| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef LINUX_CRASH_DUMP_H |
| 3 | #define LINUX_CRASH_DUMP_H |
| 4 | |
| 5 | #include <linux/kexec.h> |
| 6 | #include <linux/proc_fs.h> |
| 7 | #include <linux/elf.h> |
| 8 | #include <linux/pgtable.h> |
| 9 | #include <uapi/linux/vmcore.h> |
| 10 | |
| 11 | /* For IS_ENABLED(CONFIG_CRASH_DUMP) */ |
| 12 | #define ELFCORE_ADDR_MAX (-1ULL) |
| 13 | #define ELFCORE_ADDR_ERR (-2ULL) |
| 14 | |
| 15 | extern unsigned long long elfcorehdr_addr; |
| 16 | extern unsigned long long elfcorehdr_size; |
| 17 | |
| 18 | extern unsigned long long dm_crypt_keys_addr; |
| 19 | |
| 20 | #ifdef CONFIG_CRASH_DUMP |
| 21 | extern int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size); |
| 22 | extern void elfcorehdr_free(unsigned long long addr); |
| 23 | extern ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos); |
| 24 | extern ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos); |
| 25 | void elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr *phdr, |
| 26 | unsigned long long paddr, unsigned long long size); |
| 27 | extern int remap_oldmem_pfn_range(struct vm_area_struct *vma, |
| 28 | unsigned long from, unsigned long pfn, |
| 29 | unsigned long size, pgprot_t prot); |
| 30 | |
| 31 | ssize_t copy_oldmem_page(struct iov_iter *i, unsigned long pfn, size_t csize, |
| 32 | unsigned long offset); |
| 33 | ssize_t copy_oldmem_page_encrypted(struct iov_iter *iter, unsigned long pfn, |
| 34 | size_t csize, unsigned long offset); |
| 35 | |
| 36 | void vmcore_cleanup(void); |
| 37 | |
| 38 | /* Architecture code defines this if there are other possible ELF |
| 39 | * machine types, e.g. on bi-arch capable hardware. */ |
| 40 | #ifndef vmcore_elf_check_arch_cross |
| 41 | #define vmcore_elf_check_arch_cross(x) 0 |
| 42 | #endif |
| 43 | |
| 44 | /* |
| 45 | * Architecture code can redefine this if there are any special checks |
| 46 | * needed for 32-bit ELF or 64-bit ELF vmcores. In case of 32-bit |
| 47 | * only architecture, vmcore_elf64_check_arch can be set to zero. |
| 48 | */ |
| 49 | #ifndef vmcore_elf32_check_arch |
| 50 | #define vmcore_elf32_check_arch(x) elf_check_arch(x) |
| 51 | #endif |
| 52 | |
| 53 | #ifndef vmcore_elf64_check_arch |
| 54 | #define vmcore_elf64_check_arch(x) (elf_check_arch(x) || vmcore_elf_check_arch_cross(x)) |
| 55 | #endif |
| 56 | |
| 57 | #ifndef is_kdump_kernel |
| 58 | /* |
| 59 | * is_kdump_kernel() checks whether this kernel is booting after a panic of |
| 60 | * previous kernel or not. This is determined by checking if previous kernel |
| 61 | * has passed the elf core header address on command line. |
| 62 | * |
| 63 | * This is not just a test if CONFIG_CRASH_DUMP is enabled or not. It will |
| 64 | * return true if CONFIG_CRASH_DUMP=y and if kernel is booting after a panic |
| 65 | * of previous kernel. |
| 66 | */ |
| 67 | |
| 68 | static inline bool is_kdump_kernel(void) |
| 69 | { |
| 70 | return elfcorehdr_addr != ELFCORE_ADDR_MAX; |
| 71 | } |
| 72 | #endif |
| 73 | |
| 74 | /* is_vmcore_usable() checks if the kernel is booting after a panic and |
| 75 | * the vmcore region is usable. |
| 76 | * |
| 77 | * This makes use of the fact that due to alignment -2ULL is not |
| 78 | * a valid pointer, much in the vain of IS_ERR(), except |
| 79 | * dealing directly with an unsigned long long rather than a pointer. |
| 80 | */ |
| 81 | |
| 82 | static inline int is_vmcore_usable(void) |
| 83 | { |
| 84 | return elfcorehdr_addr != ELFCORE_ADDR_ERR && |
| 85 | elfcorehdr_addr != ELFCORE_ADDR_MAX ? 1 : 0; |
| 86 | } |
| 87 | |
| 88 | /* vmcore_unusable() marks the vmcore as unusable, |
| 89 | * without disturbing the logic of is_kdump_kernel() |
| 90 | */ |
| 91 | |
| 92 | static inline void vmcore_unusable(void) |
| 93 | { |
| 94 | elfcorehdr_addr = ELFCORE_ADDR_ERR; |
| 95 | } |
| 96 | |
| 97 | /** |
| 98 | * struct vmcore_cb - driver callbacks for /proc/vmcore handling |
| 99 | * @pfn_is_ram: check whether a PFN really is RAM and should be accessed when |
