
| 35 | #include <linux/sched/types.h> |
| 36 | #include <linux/signal_types.h> |
| 37 | #include <linux/spinlock.h> |
| 38 | #include <linux/syscall_user_dispatch_types.h> |
| 39 | #include <linux/mm_types_task.h> |
| 40 | #include <linux/netdevice_xmit.h> |
| 41 | #include <linux/task_io_accounting.h> |
| 42 | #include <linux/posix-timers_types.h> |
| 43 | #include <linux/restart_block.h> |
| 44 | #include <linux/rseq_types.h> |
| 45 | #include <linux/seqlock_types.h> |
| 46 | #include <linux/kcsan.h> |
| 47 | #include <linux/rv.h> |
| 48 | #include <linux/uidgid_types.h> |
| 49 | #include <linux/tracepoint-defs.h> |
| 50 | #include <linux/unwind_deferred_types.h> |
| 51 | #include <asm/kmap_size.h> |
| 52 | #ifndef COMPILE_OFFSETS |
| 53 | #include <generated/rq-offsets.h> |
| 54 | #endif |
| 55 | |
| 56 | /* task_struct member predeclarations (sorted alphabetically): */ |
| 57 | struct audit_context; |
| 58 | struct bio_list; |
| 59 | struct blk_plug; |
| 60 | struct bpf_local_storage; |
| 61 | struct bpf_run_ctx; |
| 62 | struct bpf_net_context; |
| 63 | struct capture_control; |
| 64 | struct cfs_rq; |
| 65 | struct fs_struct; |
| 66 | struct futex_pi_state; |
| 67 | struct io_context; |
| 68 | struct io_uring_task; |
| 69 | struct mempolicy; |
| 70 | struct nameidata; |
| 71 | struct nsproxy; |
| 72 | struct perf_event_context; |
| 73 | struct perf_ctx_data; |
| 74 | struct pid_namespace; |
| 75 | struct pipe_inode_info; |
| 76 | struct rcu_node; |
| 77 | struct reclaim_state; |
| 78 | struct robust_list_head; |
| 79 | struct root_domain; |
| 80 | struct rq; |
| 81 | struct sched_attr; |
| 82 | struct sched_dl_entity; |
| 83 | struct seq_file; |
| 84 | struct sighand_struct; |
| 85 | struct signal_struct; |
| 86 | struct task_delay_info; |
| 87 | struct task_group; |
| 88 | struct task_struct; |
| 89 | struct user_event_mm; |
| 90 | |
| 91 | #include <linux/sched/ext.h> |
| 92 | |
| 93 | /* |
| 94 | * Task state bitmask. NOTE! These bits are also |
| 95 | * encoded in fs/proc/array.c: get_task_state(). |
| 96 | * |
| 97 | * We have two separate sets of flags: task->__state |
| 98 | * is about runnability, while task->exit_state are |
| 99 | * about the task exiting. Confusing, but this way |
| 100 | * modifying one set can't modify the other one by |
| 101 | * mistake. |
| 102 | */ |
| 103 | |
| 104 | /* Used in tsk->__state: */ |
| 105 | #define TASK_RUNNING 0x00000000 |
| 106 | #define TASK_INTERRUPTIBLE 0x00000001 |
| 107 | #define TASK_UNINTERRUPTIBLE 0x00000002 |
| 108 | #define __TASK_STOPPED 0x00000004 |
| 109 | #define __TASK_TRACED 0x00000008 |
| 110 | /* Used in tsk->exit_state: */ |
| 111 | #define EXIT_DEAD 0x00000010 |
| 112 | #define EXIT_ZOMBIE 0x00000020 |
| 113 | #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) |
| 114 | /* Used in tsk->__state again: */ |
| 115 | #define TASK_PARKED 0x00000040 |
| 116 | #define TASK_DEAD 0x00000080 |
| 117 | #define TASK_WAKEKILL 0x00000100 |
| 118 | #define TASK_WAKING 0x00000200 |
| 119 | #define TASK_NOLOAD 0x00000400 |
| 120 | #define TASK_NEW 0x00000800 |
| 121 | #define TASK_RTLOCK_WAIT 0x00001000 |
| 122 | #define TASK_FREEZABLE 0x00002000 |
| 123 | #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP)) |
| 124 | #define TASK_FROZEN 0x00008000 |
| 125 | #define TASK_STATE_MAX 0x00010000 |
| 126 | |
| 127 | #define TASK_ANY (TASK_STATE_MAX-1) |
| 128 | |
| 129 | /* |
| 130 | * DO NOT ADD ANY NEW USERS ! |
| 131 | */ |
| 132 | #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE) |
| 133 | |
| 134 | /* Convenience macros for the sake of set_current_state: */ |
| 135 | #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) |
| 136 | #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) |
| 137 | #define TASK_TRACED __TASK_TRACED |
| 138 | |
| 139 | #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) |
| 140 | |
| 141 | /* Convenience macros for the sake of wake_up(): */ |
| 142 | #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) |
| 143 | |
| 144 | /* get_task_state(): */ |
| 145 | #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ |
| 146 | TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ |
| 147 | __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ |
| 148 | TASK_PARKED) |
| 149 | |
| 150 | #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING) |
| 151 | |
| 152 | #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0) |
| 153 | #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0) |
| 154 | #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0) |
| 155 | |
| 156 | /* |
| 157 | * Special states are those that do not use the normal wait-loop pattern. See |
| 158 | * the comment with set_special_state(). |
| 159 | */ |
| 160 | #define is_special_task_state(state) \ |
| 161 | ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | \ |
| 162 | TASK_DEAD | TASK_FROZEN)) |
| 163 | |
| 164 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| 165 | # define debug_normal_state_change(state_value) \ |
| 166 | do { \ |
| 167 | WARN_ON_ONCE(is_special_task_state(state_value)); \ |
| 168 | current->task_state_change = _THIS_IP_; \ |
| 169 | } while (0) |
| 170 | |
| 171 | # define debug_special_state_change(state_value) \ |
| 172 | do { \ |
| 173 | WARN_ON_ONCE(!is_special_task_state(state_value)); \ |
| 174 | current->task_state_change = _THIS_IP_; \ |
| 175 | } while (0) |
| 176 | |
| 177 | # define debug_rtlock_wait_set_state() \ |
| 178 | do { \ |
| 179 | current->saved_state_change = current->task_state_change;\ |
| 180 | current->task_state_change = _THIS_IP_; \ |
| 181 | } while (0) |
| 182 | |
| 183 | # define debug_rtlock_wait_restore_state() \ |
| 184 | do { \ |
| 185 | current->task_state_change = current->saved_state_change;\ |
| 186 | } while (0) |
| 187 | |
| 188 | #else |
| 189 | # define debug_normal_state_change(cond) do { } while (0) |
| 190 | # define debug_special_state_change(cond) do { } while (0) |
| 191 | # define debug_rtlock_wait_set_state() do { } while (0) |
| 192 | # define debug_rtlock_wait_restore_state() do { } while (0) |
| 193 | #endif |
| 194 | |
| 195 | #define trace_set_current_state(state_value) \ |
| 196 | do { \ |
| 197 | if (tracepoint_enabled(sched_set_state_tp)) \ |
| 198 | __trace_set_current_state(state_value); \ |
| 199 | } while (0) |
| 200 | |
| 201 | /* |
| 202 | * set_current_state() includes a barrier so that the write of current->__state |
| 203 | * is correctly serialised wrt the caller's subsequent test of whether to |
| 204 | * actually sleep: |
| 205 | * |
| 206 | * for (;;) { |
| 207 | * set_current_state(TASK_UNINTERRUPTIBLE); |
| 208 | * if (CONDITION) |
| 209 | * break; |
| 210 | * |
| 211 | * schedule(); |
| 212 | * } |
| 213 | * __set_current_state(TASK_RUNNING); |
| 214 | * |
| 215 | * If the caller does not need such serialisation (because, for instance, the |
| 216 | * CONDITION test and condition change and wakeup are under the same lock) then |
| 217 | * use __set_current_state(). |
| 218 | * |
| 219 | * The above is typically ordered against the wakeup, which does: |
| 220 | * |
| 221 | * CONDITION = 1; |
| 222 | * wake_up_state(p, TASK_UNINTERRUPTIBLE); |
| 223 | * |
| 224 | * where wake_up_state()/try_to_wake_up() executes a full memory barrier before |
| 225 | * accessing p->__state. |
| 226 | * |
| 227 | * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is, |
| 228 | * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a |
| 229 | * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). |
| 230 | * |
| 231 | * However, with slightly different timing the wakeup TASK_RUNNING store can |
| 232 | * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not |
| 233 | * a problem either because that will result in one extra go around the loop |
| 234 | * and our @cond test will save the day. |
| 235 | * |
| 236 | * Also see the comments of try_to_wake_up(). |
| 237 | */ |
| 238 | #define __set_current_state(state_value) \ |
| 239 | do { \ |
| 240 | debug_normal_state_change((state_value)); \ |
| 241 | trace_set_current_state(state_value); \ |
| 242 | WRITE_ONCE(current->__state, (state_value)); \ |
| 243 | } while (0) |
| 244 | |
| 245 | #define set_current_state(state_value) \ |
| 246 | do { \ |
| 247 | debug_normal_state_change((state_value)); \ |
| 248 | trace_set_current_state(state_value); \ |
| 249 | smp_store_mb(current->__state, (state_value)); \ |
| 250 | } while (0) |
| 251 | |
| 252 | /* |
| 253 | * set_special_state() should be used for those states when the blocking task |
| 254 | * can not use the regular condition based wait-loop. In that case we must |
| 255 | * serialize against wakeups such that any possible in-flight TASK_RUNNING |
| 256 | * stores will not collide with our state change. |
| 257 | */ |
| 258 | #define set_special_state(state_value) \ |
| 259 | do { \ |
| 260 | unsigned long flags; /* may shadow */ \ |
| 261 | \ |
| 262 | raw_spin_lock_irqsave(¤t->pi_lock, flags); \ |
| 263 | debug_special_state_change((state_value)); \ |
| 264 | trace_set_current_state(state_value); \ |
| 265 | WRITE_ONCE(current->__state, (state_value)); \ |
| 266 | raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ |
| 267 | } while (0) |
| 268 | |
| 269 | /* |
| 270 | * PREEMPT_RT specific variants for "sleeping" spin/rwlocks |
| 271 | * |
| 272 | * RT's spin/rwlock substitutions are state preserving. The state of the |
| 273 | * task when blocking on the lock is saved in task_struct::saved_state and |
| 274 | * restored after the lock has been acquired. These operations are |
| 275 | * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT |
| 276 | * lock related wakeups while the task is blocked on the lock are |
| 277 | * redirected to operate on task_struct::saved_state to ensure that these |
| 278 | * are not dropped. On restore task_struct::saved_state is set to |
| 279 | * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail. |
| 280 | * |
| 281 | * The lock operation looks like this: |
| 282 | * |
| 283 | * current_save_and_set_rtlock_wait_state(); |
| 284 | * for (;;) { |
| 285 | * if (try_lock()) |
| 286 | * break; |
| 287 | * raw_spin_unlock_irq(&lock->wait_lock); |
| 288 | * schedule_rtlock(); |
| 289 | * raw_spin_lock_irq(&lock->wait_lock); |
| 290 | * set_current_state(TASK_RTLOCK_WAIT); |
| 291 | * } |
| 292 | * current_restore_rtlock_saved_state(); |
| 293 | */ |
| 294 | #define current_save_and_set_rtlock_wait_state() \ |
| 295 | do { \ |
| 296 | lockdep_assert_irqs_disabled(); \ |
| 297 | raw_spin_lock(¤t->pi_lock); \ |
| 298 | current->saved_state = current->__state; \ |
| 299 | debug_rtlock_wait_set_state(); \ |
| 300 | trace_set_current_state(TASK_RTLOCK_WAIT); \ |
| 301 | WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \ |
| 302 | raw_spin_unlock(¤t->pi_lock); \ |
| 303 | } while (0); |
| 304 | |
| 305 | #define current_restore_rtlock_saved_state() \ |
| 306 | do { \ |
| 307 | lockdep_assert_irqs_disabled(); \ |
| 308 | raw_spin_lock(¤t->pi_lock); \ |
| 309 | debug_rtlock_wait_restore_state(); \ |
| 310 | trace_set_current_state(current->saved_state); \ |
| 311 | WRITE_ONCE(current->__state, current->saved_state); \ |
| 312 | current->saved_state = TASK_RUNNING; \ |
| 313 | raw_spin_unlock(¤t->pi_lock); \ |
| 314 | } while (0); |
| 315 | |
| 316 | #define get_current_state() READ_ONCE(current->__state) |
| 317 | |
| 318 | /* |
| 319 | * Define the task command name length as enum, then it can be visible to |
| 320 | * BPF programs. |
| 321 | */ |
| 322 | enum { |
| 323 | TASK_COMM_LEN = 16, |
| 324 | }; |
| 325 | |
| 326 | extern void sched_tick(void); |
| 327 | |
| 328 | #define MAX_SCHEDULE_TIMEOUT LONG_MAX |
| 329 | |
| 330 | extern long schedule_timeout(long timeout); |
| 331 | extern long schedule_timeout_interruptible(long timeout); |
| 332 | extern long schedule_timeout_killable(long timeout); |
| 333 | extern long schedule_timeout_uninterruptible(long timeout); |
| 334 | extern long schedule_timeout_idle(long timeout); |
| 335 | asmlinkage void schedule(void); |
| 336 | extern void schedule_preempt_disabled(void); |
| 337 | asmlinkage void preempt_schedule_irq(void); |
| 338 | #ifdef CONFIG_PREEMPT_RT |
| 339 | extern void schedule_rtlock(void); |
| 340 | #endif |
| 341 | |
| 342 | extern int __must_check io_schedule_prepare(void); |
| 343 | extern void io_schedule_finish(int token); |
| 344 | extern long io_schedule_timeout(long timeout); |
| 345 | extern void io_schedule(void); |
| 346 | |
| 347 | /* wrapper functions to trace from this header file */ |
| 348 | DECLARE_TRACEPOINT(sched_set_state_tp); |
| 349 | extern void __trace_set_current_state(int state_value); |
| 350 | DECLARE_TRACEPOINT(sched_set_need_resched_tp); |
| 351 | extern void __trace_set_need_resched(struct task_struct *curr, int tif); |
| 352 | |
| 353 | /** |
| 354 | * struct prev_cputime - snapshot of system and user cputime |
| 355 | * @utime: time spent in user mode |
| 356 | * @stime: time spent in system mode |
| 357 | * @lock: protects the above two fields |
| 358 | * |
| 359 | * Stores previous user/system time values such that we can guarantee |
| 360 | * monotonicity. |
| 361 | */ |
| 362 | struct prev_cputime { |
| 363 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| 364 | u64 utime; |
| 365 | u64 stime; |
| 366 | raw_spinlock_t lock; |
| 367 | #endif |
| 368 | }; |
| 369 | |
| 370 | enum vtime_state { |
| 371 | /* Task is sleeping or running in a CPU with VTIME inactive: */ |
| 372 | VTIME_INACTIVE = 0, |
| 373 | /* Task is idle */ |
| 374 | VTIME_IDLE, |
| 375 | /* Task runs in kernelspace in a CPU with VTIME active: */ |
| 376 | VTIME_SYS, |
| 377 | /* Task runs in userspace in a CPU with VTIME active: */ |
| 378 | VTIME_USER, |
| 379 | /* Task runs as guests in a CPU with VTIME active: */ |
| 380 | VTIME_GUEST, |
| 381 | }; |
| 382 | |
| 383 | struct vtime { |
| 384 | seqcount_t seqcount; |
| 385 | unsigned long long starttime; |
| 386 | enum vtime_state state; |
| 387 | unsigned int cpu; |
| 388 | u64 utime; |
| 389 | u64 stime; |
| 390 | u64 gtime; |
| 391 | }; |
| 392 | |
| 393 | /* |
| 394 | * Utilization clamp constraints. |
| 395 | * @UCLAMP_MIN: Minimum utilization |
| 396 | * @UCLAMP_MAX: Maximum utilization |
| 397 | * @UCLAMP_CNT: Utilization clamp constraints count |
| 398 | */ |
| 399 | enum uclamp_id { |
| 400 | UCLAMP_MIN = 0, |
| 401 | UCLAMP_MAX, |
| 402 | UCLAMP_CNT |
| 403 | }; |
| 404 | |
| 405 | extern struct root_domain def_root_domain; |
| 406 | extern struct mutex sched_domains_mutex; |
| 407 | extern void sched_domains_mutex_lock(void); |
| 408 | extern void sched_domains_mutex_unlock(void); |
| 409 | |
| 410 | struct sched_param { |
| 411 | int sched_priority; |
| 412 | }; |
| 413 | |
| 414 | struct sched_info { |
| 415 | #ifdef CONFIG_SCHED_INFO |
| 416 | /* Cumulative counters: */ |
| 417 | |
| 418 | /* # of times we have run on this CPU: */ |
| 419 | unsigned long pcount; |
| 420 | |
| 421 | /* Time spent waiting on a runqueue: */ |
| 422 | unsigned long long run_delay; |
| 423 | |
| 424 | /* Max time spent waiting on a runqueue: */ |
| 425 | unsigned long long max_run_delay; |
| 426 | |
| 427 | /* Min time spent waiting on a runqueue: */ |
| 428 | unsigned long long min_run_delay; |
| 429 | |
| 430 | /* Timestamps: */ |
| 431 | |
| 432 | /* When did we last run on a CPU? */ |
| 433 | unsigned long long last_arrival; |
| 434 | |
| 435 | /* When were we last queued to run? */ |
| 436 | unsigned long long last_queued; |
| 437 | |
| 438 | #endif /* CONFIG_SCHED_INFO */ |
| 439 | }; |
| 440 | |
| 441 | /* |
| 442 | * Integer metrics need fixed point arithmetic, e.g., sched/fair |
| 443 | * has a few: load, load_avg, util_avg, freq, and capacity. |
| 444 | * |
| 445 | * We define a basic fixed point arithmetic range, and then formalize |
| 446 | * all these metrics based on that basic range. |
| 447 | */ |
| 448 | # define SCHED_FIXEDPOINT_SHIFT 10 |
| 449 | # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) |
| 450 | |
| 451 | /* Increase resolution of cpu_capacity calculations */ |
| 452 | # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT |
| 453 | # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) |
| 454 | |
| 455 | struct load_weight { |
| 456 | unsigned long weight; |
| 457 | u32 inv_weight; |
| 458 | }; |
| 459 | |
| 460 | /* |
| 461 | * The load/runnable/util_avg accumulates an infinite geometric series |
| 462 | * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). |
| 463 | * |
| 464 | * [load_avg definition] |
| 465 | * |
| 466 | * load_avg = runnable% * scale_load_down(load) |
| 467 | * |
| 468 | * [runnable_avg definition] |
| 469 | * |
| 470 | * runnable_avg = runnable% * SCHED_CAPACITY_SCALE |
| 471 | * |
| 472 | * [util_avg definition] |
| 473 | * |
| 474 | * util_avg = running% * SCHED_CAPACITY_SCALE |
| 475 | * |
| 476 | * where runnable% is the time ratio that a sched_entity is runnable and |
| 477 | * running% the time ratio that a sched_entity is running. |
| 478 | * |
| 479 | * For cfs_rq, they are the aggregated values of all runnable and blocked |
| 480 | * sched_entities. |
| 481 | * |
| 482 | * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU |
| 483 | * capacity scaling. The scaling is done through the rq_clock_pelt that is used |
| 484 | * for computing those signals (see update_rq_clock_pelt()) |
| 485 | * |
| 486 | * N.B., the above ratios (runnable% and running%) themselves are in the |
| 487 | * range of [0, 1]. To do fixed point arithmetics, we therefore scale them |
| 488 | * to as large a range as necessary. This is for example reflected by |
| 489 | * util_avg's SCHED_CAPACITY_SCALE. |
| 490 | * |
| 491 | * [Overflow issue] |
| 492 | * |
| 493 | * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities |
| 494 | * with the highest load (=88761), always runnable on a single cfs_rq, |
| 495 | * and should not overflow as the number already hits PID_MAX_LIMIT. |
| 496 | * |
| 497 | * For all other cases (including 32-bit kernels), struct load_weight's |
| 498 | * weight will overflow first before we do, because: |
| 499 | * |
| 500 | * Max(load_avg) <= Max(load.weight) |
| 501 | * |
| 502 | * Then it is the load_weight's responsibility to consider overflow |
| 503 | * issues. |
| 504 | */ |
| 505 | struct sched_avg { |
| 506 | u64 last_update_time; |
| 507 | u64 load_sum; |
| 508 | u64 runnable_sum; |
| 509 | u32 util_sum; |
| 510 | u32 period_contrib; |
| 511 | unsigned long load_avg; |
| 512 | unsigned long runnable_avg; |
| 513 | unsigned long util_avg; |
| 514 | unsigned int util_est; |
| 515 | } ____cacheline_aligned; |
| 516 | |
| 517 | /* |
| 518 | * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg |
| 519 | * updates. When a task is dequeued, its util_est should not be updated if its |
| 520 | * util_avg has not been updated in the meantime. |
| 521 | * This information is mapped into the MSB bit of util_est at dequeue time. |
| 522 | * Since max value of util_est for a task is 1024 (PELT util_avg for a task) |
| 523 | * it is safe to use MSB. |
| 524 | */ |
| 525 | #define UTIL_EST_WEIGHT_SHIFT 2 |
| 526 | #define UTIL_AVG_UNCHANGED 0x80000000 |
| 527 | |
| 528 | struct sched_statistics { |
| 529 | #ifdef CONFIG_SCHEDSTATS |
| 530 | u64 wait_start; |
| 531 | u64 wait_max; |
| 532 | u64 wait_count; |
| 533 | u64 wait_sum; |
| 534 | u64 iowait_count; |
| 535 | u64 iowait_sum; |
| 536 | |
| 537 | u64 sleep_start; |
| 538 | u64 sleep_max; |
| 539 | s64 sum_sleep_runtime; |
| 540 | |
| 541 | u64 block_start; |
| 542 | u64 block_max; |
| 543 | s64 sum_block_runtime; |
| 544 | |
| 545 | s64 exec_max; |
| 546 | u64 slice_max; |
| 547 | |
| 548 | u64 nr_migrations_cold; |
| 549 | u64 nr_failed_migrations_affine; |
| 550 | u64 nr_failed_migrations_running; |
| 551 | u64 nr_failed_migrations_hot; |
| 552 | u64 nr_forced_migrations; |
| 553 | |
| 554 | u64 nr_wakeups; |
| 555 | u64 nr_wakeups_sync; |
| 556 | u64 nr_wakeups_migrate; |
| 557 | u64 nr_wakeups_local; |
| 558 | u64 nr_wakeups_remote; |
| 559 | u64 nr_wakeups_affine; |
| 560 | u64 nr_wakeups_affine_attempts; |
| 561 | u64 nr_wakeups_passive; |
| 562 | u64 nr_wakeups_idle; |
| 563 | |
| 564 | #ifdef CONFIG_SCHED_CORE |
| 565 | u64 core_forceidle_sum; |
| 566 | #endif |
| 567 | #endif /* CONFIG_SCHEDSTATS */ |
| 568 | } ____cacheline_aligned; |
| 569 | |
| 570 | struct sched_entity { |
| 571 | /* For load-balancing: */ |
| 572 | struct load_weight load; |
| 573 | struct rb_node run_node; |
| 574 | u64 deadline; |
| 575 | u64 min_vruntime; |
| 576 | u64 min_slice; |
| 577 | |
| 578 | struct list_head group_node; |
| 579 | unsigned char on_rq; |
| 580 | unsigned char sched_delayed; |
| 581 | unsigned char rel_deadline; |
| 582 | unsigned char custom_slice; |
| 583 | /* hole */ |
| 584 | |
| 585 | u64 exec_start; |
| 586 | u64 sum_exec_runtime; |
| 587 | u64 prev_sum_exec_runtime; |
| 588 | u64 vruntime; |
| 589 | union { |
| 590 | /* |
| 591 | * When !@on_rq this field is vlag. |
| 592 | * When cfs_rq->curr == se (which implies @on_rq) |
| 593 | * this field is vprot. See protect_slice(). |
| 594 | */ |
| 595 | s64 vlag; |
| 596 | u64 vprot; |
| 597 | }; |
| 598 | u64 slice; |
| 599 | |
| 600 | u64 nr_migrations; |
| 601 | |
| 602 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 603 | int depth; |
| 604 | struct sched_entity *parent; |
| 605 | /* rq on which this entity is (to be) queued: */ |
| 606 | struct cfs_rq *cfs_rq; |
| 607 | /* rq "owned" by this entity/group: */ |
| 608 | struct cfs_rq *my_q; |
| 609 | /* cached value of my_q->h_nr_running */ |
| 610 | unsigned long runnable_weight; |
| 611 | #endif |
| 612 | |
| 613 | /* |
| 614 | * Per entity load average tracking. |
| 615 | * |
| 616 | * Put into separate cache line so it does not |
| 617 | * collide with read-mostly values above. |
| 618 | */ |
| 619 | struct sched_avg avg; |
| 620 | }; |
| 621 | |
| 622 | struct sched_rt_entity { |
| 623 | struct list_head run_list; |
| 624 | unsigned long timeout; |
| 625 | unsigned long watchdog_stamp; |
| 626 | unsigned int time_slice; |
| 627 | unsigned short on_rq; |
| 628 | unsigned short on_list; |
| 629 | |
| 630 | struct sched_rt_entity *back; |
| 631 | #ifdef CONFIG_RT_GROUP_SCHED |
| 632 | struct sched_rt_entity *parent; |
| 633 | /* rq on which this entity is (to be) queued: */ |
| 634 | struct rt_rq *rt_rq; |
| 635 | /* rq "owned" by this entity/group: */ |
| 636 | struct rt_rq *my_q; |
| 637 | #endif |
| 638 | } __randomize_layout; |
| 639 | |
| 640 | struct rq_flags; |
| 641 | typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *, struct rq_flags *rf); |
| 642 | |
| 643 | struct sched_dl_entity { |
| 644 | struct rb_node rb_node; |
| 645 | |
| 646 | /* |
| 647 | * Original scheduling parameters. Copied here from sched_attr |
| 648 | * during sched_setattr(), they will remain the same until |
| 649 | * the next sched_setattr(). |