| 100 | * reading the vmcore. Will return "true" if it is RAM or if the |
| 101 | * callback cannot tell. If any callback returns "false", it's not |
| 102 | * RAM and the page must not be accessed; zeroes should be |
| 103 | * indicated in the vmcore instead. For example, a ballooned page |
| 104 | * contains no data and reading from such a page will cause high |
| 105 | * load in the hypervisor. |
| 106 | * @get_device_ram: query RAM ranges that can only be detected by device |
| 107 | * drivers, such as the virtio-mem driver, so they can be included in |
| 108 | * the crash dump on architectures that allocate the elfcore hdr in the dump |
| 109 | * ("2nd") kernel. Indicated RAM ranges may contain holes to reduce the |
| 110 | * total number of ranges; such holes can be detected using the pfn_is_ram |
| 111 | * callback just like for other RAM. |
| 112 | * @next: List head to manage registered callbacks internally; initialized by |
| 113 | * register_vmcore_cb(). |
| 114 | * |
| 115 | * vmcore callbacks allow drivers managing physical memory ranges to |
| 116 | * coordinate with vmcore handling code, for example, to prevent accessing |
| 117 | * physical memory ranges that should not be accessed when reading the vmcore, |
| 118 | * although included in the vmcore header as memory ranges to dump. |
| 119 | */ |
| 120 | struct vmcore_cb { |
| 121 | bool (*pfn_is_ram)(struct vmcore_cb *cb, unsigned long pfn); |
| 122 | int (*get_device_ram)(struct vmcore_cb *cb, struct list_head *list); |
| 123 | struct list_head next; |
| 124 | }; |
| 125 | extern void register_vmcore_cb(struct vmcore_cb *cb); |
| 126 | extern void unregister_vmcore_cb(struct vmcore_cb *cb); |
| 127 | |
| 128 | struct vmcore_range { |
| 129 | struct list_head list; |
| 130 | unsigned long long paddr; |
| 131 | unsigned long long size; |
| 132 | loff_t offset; |
| 133 | }; |
| 134 | |
| 135 | /* Allocate a vmcore range and add it to the list. */ |
| 136 | static inline int vmcore_alloc_add_range(struct list_head *list, |
| 137 | unsigned long long paddr, unsigned long long size) |
| 138 | { |
| 139 | struct vmcore_range *m = kzalloc(sizeof(*m), GFP_KERNEL); |
| 140 | |
| 141 | if (!m) |
| 142 | return -ENOMEM; |
| 143 | m->paddr = paddr; |
| 144 | m->size = size; |
| 145 | list_add_tail(new: &m->list, head: list); |
| 146 | return 0; |
| 147 | } |
| 148 | |
| 149 | /* Free a list of vmcore ranges. */ |
| 150 | static inline void vmcore_free_ranges(struct list_head *list) |
| 151 | { |
| 152 | struct vmcore_range *m, *tmp; |
| 153 | |
| 154 | list_for_each_entry_safe(m, tmp, list, list) { |
| 155 | list_del(entry: &m->list); |
| 156 | kfree(objp: m); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | #else /* !CONFIG_CRASH_DUMP */ |
| 161 | static inline bool is_kdump_kernel(void) { return false; } |
| 162 | #endif /* CONFIG_CRASH_DUMP */ |
| 163 | |
| 164 | /* Device Dump information to be filled by drivers */ |
| 165 | struct vmcoredd_data { |
| 166 | char dump_name[VMCOREDD_MAX_NAME_BYTES]; /* Unique name of the dump */ |
| 167 | unsigned int size; /* Size of the dump */ |
| 168 | /* Driver's registered callback to be invoked to collect dump */ |
| 169 | int (*vmcoredd_callback)(struct vmcoredd_data *data, void *buf); |
| 170 | }; |
| 171 | |
| 172 | #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP |
| 173 | int vmcore_add_device_dump(struct vmcoredd_data *data); |
| 174 | #else |
| 175 | static inline int vmcore_add_device_dump(struct vmcoredd_data *data) |
| 176 | { |
| 177 | return -EOPNOTSUPP; |
| 178 | } |
| 179 | #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ |
| 180 | |
| 181 | #ifdef CONFIG_PROC_VMCORE |
| 182 | ssize_t read_from_oldmem(struct iov_iter *iter, size_t count, |
| 183 | u64 *ppos, bool encrypted); |
| 184 | #else |
| 185 | static inline ssize_t read_from_oldmem(struct iov_iter *iter, size_t count, |
| 186 | u64 *ppos, bool encrypted) |
| 187 | { |
| 188 | return -EOPNOTSUPP; |
| 189 | } |
| 190 | #endif /* CONFIG_PROC_VMCORE */ |
| 191 | |
| 192 | #endif /* LINUX_CRASHDUMP_H */ |
| 193 | |