| 650 | */ |
| 651 | u64 dl_runtime; /* Maximum runtime for each instance */ |
| 652 | u64 dl_deadline; /* Relative deadline of each instance */ |
| 653 | u64 dl_period; /* Separation of two instances (period) */ |
| 654 | u64 dl_bw; /* dl_runtime / dl_period */ |
| 655 | u64 dl_density; /* dl_runtime / dl_deadline */ |
| 656 | |
| 657 | /* |
| 658 | * Actual scheduling parameters. Initialized with the values above, |
| 659 | * they are continuously updated during task execution. Note that |
| 660 | * the remaining runtime could be < 0 in case we are in overrun. |
| 661 | */ |
| 662 | s64 runtime; /* Remaining runtime for this instance */ |
| 663 | u64 deadline; /* Absolute deadline for this instance */ |
| 664 | unsigned int flags; /* Specifying the scheduler behaviour */ |
| 665 | |
| 666 | /* |
| 667 | * Some bool flags: |
| 668 | * |
| 669 | * @dl_throttled tells if we exhausted the runtime. If so, the |
| 670 | * task has to wait for a replenishment to be performed at the |
| 671 | * next firing of dl_timer. |
| 672 | * |
| 673 | * @dl_yielded tells if task gave up the CPU before consuming |
| 674 | * all its available runtime during the last job. |
| 675 | * |
| 676 | * @dl_non_contending tells if the task is inactive while still |
| 677 | * contributing to the active utilization. In other words, it |
| 678 | * indicates if the inactive timer has been armed and its handler |
| 679 | * has not been executed yet. This flag is useful to avoid race |
| 680 | * conditions between the inactive timer handler and the wakeup |
| 681 | * code. |
| 682 | * |
| 683 | * @dl_overrun tells if the task asked to be informed about runtime |
| 684 | * overruns. |
| 685 | * |
| 686 | * @dl_server tells if this is a server entity. |
| 687 | * |
| 688 | * @dl_server_active tells if the dlserver is active(started). |
| 689 | * dlserver is started on first cfs enqueue on an idle runqueue |
| 690 | * and is stopped when a dequeue results in 0 cfs tasks on the |
| 691 | * runqueue. In other words, dlserver is active only when cpu's |
| 692 | * runqueue has atleast one cfs task. |
| 693 | * |
| 694 | * @dl_defer tells if this is a deferred or regular server. For |
| 695 | * now only defer server exists. |
| 696 | * |
| 697 | * @dl_defer_armed tells if the deferrable server is waiting |
| 698 | * for the replenishment timer to activate it. |
| 699 | * |
| 700 | * @dl_defer_running tells if the deferrable server is actually |
| 701 | * running, skipping the defer phase. |
| 702 | * |
| 703 | * @dl_defer_idle tracks idle state |
| 704 | */ |
| 705 | unsigned int dl_throttled : 1; |
| 706 | unsigned int dl_yielded : 1; |
| 707 | unsigned int dl_non_contending : 1; |
| 708 | unsigned int dl_overrun : 1; |
| 709 | unsigned int dl_server : 1; |
| 710 | unsigned int dl_server_active : 1; |
| 711 | unsigned int dl_defer : 1; |
| 712 | unsigned int dl_defer_armed : 1; |
| 713 | unsigned int dl_defer_running : 1; |
| 714 | unsigned int dl_defer_idle : 1; |
| 715 | |
| 716 | /* |
| 717 | * Bandwidth enforcement timer. Each -deadline task has its |
| 718 | * own bandwidth to be enforced, thus we need one timer per task. |
| 719 | */ |
| 720 | struct hrtimer dl_timer; |
| 721 | |
| 722 | /* |
| 723 | * Inactive timer, responsible for decreasing the active utilization |
| 724 | * at the "0-lag time". When a -deadline task blocks, it contributes |
| 725 | * to GRUB's active utilization until the "0-lag time", hence a |
| 726 | * timer is needed to decrease the active utilization at the correct |
| 727 | * time. |
| 728 | */ |
| 729 | struct hrtimer inactive_timer; |
| 730 | |
| 731 | /* |
| 732 | * Bits for DL-server functionality. Also see the comment near |
| 733 | * dl_server_update(). |
| 734 | * |
| 735 | * @rq the runqueue this server is for |
| 736 | */ |
| 737 | struct rq *rq; |
| 738 | dl_server_pick_f server_pick_task; |
| 739 | |
| 740 | #ifdef CONFIG_RT_MUTEXES |
| 741 | /* |
| 742 | * Priority Inheritance. When a DEADLINE scheduling entity is boosted |
| 743 | * pi_se points to the donor, otherwise points to the dl_se it belongs |
| 744 | * to (the original one/itself). |
| 745 | */ |
| 746 | struct sched_dl_entity *pi_se; |
| 747 | #endif |
| 748 | }; |
| 749 | |
| 750 | #ifdef CONFIG_UCLAMP_TASK |
| 751 | /* Number of utilization clamp buckets (shorter alias) */ |
| 752 | #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT |
| 753 | |
| 754 | /* |
| 755 | * Utilization clamp for a scheduling entity |
| 756 | * @value: clamp value "assigned" to a se |
| 757 | * @bucket_id: bucket index corresponding to the "assigned" value |
| 758 | * @active: the se is currently refcounted in a rq's bucket |
| 759 | * @user_defined: the requested clamp value comes from user-space |
| 760 | * |
| 761 | * The bucket_id is the index of the clamp bucket matching the clamp value |
| 762 | * which is pre-computed and stored to avoid expensive integer divisions from |
| 763 | * the fast path. |
| 764 | * |
| 765 | * The active bit is set whenever a task has got an "effective" value assigned, |
| 766 | * which can be different from the clamp value "requested" from user-space. |
| 767 | * This allows to know a task is refcounted in the rq's bucket corresponding |
| 768 | * to the "effective" bucket_id. |
| 769 | * |
| 770 | * The user_defined bit is set whenever a task has got a task-specific clamp |
| 771 | * value requested from userspace, i.e. the system defaults apply to this task |
| 772 | * just as a restriction. This allows to relax default clamps when a less |
| 773 | * restrictive task-specific value has been requested, thus allowing to |
| 774 | * implement a "nice" semantic. For example, a task running with a 20% |
| 775 | * default boost can still drop its own boosting to 0%. |
| 776 | */ |
| 777 | struct uclamp_se { |
| 778 | unsigned int value : bits_per(SCHED_CAPACITY_SCALE); |
| 779 | unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); |
| 780 | unsigned int active : 1; |
| 781 | unsigned int user_defined : 1; |
| 782 | }; |
| 783 | #endif /* CONFIG_UCLAMP_TASK */ |
| 784 | |
| 785 | union rcu_special { |
| 786 | struct { |
| 787 | u8 blocked; |
| 788 | u8 need_qs; |
| 789 | u8 exp_hint; /* Hint for performance. */ |
| 790 | u8 need_mb; /* Readers need smp_mb(). */ |
| 791 | } b; /* Bits. */ |
| 792 | u32 s; /* Set of bits. */ |
| 793 | }; |
| 794 | |
| 795 | enum perf_event_task_context { |
| 796 | perf_invalid_context = -1, |
| 797 | perf_hw_context = 0, |
| 798 | perf_sw_context, |
| 799 | perf_nr_task_contexts, |
| 800 | }; |
| 801 | |
| 802 | /* |
| 803 | * Number of contexts where an event can trigger: |
| 804 | * task, softirq, hardirq, nmi. |
| 805 | */ |
| 806 | #define PERF_NR_CONTEXTS 4 |
| 807 | |
| 808 | struct wake_q_node { |
| 809 | struct wake_q_node *next; |
| 810 | }; |
| 811 | |
| 812 | struct kmap_ctrl { |
| 813 | #ifdef CONFIG_KMAP_LOCAL |
| 814 | int idx; |
| 815 | pte_t pteval[KM_MAX_IDX]; |
| 816 | #endif |
| 817 | }; |
| 818 | |
| 819 | struct task_struct { |
| 820 | #ifdef CONFIG_THREAD_INFO_IN_TASK |
| 821 | /* |
| 822 | * For reasons of header soup (see current_thread_info()), this |
| 823 | * must be the first element of task_struct. |
| 824 | */ |
| 825 | struct thread_info thread_info; |
| 826 | #endif |
| 827 | unsigned int __state; |
| 828 | |
| 829 | /* saved state for "spinlock sleepers" */ |
| 830 | unsigned int saved_state; |
| 831 | |
| 832 | /* |
| 833 | * This begins the randomizable portion of task_struct. Only |
| 834 | * scheduling-critical items should be added above here. |
| 835 | */ |
| 836 | randomized_struct_fields_start |
| 837 | |
| 838 | void *stack; |
| 839 | refcount_t usage; |
| 840 | /* Per task flags (PF_*), defined further below: */ |
| 841 | unsigned int flags; |
| 842 | unsigned int ptrace; |
| 843 | |
| 844 | #ifdef CONFIG_MEM_ALLOC_PROFILING |
| 845 | struct alloc_tag *alloc_tag; |
| 846 | #endif |
| 847 | |
| 848 | int on_cpu; |
| 849 | struct __call_single_node wake_entry; |
| 850 | unsigned int wakee_flips; |
| 851 | unsigned long wakee_flip_decay_ts; |
| 852 | struct task_struct *last_wakee; |
| 853 | |
| 854 | /* |
| 855 | * recent_used_cpu is initially set as the last CPU used by a task |
| 856 | * that wakes affine another task. Waker/wakee relationships can |
| 857 | * push tasks around a CPU where each wakeup moves to the next one. |
| 858 | * Tracking a recently used CPU allows a quick search for a recently |
| 859 | * used CPU that may be idle. |
| 860 | */ |
| 861 | int recent_used_cpu; |
| 862 | int wake_cpu; |
| 863 | int on_rq; |
| 864 | |
| 865 | int prio; |
| 866 | int static_prio; |
| 867 | int normal_prio; |
| 868 | unsigned int rt_priority; |
| 869 | |
| 870 | struct sched_entity se; |
| 871 | struct sched_rt_entity rt; |
| 872 | struct sched_dl_entity dl; |
| 873 | struct sched_dl_entity *dl_server; |
| 874 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 875 | struct sched_ext_entity scx; |
| 876 | #endif |
| 877 | const struct sched_class *sched_class; |
| 878 | |
| 879 | #ifdef CONFIG_SCHED_CORE |
| 880 | struct rb_node core_node; |
| 881 | unsigned long core_cookie; |
| 882 | unsigned int core_occupation; |
| 883 | #endif |
| 884 | |
| 885 | #ifdef CONFIG_CGROUP_SCHED |
| 886 | struct task_group *sched_task_group; |
| 887 | #ifdef CONFIG_CFS_BANDWIDTH |
| 888 | struct callback_head sched_throttle_work; |
| 889 | struct list_head throttle_node; |
| 890 | bool throttled; |
| 891 | #endif |
| 892 | #endif |
| 893 | |
| 894 | |
| 895 | #ifdef CONFIG_UCLAMP_TASK |
| 896 | /* |
| 897 | * Clamp values requested for a scheduling entity. |
| 898 | * Must be updated with task_rq_lock() held. |
| 899 | */ |
| 900 | struct uclamp_se uclamp_req[UCLAMP_CNT]; |
| 901 | /* |
| 902 | * Effective clamp values used for a scheduling entity. |
| 903 | * Must be updated with task_rq_lock() held. |
| 904 | */ |
| 905 | struct uclamp_se uclamp[UCLAMP_CNT]; |
| 906 | #endif |
| 907 | |
| 908 | struct sched_statistics stats; |
| 909 | |
| 910 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| 911 | /* List of struct preempt_notifier: */ |
| 912 | struct hlist_head preempt_notifiers; |
| 913 | #endif |
| 914 | |
| 915 | #ifdef CONFIG_BLK_DEV_IO_TRACE |
| 916 | unsigned int btrace_seq; |
| 917 | #endif |
| 918 | |
| 919 | unsigned int policy; |
| 920 | unsigned long max_allowed_capacity; |
| 921 | int nr_cpus_allowed; |
| 922 | const cpumask_t *cpus_ptr; |
| 923 | cpumask_t *user_cpus_ptr; |
| 924 | cpumask_t cpus_mask; |
| 925 | void *migration_pending; |
| 926 | unsigned short migration_disabled; |
| 927 | unsigned short migration_flags; |
| 928 | |
| 929 | #ifdef CONFIG_PREEMPT_RCU |
| 930 | int rcu_read_lock_nesting; |
| 931 | union rcu_special rcu_read_unlock_special; |
| 932 | struct list_head rcu_node_entry; |
| 933 | struct rcu_node *rcu_blocked_node; |
| 934 | #endif /* #ifdef CONFIG_PREEMPT_RCU */ |
| 935 | |
| 936 | #ifdef CONFIG_TASKS_RCU |
| 937 | unsigned long rcu_tasks_nvcsw; |
| 938 | u8 rcu_tasks_holdout; |
| 939 | u8 rcu_tasks_idx; |
| 940 | int rcu_tasks_idle_cpu; |
| 941 | struct list_head rcu_tasks_holdout_list; |
| 942 | int rcu_tasks_exit_cpu; |
| 943 | struct list_head rcu_tasks_exit_list; |
| 944 | #endif /* #ifdef CONFIG_TASKS_RCU */ |
| 945 | |
| 946 | #ifdef CONFIG_TASKS_TRACE_RCU |
| 947 | int trc_reader_nesting; |
| 948 | int trc_ipi_to_cpu; |
| 949 | union rcu_special trc_reader_special; |
| 950 | struct list_head trc_holdout_list; |
| 951 | struct list_head trc_blkd_node; |
| 952 | int trc_blkd_cpu; |
| 953 | #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| 954 | |
| 955 | struct sched_info sched_info; |
| 956 | |
| 957 | struct list_head tasks; |
| 958 | struct plist_node pushable_tasks; |
| 959 | struct rb_node pushable_dl_tasks; |
| 960 | |
| 961 | struct mm_struct *mm; |
| 962 | struct mm_struct *active_mm; |
| 963 | struct address_space *faults_disabled_mapping; |
| 964 | |
| 965 | int exit_state; |
| 966 | int exit_code; |
| 967 | int exit_signal; |
| 968 | /* The signal sent when the parent dies: */ |
| 969 | int pdeath_signal; |
| 970 | /* JOBCTL_*, siglock protected: */ |
| 971 | unsigned long jobctl; |
| 972 | |
| 973 | /* Used for emulating ABI behavior of previous Linux versions: */ |
| 974 | unsigned int personality; |
| 975 | |
| 976 | /* Scheduler bits, serialized by scheduler locks: */ |
| 977 | unsigned sched_reset_on_fork:1; |
| 978 | unsigned sched_contributes_to_load:1; |
| 979 | unsigned sched_migrated:1; |
| 980 | unsigned sched_task_hot:1; |
| 981 | |
| 982 | /* Force alignment to the next boundary: */ |
| 983 | unsigned :0; |
| 984 | |
| 985 | /* Unserialized, strictly 'current' */ |
| 986 | |
| 987 | /* |
| 988 | * This field must not be in the scheduler word above due to wakelist |
| 989 | * queueing no longer being serialized by p->on_cpu. However: |
| 990 | * |
| 991 | * p->XXX = X; ttwu() |
| 992 | * schedule() if (p->on_rq && ..) // false |
| 993 | * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true |
| 994 | * deactivate_task() ttwu_queue_wakelist()) |
| 995 | * p->on_rq = 0; p->sched_remote_wakeup = Y; |
| 996 | * |
| 997 | * guarantees all stores of 'current' are visible before |
| 998 | * ->sched_remote_wakeup gets used, so it can be in this word. |
| 999 | */ |
| 1000 | unsigned sched_remote_wakeup:1; |
| 1001 | #ifdef CONFIG_RT_MUTEXES |
| 1002 | unsigned sched_rt_mutex:1; |
| 1003 | #endif |
| 1004 | |
| 1005 | /* Bit to tell TOMOYO we're in execve(): */ |
| 1006 | unsigned in_execve:1; |
| 1007 | unsigned in_iowait:1; |
| 1008 | #ifndef TIF_RESTORE_SIGMASK |
| 1009 | unsigned restore_sigmask:1; |
| 1010 | #endif |
| 1011 | #ifdef CONFIG_MEMCG_V1 |
| 1012 | unsigned in_user_fault:1; |
| 1013 | #endif |
| 1014 | #ifdef CONFIG_LRU_GEN |
| 1015 | /* whether the LRU algorithm may apply to this access */ |
| 1016 | unsigned in_lru_fault:1; |
| 1017 | #endif |
| 1018 | #ifdef CONFIG_COMPAT_BRK |
| 1019 | unsigned brk_randomized:1; |
| 1020 | #endif |
| 1021 | #ifdef CONFIG_CGROUPS |
| 1022 | /* disallow userland-initiated cgroup migration */ |
| 1023 | unsigned no_cgroup_migration:1; |
| 1024 | /* task is frozen/stopped (used by the cgroup freezer) */ |
| 1025 | unsigned frozen:1; |
| 1026 | #endif |
| 1027 | #ifdef CONFIG_BLK_CGROUP |
| 1028 | unsigned use_memdelay:1; |
| 1029 | #endif |
| 1030 | #ifdef CONFIG_PSI |
| 1031 | /* Stalled due to lack of memory */ |
| 1032 | unsigned in_memstall:1; |
| 1033 | #endif |
| 1034 | #ifdef CONFIG_PAGE_OWNER |
| 1035 | /* Used by page_owner=on to detect recursion in page tracking. */ |
| 1036 | unsigned in_page_owner:1; |
| 1037 | #endif |
| 1038 | #ifdef CONFIG_EVENTFD |
| 1039 | /* Recursion prevention for eventfd_signal() */ |
| 1040 | unsigned in_eventfd:1; |
| 1041 | #endif |
| 1042 | #ifdef CONFIG_ARCH_HAS_CPU_PASID |
| 1043 | unsigned pasid_activated:1; |
| 1044 | #endif |
| 1045 | #ifdef CONFIG_X86_BUS_LOCK_DETECT |
| 1046 | unsigned reported_split_lock:1; |
| 1047 | #endif |
| 1048 | #ifdef CONFIG_TASK_DELAY_ACCT |
| 1049 | /* delay due to memory thrashing */ |
| 1050 | unsigned in_thrashing:1; |
| 1051 | #endif |
| 1052 | unsigned in_nf_duplicate:1; |
| 1053 | #ifdef CONFIG_PREEMPT_RT |
| 1054 | struct netdev_xmit net_xmit; |
| 1055 | #endif |
| 1056 | unsigned long atomic_flags; /* Flags requiring atomic access. */ |
| 1057 | |
| 1058 | struct restart_block restart_block; |
| 1059 | |
| 1060 | pid_t pid; |
| 1061 | pid_t tgid; |
| 1062 | |
| 1063 | #ifdef CONFIG_STACKPROTECTOR |
| 1064 | /* Canary value for the -fstack-protector GCC feature: */ |
| 1065 | unsigned long stack_canary; |
| 1066 | #endif |
| 1067 | /* |
| 1068 | * Pointers to the (original) parent process, youngest child, younger sibling, |
| 1069 | * older sibling, respectively. (p->father can be replaced with |
| 1070 | * p->real_parent->pid) |
| 1071 | */ |
| 1072 | |
| 1073 | /* Real parent process: */ |
| 1074 | struct task_struct __rcu *real_parent; |
| 1075 | |
| 1076 | /* Recipient of SIGCHLD, wait4() reports: */ |
| 1077 | struct task_struct __rcu *parent; |
| 1078 | |
| 1079 | /* |
| 1080 | * Children/sibling form the list of natural children: |
| 1081 | */ |
| 1082 | struct list_head children; |
| 1083 | struct list_head sibling; |
| 1084 | struct task_struct *group_leader; |
| 1085 | |
| 1086 | /* |
| 1087 | * 'ptraced' is the list of tasks this task is using ptrace() on. |
| 1088 | * |
| 1089 | * This includes both natural children and PTRACE_ATTACH targets. |
| 1090 | * 'ptrace_entry' is this task's link on the p->parent->ptraced list. |
| 1091 | */ |
| 1092 | struct list_head ptraced; |
| 1093 | struct list_head ptrace_entry; |
| 1094 | |
| 1095 | /* PID/PID hash table linkage. */ |
| 1096 | struct pid *thread_pid; |
| 1097 | struct hlist_node pid_links[PIDTYPE_MAX]; |
| 1098 | struct list_head thread_node; |
| 1099 | |
| 1100 | struct completion *vfork_done; |
| 1101 | |
| 1102 | /* CLONE_CHILD_SETTID: */ |
| 1103 | int __user *set_child_tid; |
| 1104 | |
| 1105 | /* CLONE_CHILD_CLEARTID: */ |
| 1106 | int __user *clear_child_tid; |
| 1107 | |
| 1108 | /* PF_KTHREAD | PF_IO_WORKER */ |
| 1109 | void *worker_private; |
| 1110 | |
| 1111 | u64 utime; |
| 1112 | u64 stime; |
| 1113 | #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME |
| 1114 | u64 utimescaled; |
| 1115 | u64 stimescaled; |
| 1116 | #endif |
| 1117 | u64 gtime; |
| 1118 | struct prev_cputime prev_cputime; |
| 1119 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN |
| 1120 | struct vtime vtime; |
| 1121 | #endif |
| 1122 | |
| 1123 | #ifdef CONFIG_NO_HZ_FULL |
| 1124 | atomic_t tick_dep_mask; |
| 1125 | #endif |
| 1126 | /* Context switch counts: */ |
| 1127 | unsigned long nvcsw; |
| 1128 | unsigned long nivcsw; |
| 1129 | |
| 1130 | /* Monotonic time in nsecs: */ |
| 1131 | u64 start_time; |
| 1132 | |
| 1133 | /* Boot based time in nsecs: */ |
| 1134 | u64 start_boottime; |
| 1135 | |
| 1136 | /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ |
| 1137 | unsigned long min_flt; |
| 1138 | unsigned long maj_flt; |
| 1139 | |
| 1140 | /* Empty if CONFIG_POSIX_CPUTIMERS=n */ |
| 1141 | struct posix_cputimers posix_cputimers; |
| 1142 | |
| 1143 | #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK |
| 1144 | struct posix_cputimers_work posix_cputimers_work; |
| 1145 | #endif |
| 1146 | |
| 1147 | /* Process credentials: */ |
| 1148 | |
| 1149 | /* Tracer's credentials at attach: */ |
| 1150 | const struct cred __rcu *ptracer_cred; |
| 1151 | |
| 1152 | /* Objective and real subjective task credentials (COW): */ |
| 1153 | const struct cred __rcu *real_cred; |
| 1154 | |
| 1155 | /* Effective (overridable) subjective task credentials (COW): */ |
| 1156 | const struct cred __rcu *cred; |
| 1157 | |
| 1158 | #ifdef CONFIG_KEYS |
| 1159 | /* Cached requested key. */ |
| 1160 | struct key *cached_requested_key; |
| 1161 | #endif |
| 1162 | |
| 1163 | /* |
| 1164 | * executable name, excluding path. |
| 1165 | * |
| 1166 | * - normally initialized begin_new_exec() |
| 1167 | * - set it with set_task_comm() |
| 1168 | * - strscpy_pad() to ensure it is always NUL-terminated and |
| 1169 | * zero-padded |
| 1170 | * - task_lock() to ensure the operation is atomic and the name is |
| 1171 | * fully updated. |
| 1172 | */ |
| 1173 | char comm[TASK_COMM_LEN]; |
| 1174 | |
| 1175 | struct nameidata *nameidata; |
| 1176 | |
| 1177 | #ifdef CONFIG_SYSVIPC |
| 1178 | struct sysv_sem sysvsem; |
| 1179 | struct sysv_shm sysvshm; |
| 1180 | #endif |
| 1181 | #ifdef CONFIG_DETECT_HUNG_TASK |
| 1182 | unsigned long last_switch_count; |
| 1183 | unsigned long last_switch_time; |
| 1184 | #endif |
| 1185 | /* Filesystem information: */ |
| 1186 | struct fs_struct *fs; |
| 1187 | |
| 1188 | /* Open file information: */ |
| 1189 | struct files_struct *files; |
| 1190 | |
| 1191 | #ifdef CONFIG_IO_URING |
| 1192 | struct io_uring_task *io_uring; |
| 1193 | #endif |
| 1194 | |
| 1195 | /* Namespaces: */ |
| 1196 | struct nsproxy *nsproxy; |
| 1197 | |
| 1198 | /* Signal handlers: */ |
| 1199 | struct signal_struct *signal; |
| 1200 | struct sighand_struct __rcu *sighand; |
| 1201 | sigset_t blocked; |
| 1202 | sigset_t real_blocked; |
| 1203 | /* Restored if set_restore_sigmask() was used: */ |
| 1204 | sigset_t saved_sigmask; |
| 1205 | struct sigpending pending; |
| 1206 | unsigned long sas_ss_sp; |
| 1207 | size_t sas_ss_size; |
| 1208 | unsigned int sas_ss_flags; |
| 1209 | |
| 1210 | struct callback_head *task_works; |
| 1211 | |
| 1212 | #ifdef CONFIG_AUDIT |
| 1213 | #ifdef CONFIG_AUDITSYSCALL |
| 1214 | struct audit_context *audit_context; |
| 1215 | #endif |
| 1216 | kuid_t loginuid; |
| 1217 | unsigned int sessionid; |
| 1218 | #endif |
| 1219 | struct seccomp seccomp; |
| 1220 | struct syscall_user_dispatch syscall_dispatch; |
| 1221 | |
| 1222 | /* Thread group tracking: */ |
| 1223 | u64 parent_exec_id; |
| 1224 | u64 self_exec_id; |
| 1225 | |
| 1226 | /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ |
| 1227 | spinlock_t alloc_lock; |
| 1228 | |
| 1229 | /* Protection of the PI data structures: */ |
| 1230 | raw_spinlock_t pi_lock; |
| 1231 | |
| 1232 | struct wake_q_node wake_q; |
| 1233 | |
| 1234 | #ifdef CONFIG_RT_MUTEXES |
| 1235 | /* PI waiters blocked on a rt_mutex held by this task: */ |
| 1236 | struct rb_root_cached pi_waiters; |
| 1237 | /* Updated under owner's pi_lock and rq lock */ |
| 1238 | struct task_struct *pi_top_task; |
| 1239 | /* Deadlock detection and priority inheritance handling: */ |
| 1240 | struct rt_mutex_waiter *pi_blocked_on; |
| 1241 | #endif |
| 1242 | |
| 1243 | struct mutex *blocked_on; /* lock we're blocked on */ |
| 1244 | |
| 1245 | #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER |
| 1246 | /* |
| 1247 | * Encoded lock address causing task block (lower 2 bits = type from |
| 1248 | * <linux/hung_task.h>). Accessed via hung_task_*() helpers. |
| 1249 | */ |
| 1250 | unsigned long blocker; |
| 1251 | #endif |
| 1252 | |
| 1253 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| 1254 | int non_block_count; |
| 1255 | #endif |
| 1256 | |
| 1257 | #ifdef CONFIG_TRACE_IRQFLAGS |
| 1258 | struct irqtrace_events irqtrace; |
| 1259 | unsigned int hardirq_threaded; |
| 1260 | u64 hardirq_chain_key; |
| 1261 | int softirqs_enabled; |
| 1262 | int softirq_context; |
| 1263 | int irq_config; |
| 1264 | #endif |
| 1265 | #ifdef CONFIG_PREEMPT_RT |
| 1266 | int softirq_disable_cnt; |
| 1267 | #endif |
| 1268 | |
| 1269 | #ifdef CONFIG_LOCKDEP |
| 1270 | # define MAX_LOCK_DEPTH 48UL |
| 1271 | u64 curr_chain_key; |
| 1272 | int lockdep_depth; |
| 1273 | unsigned int lockdep_recursion; |
| 1274 | struct held_lock held_locks[MAX_LOCK_DEPTH]; |
| 1275 | #endif |
| 1276 | |
| 1277 | #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) |
| 1278 | unsigned int in_ubsan; |
| 1279 | #endif |
| 1280 | |
| 1281 | /* Journalling filesystem info: */ |
| 1282 | void *journal_info; |
| 1283 | |
| 1284 | /* Stacked block device info: */ |
| 1285 | struct bio_list *bio_list; |
| 1286 | |
| 1287 | /* Stack plugging: */ |
| 1288 | struct blk_plug *plug; |
| 1289 | |
| 1290 | /* VM state: */ |
| 1291 | struct reclaim_state *reclaim_state; |
| 1292 | |
| 1293 | struct io_context *io_context; |
| 1294 | |
| 1295 | #ifdef CONFIG_COMPACTION |
| 1296 | struct capture_control *capture_control; |
| 1297 | #endif |
| 1298 | /* Ptrace state: */ |
| 1299 | unsigned long ptrace_message; |
| 1300 | kernel_siginfo_t *last_siginfo; |
| 1301 | |
| 1302 | struct task_io_accounting ioac; |
| 1303 | #ifdef CONFIG_PSI |
| 1304 | /* Pressure stall state */ |
| 1305 | unsigned int psi_flags; |
| 1306 | #endif |
| 1307 | #ifdef CONFIG_TASK_XACCT |
| 1308 | /* Accumulated RSS usage: */ |
| 1309 | u64 ; |
| 1310 | /* Accumulated virtual memory usage: */ |
| 1311 | u64 acct_vm_mem1; |
| 1312 | /* stime + utime since last update: */ |
| 1313 | u64 acct_timexpd; |
| 1314 | #endif |
| 1315 | #ifdef CONFIG_CPUSETS |
| 1316 | /* Protected by ->alloc_lock: */ |
| 1317 | nodemask_t mems_allowed; |
| 1318 | /* Sequence number to catch updates: */ |
| 1319 | seqcount_spinlock_t mems_allowed_seq; |
| 1320 | int cpuset_mem_spread_rotor; |
| 1321 | #endif |
| 1322 | #ifdef CONFIG_CGROUPS |
| 1323 | /* Control Group info protected by css_set_lock: */ |
| 1324 | struct css_set __rcu *cgroups; |
| 1325 | /* cg_list protected by css_set_lock and tsk->alloc_lock: */ |
| 1326 | struct list_head cg_list; |
| 1327 | #ifdef CONFIG_PREEMPT_RT |
| 1328 | struct llist_node cg_dead_lnode; |
| 1329 | #endif /* CONFIG_PREEMPT_RT */ |
| 1330 | #endif /* CONFIG_CGROUPS */ |
| 1331 | #ifdef CONFIG_X86_CPU_RESCTRL |
| 1332 | u32 closid; |
| 1333 | u32 rmid; |
| 1334 | #endif |
| 1335 | #ifdef CONFIG_FUTEX |
| 1336 | struct robust_list_head __user *robust_list; |
| 1337 | #ifdef CONFIG_COMPAT |
| 1338 | struct compat_robust_list_head __user *compat_robust_list; |
| 1339 | #endif |
| 1340 | struct list_head pi_state_list; |
| 1341 | struct futex_pi_state *pi_state_cache; |
| 1342 | struct mutex futex_exit_mutex; |
| 1343 | unsigned int futex_state; |
| 1344 | #endif |
| 1345 | #ifdef CONFIG_PERF_EVENTS |
| 1346 | u8 perf_recursion[PERF_NR_CONTEXTS]; |
| 1347 | struct perf_event_context *perf_event_ctxp; |
| 1348 | struct mutex perf_event_mutex; |
| 1349 | struct list_head perf_event_list; |
| 1350 | struct perf_ctx_data __rcu *perf_ctx_data; |
| 1351 | #endif |
| 1352 | #ifdef CONFIG_DEBUG_PREEMPT |
| 1353 | unsigned long preempt_disable_ip; |
| 1354 | #endif |
| 1355 | #ifdef CONFIG_NUMA |
| 1356 | /* Protected by alloc_lock: */ |
| 1357 | struct mempolicy *mempolicy; |
| 1358 | short il_prev; |
| 1359 | u8 il_weight; |
| 1360 | short pref_node_fork; |
| 1361 | #endif |
| 1362 | #ifdef CONFIG_NUMA_BALANCING |
| 1363 | int numa_scan_seq; |
| 1364 | unsigned int numa_scan_period; |
| 1365 | unsigned int numa_scan_period_max; |
| 1366 | int numa_preferred_nid; |
| 1367 | unsigned long numa_migrate_retry; |
| 1368 | /* Migration stamp: */ |
| 1369 | u64 node_stamp; |
| 1370 | u64 last_task_numa_placement; |
| 1371 | u64 last_sum_exec_runtime; |
| 1372 | struct callback_head numa_work; |
| 1373 | |
| 1374 | /* |
| 1375 | * This pointer is only modified for current in syscall and |
| 1376 | * pagefault context (and for tasks being destroyed), so it can be read |
| 1377 | * from any of the following contexts: |
| 1378 | * - RCU read-side critical section |
| 1379 | * - current->numa_group from everywhere |
| 1380 | * - task's runqueue locked, task not running |
| 1381 | */ |
| 1382 | struct numa_group __rcu *numa_group; |
| 1383 | |
| 1384 | /* |
| 1385 | * numa_faults is an array split into four regions: |
| 1386 | * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer |
| 1387 | * in this precise order. |
| 1388 | * |
| 1389 | * faults_memory: Exponential decaying average of faults on a per-node |
| 1390 | * basis. Scheduling placement decisions are made based on these |
| 1391 | * counts. The values remain static for the duration of a PTE scan. |
| 1392 | * faults_cpu: Track the nodes the process was running on when a NUMA |
| 1393 | * hinting fault was incurred. |
| 1394 | * faults_memory_buffer and faults_cpu_buffer: Record faults per node |
| 1395 | * during the current scan window. When the scan completes, the counts |
| 1396 | * in faults_memory and faults_cpu decay and these values are copied. |
| 1397 | */ |
| 1398 | unsigned long *numa_faults; |
| 1399 | unsigned long total_numa_faults; |
| 1400 | |
| 1401 | /* |
| 1402 | * numa_faults_locality tracks if faults recorded during the last |
| 1403 | * scan window were remote/local or failed to migrate. The task scan |
| 1404 | * period is adapted based on the locality of the faults with different |
| 1405 | * weights depending on whether they were shared or private faults |
| 1406 | */ |
| 1407 | unsigned long numa_faults_locality[3]; |
| 1408 | |
| 1409 | unsigned long numa_pages_migrated; |
| 1410 | #endif /* CONFIG_NUMA_BALANCING */ |
| 1411 | |
| 1412 | struct rseq_data rseq; |
| 1413 | struct sched_mm_cid mm_cid; |
| 1414 | |
| 1415 | struct tlbflush_unmap_batch tlb_ubc; |
| 1416 | |
| 1417 | /* Cache last used pipe for splice(): */ |
| 1418 | struct pipe_inode_info *splice_pipe; |
| 1419 | |
| 1420 | struct page_frag task_frag; |
| 1421 | |
| 1422 | #ifdef CONFIG_TASK_DELAY_ACCT |
| 1423 | struct task_delay_info *delays; |
| 1424 | #endif |
| 1425 | |
| 1426 | #ifdef CONFIG_FAULT_INJECTION |
| 1427 | int make_it_fail; |
| 1428 | unsigned int fail_nth; |
| 1429 | #endif |
| 1430 | /* |
| 1431 | * When (nr_dirtied >= nr_dirtied_pause), it's time to call |
| 1432 | * balance_dirty_pages() for a dirty throttling pause: |
| 1433 | */ |
| 1434 | int nr_dirtied; |
| 1435 | int nr_dirtied_pause; |
| 1436 | /* Start of a write-and-pause period: */ |
| 1437 | unsigned long dirty_paused_when; |
| 1438 | |
| 1439 | #ifdef CONFIG_LATENCYTOP |
| 1440 | int latency_record_count; |
| 1441 | struct latency_record latency_record[LT_SAVECOUNT]; |
| 1442 | #endif |
| 1443 | /* |
| 1444 | * Time slack values; these are used to round up poll() and |
| 1445 | * select() etc timeout values. These are in nanoseconds. |
| 1446 | */ |
| 1447 | u64 timer_slack_ns; |
| 1448 | u64 default_timer_slack_ns; |
| 1449 | |
| 1450 | #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) |
| 1451 | unsigned int kasan_depth; |
| 1452 | #endif |
| 1453 | |
| 1454 | #ifdef CONFIG_KCSAN |
| 1455 | struct kcsan_ctx kcsan_ctx; |
| 1456 | #ifdef CONFIG_TRACE_IRQFLAGS |
| 1457 | struct irqtrace_events kcsan_save_irqtrace; |
| 1458 | #endif |
| 1459 | #ifdef CONFIG_KCSAN_WEAK_MEMORY |
| 1460 | int kcsan_stack_depth; |
| 1461 | #endif |
| 1462 | #endif |
| 1463 | |
| 1464 | #ifdef CONFIG_KMSAN |
| 1465 | struct kmsan_ctx kmsan_ctx; |
| 1466 | #endif |
| 1467 | |
| 1468 | #if IS_ENABLED(CONFIG_KUNIT) |
| 1469 | struct kunit *kunit_test; |
| 1470 | #endif |
| 1471 | |
| 1472 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| 1473 | /* Index of current stored address in ret_stack: */ |
| 1474 | int curr_ret_stack; |
| 1475 | int curr_ret_depth; |
| 1476 | |
| 1477 | /* Stack of return addresses for return function tracing: */ |
| 1478 | unsigned long *ret_stack; |
| 1479 | |
| 1480 | /* Timestamp for last schedule: */ |
| 1481 | unsigned long long ftrace_timestamp; |
| 1482 | unsigned long long ftrace_sleeptime; |
| 1483 | |
| 1484 | /* |
| 1485 | * Number of functions that haven't been traced |
| 1486 | * because of depth overrun: |
| 1487 | */ |
| 1488 | atomic_t trace_overrun; |
| 1489 | |
| 1490 | /* Pause tracing: */ |
| 1491 | atomic_t tracing_graph_pause; |
| 1492 | #endif |
| 1493 | |
| 1494 | #ifdef CONFIG_TRACING |
| 1495 | /* Bitmask and counter of trace recursion: */ |
| 1496 | unsigned long trace_recursion; |
| 1497 | #endif /* CONFIG_TRACING */ |
| 1498 | |
| 1499 | #ifdef CONFIG_KCOV |
| 1500 | /* See kernel/kcov.c for more details. */ |
| 1501 | |
| 1502 | /* Coverage collection mode enabled for this task (0 if disabled): */ |
| 1503 | unsigned int kcov_mode; |
| 1504 | |
| 1505 | /* Size of the kcov_area: */ |
| 1506 | unsigned int kcov_size; |
| 1507 | |
| 1508 | /* Buffer for coverage collection: */ |
| 1509 | void *kcov_area; |
| 1510 | |
| 1511 | /* KCOV descriptor wired with this task or NULL: */ |
| 1512 | struct kcov *kcov; |
| 1513 | |
| 1514 | /* KCOV common handle for remote coverage collection: */ |
| 1515 | u64 kcov_handle; |
| 1516 | |
| 1517 | /* KCOV sequence number: */ |
| 1518 | int kcov_sequence; |
| 1519 | |
| 1520 | /* Collect coverage from softirq context: */ |
| 1521 | unsigned int kcov_softirq; |
| 1522 | #endif |
| 1523 | |
| 1524 | #ifdef CONFIG_MEMCG_V1 |
| 1525 | struct mem_cgroup *memcg_in_oom; |
| 1526 | #endif |
| 1527 | |
| 1528 | #ifdef CONFIG_MEMCG |
| 1529 | /* Number of pages to reclaim on returning to userland: */ |
| 1530 | unsigned int memcg_nr_pages_over_high; |
| 1531 | |
| 1532 | /* Used by memcontrol for targeted memcg charge: */ |
| 1533 | struct mem_cgroup *active_memcg; |
| 1534 | |
| 1535 | /* Cache for current->cgroups->memcg->objcg lookups: */ |
| 1536 | struct obj_cgroup *objcg; |
| 1537 | #endif |
| 1538 | |
| 1539 | #ifdef CONFIG_BLK_CGROUP |
| 1540 | struct gendisk *throttle_disk; |
| 1541 | #endif |
| 1542 | |
| 1543 | #ifdef CONFIG_UPROBES |
| 1544 | struct uprobe_task *utask; |
| 1545 | #endif |
| 1546 | #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) |
| 1547 | unsigned int sequential_io; |
| 1548 | unsigned int sequential_io_avg; |
| 1549 | #endif |
| 1550 | struct kmap_ctrl kmap_ctrl; |
| 1551 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| 1552 | unsigned long task_state_change; |
| 1553 | # ifdef CONFIG_PREEMPT_RT |
| 1554 | unsigned long saved_state_change; |
| 1555 | # endif |
| 1556 | #endif |
| 1557 | struct rcu_head rcu; |
| 1558 | refcount_t rcu_users; |
| 1559 | int pagefault_disabled; |
| 1560 | #ifdef CONFIG_MMU |
| 1561 | struct task_struct *oom_reaper_list; |
| 1562 | struct timer_list oom_reaper_timer; |
| 1563 | #endif |
| 1564 | #ifdef CONFIG_VMAP_STACK |
| 1565 | struct vm_struct *stack_vm_area; |
| 1566 | #endif |
| 1567 | #ifdef CONFIG_THREAD_INFO_IN_TASK |
| 1568 | /* A live task holds one reference: */ |
| 1569 | refcount_t stack_refcount; |
| 1570 | #endif |
| 1571 | #ifdef CONFIG_LIVEPATCH |
| 1572 | int patch_state; |
| 1573 | #endif |
| 1574 | #ifdef CONFIG_SECURITY |
| 1575 | /* Used by LSM modules for access restriction: */ |
| 1576 | void *security; |
| 1577 | #endif |
| 1578 | #ifdef CONFIG_BPF_SYSCALL |
| 1579 | /* Used by BPF task local storage */ |
| 1580 | struct bpf_local_storage __rcu *bpf_storage; |
| 1581 | /* Used for BPF run context */ |
| 1582 | struct bpf_run_ctx *bpf_ctx; |
| 1583 | #endif |
| 1584 | /* Used by BPF for per-TASK xdp storage */ |
| 1585 | struct bpf_net_context *bpf_net_context; |
| 1586 | |
| 1587 | #ifdef CONFIG_KSTACK_ERASE |
| 1588 | unsigned long lowest_stack; |
| 1589 | #endif |
| 1590 | #ifdef CONFIG_KSTACK_ERASE_METRICS |
| 1591 | unsigned long prev_lowest_stack; |
| 1592 | #endif |
| 1593 | |
| 1594 | #ifdef CONFIG_X86_MCE |
| 1595 | void __user *mce_vaddr; |
| 1596 | __u64 mce_kflags; |
| 1597 | u64 mce_addr; |
| 1598 | __u64 mce_ripv : 1, |
| 1599 | mce_whole_page : 1, |
| 1600 | __mce_reserved : 62; |
| 1601 | struct callback_head mce_kill_me; |
| 1602 | int mce_count; |
| 1603 | #endif |
| 1604 | |
| 1605 | #ifdef CONFIG_KRETPROBES |
| 1606 | struct llist_head kretprobe_instances; |
| 1607 | #endif |
| 1608 | #ifdef CONFIG_RETHOOK |
| 1609 | struct llist_head rethooks; |
| 1610 | #endif |
| 1611 | |
| 1612 | #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH |
| 1613 | /* |
| 1614 | * If L1D flush is supported on mm context switch |
| 1615 | * then we use this callback head to queue kill work |
| 1616 | * to kill tasks that are not running on SMT disabled |
| 1617 | * cores |
| 1618 | */ |
| 1619 | struct callback_head l1d_flush_kill; |
| 1620 | #endif |
| 1621 | |
| 1622 | #ifdef CONFIG_RV |
| 1623 | /* |
| 1624 | * Per-task RV monitor, fixed in CONFIG_RV_PER_TASK_MONITORS. |
| 1625 | * If memory becomes a concern, we can think about a dynamic method. |
| 1626 | */ |
| 1627 | union rv_task_monitor rv[CONFIG_RV_PER_TASK_MONITORS]; |
| 1628 | #endif |
| 1629 | |
| 1630 | #ifdef CONFIG_USER_EVENTS |
| 1631 | struct user_event_mm *user_event_mm; |
| 1632 | #endif |
| 1633 | |
| 1634 | #ifdef CONFIG_UNWIND_USER |
| 1635 | struct unwind_task_info unwind_info; |
| 1636 | #endif |
| 1637 | |
| 1638 | /* CPU-specific state of this task: */ |
| 1639 | struct thread_struct thread; |
| 1640 | |
| 1641 | /* |
| 1642 | * New fields for task_struct should be added above here, so that |
| 1643 | * they are included in the randomized portion of task_struct. |
| 1644 | */ |
| 1645 | randomized_struct_fields_end |
| 1646 | } __attribute__ ((aligned (64))); |
| 1647 | |
| 1648 | #ifdef CONFIG_SCHED_PROXY_EXEC |
| 1649 | DECLARE_STATIC_KEY_TRUE(__sched_proxy_exec); |
| 1650 | static inline bool sched_proxy_exec(void) |
| 1651 | { |
| 1652 | return static_branch_likely(&__sched_proxy_exec); |
| 1653 | } |
| 1654 | #else |
| 1655 | static inline bool sched_proxy_exec(void) |
| 1656 | { |
| 1657 | return false; |
| 1658 | } |
| 1659 | #endif |
| 1660 | |
| 1661 | #define TASK_REPORT_IDLE (TASK_REPORT + 1) |
| 1662 | #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) |
| 1663 | |
| 1664 | static inline unsigned int __task_state_index(unsigned int tsk_state, |
| 1665 | unsigned int tsk_exit_state) |
| 1666 | { |
| 1667 | unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT; |
| 1668 | |
| 1669 | BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); |
| 1670 | |
| 1671 | if ((tsk_state & TASK_IDLE) == TASK_IDLE) |
| 1672 | state = TASK_REPORT_IDLE; |
| 1673 | |
| 1674 | /* |
| 1675 | * We're lying here, but rather than expose a completely new task state |
| 1676 | * to userspace, we can make this appear as if the task has gone through |
| 1677 | * a regular rt_mutex_lock() call. |
| 1678 | * Report frozen tasks as uninterruptible. |
| 1679 | */ |
| 1680 | if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN)) |
| 1681 | state = TASK_UNINTERRUPTIBLE; |
| 1682 | |
| 1683 | return fls(x: state); |
| 1684 | } |
| 1685 | |
| 1686 | static inline unsigned int task_state_index(struct task_struct *tsk) |
| 1687 | { |
| 1688 | return __task_state_index(READ_ONCE(tsk->__state), tsk_exit_state: tsk->exit_state); |
| 1689 | } |
| 1690 | |
| 1691 | static inline char task_index_to_char(unsigned int state) |
| 1692 | { |
| 1693 | static const char state_char[] = "RSDTtXZPI" ; |
| 1694 | |
| 1695 | BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1)); |
| 1696 | |
| 1697 | return state_char[state]; |
| 1698 | } |
| 1699 | |
| 1700 | static inline char task_state_to_char(struct task_struct *tsk) |
| 1701 | { |
| 1702 | return task_index_to_char(state: task_state_index(tsk)); |
| 1703 | } |
| 1704 | |
| 1705 | extern struct pid *cad_pid; |
| 1706 | |
| 1707 | /* |
| 1708 | * Per process flags |
| 1709 | */ |
| 1710 | #define PF_VCPU 0x00000001 /* I'm a virtual CPU */ |
| 1711 | #define PF_IDLE 0x00000002 /* I am an IDLE thread */ |
| 1712 | #define PF_EXITING 0x00000004 /* Getting shut down */ |
| 1713 | #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */ |
| 1714 | #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ |
| 1715 | #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ |
| 1716 | #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ |
| 1717 | #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ |
| 1718 | #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ |
| 1719 | #define PF_DUMPCORE 0x00000200 /* Dumped core */ |
| 1720 | #define PF_SIGNALED 0x00000400 /* Killed by a signal */ |
| 1721 | #define PF_MEMALLOC 0x00000800 /* Allocating memory to free memory. See memalloc_noreclaim_save() */ |
| 1722 | #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ |
| 1723 | #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ |
| 1724 | #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */ |
| 1725 | #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ |
| 1726 | #define PF_KCOMPACTD 0x00010000 /* I am kcompactd */ |
| 1727 | #define PF_KSWAPD 0x00020000 /* I am kswapd */ |
| 1728 | #define PF_MEMALLOC_NOFS 0x00040000 /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */ |
| 1729 | #define PF_MEMALLOC_NOIO 0x00080000 /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */ |
| 1730 | #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, |
| 1731 | * I am cleaning dirty pages from some other bdi. */ |
| 1732 | #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ |
| 1733 | #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ |
| 1734 | #define PF__HOLE__00800000 0x00800000 |
| 1735 | #define PF__HOLE__01000000 0x01000000 |
| 1736 | #define PF__HOLE__02000000 0x02000000 |
| 1737 | #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ |
| 1738 | #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ |
| 1739 | #define PF_MEMALLOC_PIN 0x10000000 /* Allocations constrained to zones which allow long term pinning. |
| 1740 | * See memalloc_pin_save() */ |
| 1741 | #define PF_BLOCK_TS 0x20000000 /* plug has ts that needs updating */ |
| 1742 | #define PF__HOLE__40000000 0x40000000 |
| 1743 | #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ |
| 1744 | |
| 1745 | /* |
| 1746 | * Only the _current_ task can read/write to tsk->flags, but other |
| 1747 | * tasks can access tsk->flags in readonly mode for example |
| 1748 | * with tsk_used_math (like during threaded core dumping). |
| 1749 | * There is however an exception to this rule during ptrace |
| 1750 | * or during fork: the ptracer task is allowed to write to the |
| 1751 | * child->flags of its traced child (same goes for fork, the parent |
| 1752 | * can write to the child->flags), because we're guaranteed the |
| 1753 | * child is not running and in turn not changing child->flags |
| 1754 | * at the same time the parent does it. |
| 1755 | */ |
| 1756 | #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) |
| 1757 | #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) |
| 1758 | #define clear_used_math() clear_stopped_child_used_math(current) |
| 1759 | #define set_used_math() set_stopped_child_used_math(current) |
| 1760 | |
| 1761 | #define conditional_stopped_child_used_math(condition, child) \ |
| 1762 | do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) |
| 1763 | |
| 1764 | #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) |
| 1765 | |
| 1766 | #define copy_to_stopped_child_used_math(child) \ |
| 1767 | do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) |
| 1768 | |
| 1769 | /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ |
| 1770 | #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) |
| 1771 | #define used_math() tsk_used_math(current) |
| 1772 | |
| 1773 | static __always_inline bool is_percpu_thread(void) |
| 1774 | { |
| 1775 | return (current->flags & PF_NO_SETAFFINITY) && |
| 1776 | (current->nr_cpus_allowed == 1); |
| 1777 | } |
| 1778 | |
| 1779 | static __always_inline bool is_user_task(struct task_struct *task) |
| 1780 | { |
| 1781 | return task->mm && !(task->flags & (PF_KTHREAD | PF_USER_WORKER)); |
| 1782 | } |
| 1783 | |
| 1784 | /* Per-process atomic flags. */ |
| 1785 | #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ |
| 1786 | #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ |
| 1787 | #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ |
| 1788 | #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ |
| 1789 | #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ |
| 1790 | #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ |
| 1791 | #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ |
| 1792 | #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ |
| 1793 | |
| 1794 | #define TASK_PFA_TEST(name, func) \ |
| 1795 | static inline bool task_##func(struct task_struct *p) \ |
| 1796 | { return test_bit(PFA_##name, &p->atomic_flags); } |
| 1797 | |
| 1798 | #define TASK_PFA_SET(name, func) \ |
| 1799 | static inline void task_set_##func(struct task_struct *p) \ |
| 1800 | { set_bit(PFA_##name, &p->atomic_flags); } |
| 1801 | |
| 1802 | #define TASK_PFA_CLEAR(name, func) \ |
| 1803 | static inline void task_clear_##func(struct task_struct *p) \ |
| 1804 | { clear_bit(PFA_##name, &p->atomic_flags); } |
| 1805 | |
| 1806 | TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) |
| 1807 | TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) |
| 1808 | |
| 1809 | TASK_PFA_TEST(SPREAD_PAGE, spread_page) |
| 1810 | TASK_PFA_SET(SPREAD_PAGE, spread_page) |
| 1811 | TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) |
| 1812 | |
| 1813 | TASK_PFA_TEST(SPREAD_SLAB, spread_slab) |
| 1814 | TASK_PFA_SET(SPREAD_SLAB, spread_slab) |
| 1815 | TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) |
| 1816 | |
| 1817 | TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) |
| 1818 | TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) |
| 1819 | TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) |
| 1820 | |
| 1821 | TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) |
| 1822 | TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) |
| 1823 | TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) |
| 1824 | |
| 1825 | TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) |
| 1826 | TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) |
| 1827 | |
| 1828 | TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) |
| 1829 | TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) |
| 1830 | TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) |
| 1831 | |
| 1832 | TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) |
| 1833 | TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) |
| 1834 | |
| 1835 | static inline void |
| 1836 | current_restore_flags(unsigned long orig_flags, unsigned long flags) |
| 1837 | { |
| 1838 | current->flags &= ~flags; |
| 1839 | current->flags |= orig_flags & flags; |
| 1840 | } |
| 1841 | |
| 1842 | extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); |
| 1843 | extern int task_can_attach(struct task_struct *p); |
| 1844 | extern int dl_bw_alloc(int cpu, u64 dl_bw); |
| 1845 | extern void dl_bw_free(int cpu, u64 dl_bw); |
| 1846 | |
| 1847 | /* set_cpus_allowed_force() - consider using set_cpus_allowed_ptr() instead */ |
| 1848 | extern void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask); |
| 1849 | |
| 1850 | /** |
| 1851 | * set_cpus_allowed_ptr - set CPU affinity mask of a task |
| 1852 | * @p: the task |
| 1853 | * @new_mask: CPU affinity mask |
| 1854 | * |
| 1855 | * Return: zero if successful, or a negative error code |
| 1856 | */ |
| 1857 | extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); |
| 1858 | extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node); |
| 1859 | extern void release_user_cpus_ptr(struct task_struct *p); |
| 1860 | extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask); |
| 1861 | extern void force_compatible_cpus_allowed_ptr(struct task_struct *p); |
| 1862 | extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p); |
| 1863 | |
| 1864 | extern int yield_to(struct task_struct *p, bool preempt); |
| 1865 | extern void set_user_nice(struct task_struct *p, long nice); |
| 1866 | extern int task_prio(const struct task_struct *p); |
| 1867 | |
| 1868 | /** |
| 1869 | * task_nice - return the nice value of a given task. |
| 1870 | * @p: the task in question. |
| 1871 | * |
| 1872 | * Return: The nice value [ -20 ... 0 ... 19 ]. |
| 1873 | */ |
| 1874 | static inline int task_nice(const struct task_struct *p) |
| 1875 | { |
| 1876 | return PRIO_TO_NICE((p)->static_prio); |
| 1877 | } |
| 1878 | |
| 1879 | extern int can_nice(const struct task_struct *p, const int nice); |
| 1880 | extern int task_curr(const struct task_struct *p); |
| 1881 | extern int idle_cpu(int cpu); |
| 1882 | extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); |
| 1883 | extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); |
| 1884 | extern void sched_set_fifo(struct task_struct *p); |
| 1885 | extern void sched_set_fifo_low(struct task_struct *p); |
| 1886 | extern void sched_set_fifo_secondary(struct task_struct *p); |
| 1887 | extern void sched_set_normal(struct task_struct *p, int nice); |
| 1888 | extern int sched_setattr(struct task_struct *, const struct sched_attr *); |
| 1889 | extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); |
| 1890 | extern struct task_struct *idle_task(int cpu); |
| 1891 | |
| 1892 | /** |
| 1893 | * is_idle_task - is the specified task an idle task? |
| 1894 | * @p: the task in question. |
| 1895 | * |
| 1896 | * Return: 1 if @p is an idle task. 0 otherwise. |
| 1897 | */ |
| 1898 | static __always_inline bool is_idle_task(const struct task_struct *p) |
| 1899 | { |
| 1900 | return !!(p->flags & PF_IDLE); |
| 1901 | } |
| 1902 | |
| 1903 | extern struct task_struct *curr_task(int cpu); |
| 1904 | extern void ia64_set_curr_task(int cpu, struct task_struct *p); |
| 1905 | |
| 1906 | void yield(void); |
| 1907 | |
| 1908 | union thread_union { |
| 1909 | struct task_struct task; |
| 1910 | #ifndef CONFIG_THREAD_INFO_IN_TASK |
| 1911 | struct thread_info thread_info; |
| 1912 | #endif |
| 1913 | unsigned long stack[THREAD_SIZE/sizeof(long)]; |
| 1914 | }; |
| 1915 | |
| 1916 | #ifndef CONFIG_THREAD_INFO_IN_TASK |
| 1917 | extern struct thread_info init_thread_info; |
| 1918 | #endif |
| 1919 | |
| 1920 | extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; |
| 1921 | |
| 1922 | #ifdef CONFIG_THREAD_INFO_IN_TASK |
| 1923 | # define task_thread_info(task) (&(task)->thread_info) |
| 1924 | #else |
| 1925 | # define task_thread_info(task) ((struct thread_info *)(task)->stack) |
| 1926 | #endif |
| 1927 | |
| 1928 | /* |
| 1929 | * find a task by one of its numerical ids |
| 1930 | * |
| 1931 | * find_task_by_pid_ns(): |
| 1932 | * finds a task by its pid in the specified namespace |
| 1933 | * find_task_by_vpid(): |
| 1934 | * finds a task by its virtual pid |
| 1935 | * |
| 1936 | * see also find_vpid() etc in include/linux/pid.h |
| 1937 | */ |
| 1938 | |
| 1939 | extern struct task_struct *find_task_by_vpid(pid_t nr); |
| 1940 | extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); |
| 1941 | |
| 1942 | /* |
| 1943 | * find a task by its virtual pid and get the task struct |
| 1944 | */ |
| 1945 | extern struct task_struct *find_get_task_by_vpid(pid_t nr); |
| 1946 | |
| 1947 | extern int wake_up_state(struct task_struct *tsk, unsigned int state); |
| 1948 | extern int wake_up_process(struct task_struct *tsk); |
| 1949 | extern void wake_up_new_task(struct task_struct *tsk); |
| 1950 | |
| 1951 | extern void kick_process(struct task_struct *tsk); |
| 1952 | |
| 1953 | extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); |
| 1954 | #define set_task_comm(tsk, from) ({ \ |
| 1955 | BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN); \ |
| 1956 | __set_task_comm(tsk, from, false); \ |
| 1957 | }) |
| 1958 | |
| 1959 | /* |
| 1960 | * - Why not use task_lock()? |
| 1961 | * User space can randomly change their names anyway, so locking for readers |
| 1962 | * doesn't make sense. For writers, locking is probably necessary, as a race |
| 1963 | * condition could lead to long-term mixed results. |
| 1964 | * The strscpy_pad() in __set_task_comm() can ensure that the task comm is |
| 1965 | * always NUL-terminated and zero-padded. Therefore the race condition between |
| 1966 | * reader and writer is not an issue. |
| 1967 | * |
| 1968 | * - BUILD_BUG_ON() can help prevent the buf from being truncated. |
| 1969 | * Since the callers don't perform any return value checks, this safeguard is |
| 1970 | * necessary. |
| 1971 | */ |
| 1972 | #define get_task_comm(buf, tsk) ({ \ |
| 1973 | BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN); \ |
| 1974 | strscpy_pad(buf, (tsk)->comm); \ |
| 1975 | buf; \ |
| 1976 | }) |
| 1977 | |
| 1978 | static __always_inline void scheduler_ipi(void) |
| 1979 | { |
| 1980 | /* |
| 1981 | * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting |
| 1982 | * TIF_NEED_RESCHED remotely (for the first time) will also send |
| 1983 | * this IPI. |
| 1984 | */ |
| 1985 | preempt_fold_need_resched(); |
| 1986 | } |
| 1987 | |
| 1988 | extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state); |
| 1989 | |
| 1990 | /* |
| 1991 | * Set thread flags in other task's structures. |
| 1992 | * See asm/thread_info.h for TIF_xxxx flags available: |
| 1993 | */ |
| 1994 | static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) |
| 1995 | { |
| 1996 | set_ti_thread_flag(task_thread_info(tsk), flag); |
| 1997 | } |
| 1998 | |
| 1999 | static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) |
| 2000 | { |
| 2001 | clear_ti_thread_flag(task_thread_info(tsk), flag); |
| 2002 | } |
| 2003 | |
| 2004 | static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, |
| 2005 | bool value) |
| 2006 | { |
| 2007 | update_ti_thread_flag(task_thread_info(tsk), flag, value); |
| 2008 | } |
| 2009 | |
| 2010 | static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) |
| 2011 | { |
| 2012 | return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); |
| 2013 | } |
| 2014 | |
| 2015 | static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) |
| 2016 | { |
| 2017 | return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); |
| 2018 | } |
| 2019 | |
| 2020 | static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) |
| 2021 | { |
| 2022 | return test_ti_thread_flag(task_thread_info(tsk), flag); |
| 2023 | } |
| 2024 | |
| 2025 | static inline void set_tsk_need_resched(struct task_struct *tsk) |
| 2026 | { |
| 2027 | if (tracepoint_enabled(sched_set_need_resched_tp) && |
| 2028 | !test_tsk_thread_flag(tsk, TIF_NEED_RESCHED)) |
| 2029 | __trace_set_need_resched(curr: tsk, TIF_NEED_RESCHED); |
| 2030 | set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); |
| 2031 | } |
| 2032 | |
| 2033 | static inline void clear_tsk_need_resched(struct task_struct *tsk) |
| 2034 | { |
| 2035 | atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY, |
| 2036 | v: (atomic_long_t *)&task_thread_info(tsk)->flags); |
| 2037 | } |
| 2038 | |
| 2039 | static inline int test_tsk_need_resched(struct task_struct *tsk) |
| 2040 | { |
| 2041 | return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); |
| 2042 | } |
| 2043 | |
| 2044 | static inline void set_need_resched_current(void) |
| 2045 | { |
| 2046 | lockdep_assert_irqs_disabled(); |
| 2047 | set_tsk_need_resched(current); |
| 2048 | set_preempt_need_resched(); |
| 2049 | } |
| 2050 | |
| 2051 | /* |
| 2052 | * cond_resched() and cond_resched_lock(): latency reduction via |
| 2053 | * explicit rescheduling in places that are safe. The return |
| 2054 | * value indicates whether a reschedule was done in fact. |
| 2055 | * cond_resched_lock() will drop the spinlock before scheduling, |
| 2056 | */ |
| 2057 | #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) |
| 2058 | extern int __cond_resched(void); |
| 2059 | |
| 2060 | #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) |
| 2061 | |
| 2062 | DECLARE_STATIC_CALL(cond_resched, __cond_resched); |
| 2063 | |
| 2064 | static __always_inline int _cond_resched(void) |
| 2065 | { |
| 2066 | return static_call_mod(cond_resched)(); |
| 2067 | } |
| 2068 | |
| 2069 | #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) |
| 2070 | |
| 2071 | extern int dynamic_cond_resched(void); |
| 2072 | |
| 2073 | static __always_inline int _cond_resched(void) |
| 2074 | { |
| 2075 | return dynamic_cond_resched(); |
| 2076 | } |
| 2077 | |
| 2078 | #else /* !CONFIG_PREEMPTION */ |
| 2079 | |
| 2080 | static inline int _cond_resched(void) |
| 2081 | { |
| 2082 | return __cond_resched(); |
| 2083 | } |
| 2084 | |
| 2085 | #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ |
| 2086 | |
| 2087 | #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */ |
| 2088 | |
| 2089 | static inline int _cond_resched(void) |
| 2090 | { |
| 2091 | return 0; |
| 2092 | } |
| 2093 | |
| 2094 | #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */ |
| 2095 | |
| 2096 | #define cond_resched() ({ \ |
| 2097 | __might_resched(__FILE__, __LINE__, 0); \ |
| 2098 | _cond_resched(); \ |
| 2099 | }) |
| 2100 | |
| 2101 | extern int __cond_resched_lock(spinlock_t *lock); |
| 2102 | extern int __cond_resched_rwlock_read(rwlock_t *lock); |
| 2103 | extern int __cond_resched_rwlock_write(rwlock_t *lock); |
| 2104 | |
| 2105 | #define MIGHT_RESCHED_RCU_SHIFT 8 |
| 2106 | #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1) |
| 2107 | |
| 2108 | #ifndef CONFIG_PREEMPT_RT |
| 2109 | /* |
| 2110 | * Non RT kernels have an elevated preempt count due to the held lock, |
| 2111 | * but are not allowed to be inside a RCU read side critical section |
| 2112 | */ |
| 2113 | # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET |
| 2114 | #else |
| 2115 | /* |
| 2116 | * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in |
| 2117 | * cond_resched*lock() has to take that into account because it checks for |
| 2118 | * preempt_count() and rcu_preempt_depth(). |
| 2119 | */ |
| 2120 | # define PREEMPT_LOCK_RESCHED_OFFSETS \ |
| 2121 | (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT)) |
| 2122 | #endif |
| 2123 | |
| 2124 | #define cond_resched_lock(lock) ({ \ |
| 2125 | __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ |
| 2126 | __cond_resched_lock(lock); \ |
| 2127 | }) |
| 2128 | |
| 2129 | #define cond_resched_rwlock_read(lock) ({ \ |
| 2130 | __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ |
| 2131 | __cond_resched_rwlock_read(lock); \ |
| 2132 | }) |
| 2133 | |
| 2134 | #define cond_resched_rwlock_write(lock) ({ \ |
| 2135 | __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ |
| 2136 | __cond_resched_rwlock_write(lock); \ |
| 2137 | }) |
| 2138 | |
| 2139 | #ifndef CONFIG_PREEMPT_RT |
| 2140 | static inline struct mutex *__get_task_blocked_on(struct task_struct *p) |
| 2141 | { |
| 2142 | struct mutex *m = p->blocked_on; |
| 2143 | |
| 2144 | if (m) |
| 2145 | lockdep_assert_held_once(&m->wait_lock); |
| 2146 | return m; |
| 2147 | } |
| 2148 | |
| 2149 | static inline void __set_task_blocked_on(struct task_struct *p, struct mutex *m) |
| 2150 | { |
| 2151 | struct mutex *blocked_on = READ_ONCE(p->blocked_on); |
| 2152 | |
| 2153 | WARN_ON_ONCE(!m); |
| 2154 | /* The task should only be setting itself as blocked */ |
| 2155 | WARN_ON_ONCE(p != current); |
| 2156 | /* Currently we serialize blocked_on under the mutex::wait_lock */ |
| 2157 | lockdep_assert_held_once(&m->wait_lock); |
| 2158 | /* |
| 2159 | * Check ensure we don't overwrite existing mutex value |
| 2160 | * with a different mutex. Note, setting it to the same |
| 2161 | * lock repeatedly is ok. |
| 2162 | */ |
| 2163 | WARN_ON_ONCE(blocked_on && blocked_on != m); |
| 2164 | WRITE_ONCE(p->blocked_on, m); |
| 2165 | } |
| 2166 | |
| 2167 | static inline void set_task_blocked_on(struct task_struct *p, struct mutex *m) |
| 2168 | { |
| 2169 | guard(raw_spinlock_irqsave)(l: &m->wait_lock); |
| 2170 | __set_task_blocked_on(p, m); |
| 2171 | } |
| 2172 | |
| 2173 | static inline void __clear_task_blocked_on(struct task_struct *p, struct mutex *m) |
| 2174 | { |
| 2175 | if (m) { |
| 2176 | struct mutex *blocked_on = READ_ONCE(p->blocked_on); |
| 2177 | |
| 2178 | /* Currently we serialize blocked_on under the mutex::wait_lock */ |
| 2179 | lockdep_assert_held_once(&m->wait_lock); |
| 2180 | /* |
| 2181 | * There may be cases where we re-clear already cleared |
| 2182 | * blocked_on relationships, but make sure we are not |
| 2183 | * clearing the relationship with a different lock. |
| 2184 | */ |
| 2185 | WARN_ON_ONCE(blocked_on && blocked_on != m); |
| 2186 | } |
| 2187 | WRITE_ONCE(p->blocked_on, NULL); |
| 2188 | } |
| 2189 | |
| 2190 | static inline void clear_task_blocked_on(struct task_struct *p, struct mutex *m) |
| 2191 | { |
| 2192 | guard(raw_spinlock_irqsave)(l: &m->wait_lock); |
| 2193 | __clear_task_blocked_on(p, m); |
| 2194 | } |
| 2195 | #else |
| 2196 | static inline void __clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m) |
| 2197 | { |
| 2198 | } |
| 2199 | |
| 2200 | static inline void clear_task_blocked_on(struct task_struct *p, struct rt_mutex *m) |
| 2201 | { |
| 2202 | } |
| 2203 | #endif /* !CONFIG_PREEMPT_RT */ |
| 2204 | |
| 2205 | static __always_inline bool need_resched(void) |
| 2206 | { |
| 2207 | return unlikely(tif_need_resched()); |
| 2208 | } |
| 2209 | |
| 2210 | /* |
| 2211 | * Wrappers for p->thread_info->cpu access. No-op on UP. |
| 2212 | */ |
| 2213 | #ifdef CONFIG_SMP |
| 2214 | |
| 2215 | static inline unsigned int task_cpu(const struct task_struct *p) |
| 2216 | { |
| 2217 | return READ_ONCE(task_thread_info(p)->cpu); |
| 2218 | } |
| 2219 | |
| 2220 | extern void set_task_cpu(struct task_struct *p, unsigned int cpu); |
| 2221 | |
| 2222 | #else |
| 2223 | |
| 2224 | static inline unsigned int task_cpu(const struct task_struct *p) |
| 2225 | { |
| 2226 | return 0; |
| 2227 | } |
| 2228 | |
| 2229 | static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) |
| 2230 | { |
| 2231 | } |
| 2232 | |
| 2233 | #endif /* CONFIG_SMP */ |
| 2234 | |
| 2235 | static inline bool task_is_runnable(struct task_struct *p) |
| 2236 | { |
| 2237 | return p->on_rq && !p->se.sched_delayed; |
| 2238 | } |
| 2239 | |
| 2240 | extern bool sched_task_on_rq(struct task_struct *p); |
| 2241 | extern unsigned long get_wchan(struct task_struct *p); |
| 2242 | extern struct task_struct *cpu_curr_snapshot(int cpu); |
| 2243 | |
| 2244 | /* |
| 2245 | * In order to reduce various lock holder preemption latencies provide an |
| 2246 | * interface to see if a vCPU is currently running or not. |
| 2247 | * |
| 2248 | * This allows us to terminate optimistic spin loops and block, analogous to |
| 2249 | * the native optimistic spin heuristic of testing if the lock owner task is |
| 2250 | * running or not. |
| 2251 | */ |
| 2252 | #ifndef vcpu_is_preempted |
| 2253 | static inline bool vcpu_is_preempted(int cpu) |
| 2254 | { |
| 2255 | return false; |
| 2256 | } |
| 2257 | #endif |
| 2258 | |
| 2259 | extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); |
| 2260 | extern long sched_getaffinity(pid_t pid, struct cpumask *mask); |
| 2261 | |
| 2262 | #ifndef TASK_SIZE_OF |
| 2263 | #define TASK_SIZE_OF(tsk) TASK_SIZE |
| 2264 | #endif |
| 2265 | |
| 2266 | static inline bool owner_on_cpu(struct task_struct *owner) |
| 2267 | { |
| 2268 | /* |
| 2269 | * As lock holder preemption issue, we both skip spinning if |
| 2270 | * task is not on cpu or its cpu is preempted |
| 2271 | */ |
| 2272 | return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(cpu: task_cpu(p: owner)); |
| 2273 | } |
| 2274 | |
| 2275 | /* Returns effective CPU energy utilization, as seen by the scheduler */ |
| 2276 | unsigned long sched_cpu_util(int cpu); |
| 2277 | |
| 2278 | #ifdef CONFIG_SCHED_CORE |
| 2279 | extern void sched_core_free(struct task_struct *tsk); |
| 2280 | extern void sched_core_fork(struct task_struct *p); |
| 2281 | extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type, |
| 2282 | unsigned long uaddr); |
| 2283 | extern int sched_core_idle_cpu(int cpu); |
| 2284 | #else |
| 2285 | static inline void sched_core_free(struct task_struct *tsk) { } |
| 2286 | static inline void sched_core_fork(struct task_struct *p) { } |
| 2287 | static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); } |
| 2288 | #endif |
| 2289 | |
| 2290 | extern void sched_set_stop_task(int cpu, struct task_struct *stop); |
| 2291 | |
| 2292 | #ifdef CONFIG_MEM_ALLOC_PROFILING |
| 2293 | static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag) |
| 2294 | { |
| 2295 | swap(current->alloc_tag, tag); |
| 2296 | return tag; |
| 2297 | } |
| 2298 | |
| 2299 | static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old) |
| 2300 | { |
| 2301 | #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG |
| 2302 | WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n" ); |
| 2303 | #endif |
| 2304 | current->alloc_tag = old; |
| 2305 | } |
| 2306 | #else |
| 2307 | #define alloc_tag_save(_tag) NULL |
| 2308 | #define alloc_tag_restore(_tag, _old) do {} while (0) |
| 2309 | #endif |
| 2310 | |
| 2311 | /* Avoids recursive inclusion hell */ |
| 2312 | #ifdef CONFIG_SCHED_MM_CID |
| 2313 | void sched_mm_cid_before_execve(struct task_struct *t); |
| 2314 | void sched_mm_cid_after_execve(struct task_struct *t); |
| 2315 | void sched_mm_cid_fork(struct task_struct *t); |
| 2316 | void sched_mm_cid_exit(struct task_struct *t); |
| 2317 | static __always_inline int task_mm_cid(struct task_struct *t) |
| 2318 | { |
| 2319 | return t->mm_cid.cid & ~(MM_CID_ONCPU | MM_CID_TRANSIT); |
| 2320 | } |
| 2321 | #else |
| 2322 | static inline void sched_mm_cid_before_execve(struct task_struct *t) { } |
| 2323 | static inline void sched_mm_cid_after_execve(struct task_struct *t) { } |
| 2324 | static inline void sched_mm_cid_fork(struct task_struct *t) { } |
| 2325 | static inline void sched_mm_cid_exit(struct task_struct *t) { } |
| 2326 | static __always_inline int task_mm_cid(struct task_struct *t) |
| 2327 | { |
| 2328 | /* |
| 2329 | * Use the processor id as a fall-back when the mm cid feature is |
| 2330 | * disabled. This provides functional per-cpu data structure accesses |
| 2331 | * in user-space, althrough it won't provide the memory usage benefits. |
| 2332 | */ |
| 2333 | return task_cpu(t); |
| 2334 | } |
| 2335 | #endif |
| 2336 | |
| 2337 | #ifndef MODULE |
| 2338 | #ifndef COMPILE_OFFSETS |
| 2339 | |
| 2340 | extern void ___migrate_enable(void); |
| 2341 | |
| 2342 | struct rq; |
| 2343 | DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| 2344 | |
| 2345 | /* |
| 2346 | * The "struct rq" is not available here, so we can't access the |
| 2347 | * "runqueues" with this_cpu_ptr(), as the compilation will fail in |
| 2348 | * this_cpu_ptr() -> raw_cpu_ptr() -> __verify_pcpu_ptr(): |
| 2349 | * typeof((ptr) + 0) |
| 2350 | * |
| 2351 | * So use arch_raw_cpu_ptr()/PERCPU_PTR() directly here. |
| 2352 | */ |
| 2353 | #ifdef CONFIG_SMP |
| 2354 | #define this_rq_raw() arch_raw_cpu_ptr(&runqueues) |
| 2355 | #else |
| 2356 | #define this_rq_raw() PERCPU_PTR(&runqueues) |
| 2357 | #endif |
| 2358 | #define this_rq_pinned() (*(unsigned int *)((void *)this_rq_raw() + RQ_nr_pinned)) |
| 2359 | |
| 2360 | static inline void __migrate_enable(void) |
| 2361 | { |
| 2362 | struct task_struct *p = current; |
| 2363 | |
| 2364 | #ifdef CONFIG_DEBUG_PREEMPT |
| 2365 | /* |
| 2366 | * Check both overflow from migrate_disable() and superfluous |
| 2367 | * migrate_enable(). |
| 2368 | */ |
| 2369 | if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) |
| 2370 | return; |
| 2371 | #endif |
| 2372 | |
| 2373 | if (p->migration_disabled > 1) { |
| 2374 | p->migration_disabled--; |
| 2375 | return; |
| 2376 | } |
| 2377 | |
| 2378 | /* |
| 2379 | * Ensure stop_task runs either before or after this, and that |
| 2380 | * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). |
| 2381 | */ |
| 2382 | guard(preempt)(); |
| 2383 | if (unlikely(p->cpus_ptr != &p->cpus_mask)) |
| 2384 | ___migrate_enable(); |
| 2385 | /* |
| 2386 | * Mustn't clear migration_disabled() until cpus_ptr points back at the |
| 2387 | * regular cpus_mask, otherwise things that race (eg. |
| 2388 | * select_fallback_rq) get confused. |
| 2389 | */ |
| 2390 | barrier(); |
| 2391 | p->migration_disabled = 0; |
| 2392 | this_rq_pinned()--; |
| 2393 | } |
| 2394 | |
| 2395 | static inline void __migrate_disable(void) |
| 2396 | { |
| 2397 | struct task_struct *p = current; |
| 2398 | |
| 2399 | if (p->migration_disabled) { |
| 2400 | #ifdef CONFIG_DEBUG_PREEMPT |
| 2401 | /* |
| 2402 | *Warn about overflow half-way through the range. |
| 2403 | */ |
| 2404 | WARN_ON_ONCE((s16)p->migration_disabled < 0); |
| 2405 | #endif |
| 2406 | p->migration_disabled++; |
| 2407 | return; |
| 2408 | } |
| 2409 | |
| 2410 | guard(preempt)(); |
| 2411 | this_rq_pinned()++; |
| 2412 | p->migration_disabled = 1; |
| 2413 | } |
| 2414 | #else /* !COMPILE_OFFSETS */ |
| 2415 | static inline void __migrate_disable(void) { } |
| 2416 | static inline void __migrate_enable(void) { } |
| 2417 | #endif /* !COMPILE_OFFSETS */ |
| 2418 | |
| 2419 | /* |
| 2420 | * So that it is possible to not export the runqueues variable, define and |
| 2421 | * export migrate_enable/migrate_disable in kernel/sched/core.c too, and use |
| 2422 | * them for the modules. The macro "INSTANTIATE_EXPORTED_MIGRATE_DISABLE" will |
| 2423 | * be defined in kernel/sched/core.c. |
| 2424 | */ |
| 2425 | #ifndef INSTANTIATE_EXPORTED_MIGRATE_DISABLE |
| 2426 | static __always_inline void migrate_disable(void) |
| 2427 | { |
| 2428 | __migrate_disable(); |
| 2429 | } |
| 2430 | |
| 2431 | static __always_inline void migrate_enable(void) |
| 2432 | { |
| 2433 | __migrate_enable(); |
| 2434 | } |
| 2435 | #else /* INSTANTIATE_EXPORTED_MIGRATE_DISABLE */ |
| 2436 | extern void migrate_disable(void); |
| 2437 | extern void migrate_enable(void); |
| 2438 | #endif /* INSTANTIATE_EXPORTED_MIGRATE_DISABLE */ |
| 2439 | |
| 2440 | #else /* MODULE */ |
| 2441 | extern void migrate_disable(void); |
| 2442 | extern void migrate_enable(void); |
| 2443 | #endif /* MODULE */ |
| 2444 | |
| 2445 | DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable()) |
| 2446 | |
| 2447 | #endif |
| 2448 | |