
A Hybrid Approach to Linked Data Query Processing with
Time Constraints

Steven Lynden
Information Technology

Research Institute
National Institute of Advanced

Industrial Science and
Technology

(AIST) Tsukuba, Japan
steven.lynden@aist.go.jp

Isao Kojima
Information Technology

Research Institute
National Institute of Advanced

Industrial Science and
Technology

(AIST) Tsukuba, Japan
isao.kojima@aist.go.jp

Akiyoshi Matono
Information Technology

Research Institute
National Institute of Advanced

Industrial Science and
Technology

(AIST) Tsukuba, Japan
a.matono@aist.go.jp

Akihito Nakamura
Information Technology

Research Institute
National Institute of Advanced

Industrial Science and
Technology

(AIST) Tsukuba, Japan
nakamura-

akihito@aist.go.jp

Makoto Yui
Information Technology

Research Institute
National Institute of Advanced

Industrial Science and
Technology

(AIST) Tsukuba, Japan
m.yui@aist.go.jp

ABSTRACT
In addition to RDF data within documents published ac-
cording to the Linked Data principles, SPARQL endpoints
are also a potential source of a great deal of Linked Data.
The execution of queries using languages such as SPARQL
can use utilise both of these types of data sources. In this
paper we present a hybrid approach to answering SPARQL
queries that makes use of both link traversal-based and dis-
tributed query processing-based approaches in order to com-
bine query answering over the Web of Linked Data and
SPARQL endpoints respectively. The technique differs from
existing work in that link traversal and endpoint queries take
place in parallel without a static query plan. It is demon-
strated how, using a set of heuristics and optimisation tech-
niques, this can be effective when answering queries with
time constraints (incomplete answers are acceptable in order
to minimise execution time). An evaluation of the technique
is presented using the FedBench Linked Data queries with
query execution time limited to 10 seconds, with an analysis
of answers that can be provided within this time limit.

1. INTRODUCTION
There are a number of issues that make querying Linked
Data a challenging problem. Accessing diverse data sources

Copyright held by the author/owner(s)
LDOW2013 May 14, 2013, Rio de Janeiro, Brazil

spread around the Web introduces unpredictability in terms
of response times and the amount of data that will be re-
turned, making static query plan optimisation difficult. An-
swering non-trivial queries often requires more than a simple
request/response-style interaction with a data source. Many
pages from a single provider may need to be accessed in se-
quence to traverse the links to answer a query. As is the case
with Web crawlers, in this scenario it is necessary to avoid
sending too many requests to a single server within short
space of time. SPARQL [13] endpoints provide query inter-
faces to public users, where query processing costs are met
by the provider. As many SPARQL queries can be compu-
tationally expensive to execute, most public endpoints have
some form of fair use policy to provide some relatively con-
stant level of service to a potentially large number of users.
For example, some query interfaces may limit the number of
results they provide to queries, or generate a cost estimate
at query compilation time and refuse to execute queries with
a cost greater than a certain threshold.

A consequence of these characteristics of Linked Data query
processing is that complete query answering for many queries
in a timely manner is currently unrealisable. Some query
processors, attempting to utilise a diverse set of distributed
resources, may result in query execution times in the order
of tens of minutes for some queries, and while there may be
applications for such queries, in many cases providing some
kind of approximate or incomplete answer within certain
time constraints is more useful. In this paper we propose
an approach that aims to provide relevant, fresh results in a
timely manner while conceding that results are unlikely to
be complete. The proposed approach can be categorised as a
hybrid of two query processing techniques, link traversal [14]
and distributed query processing. As static query execution

plans are difficult to generate in advance, this step is avoided
and this paper contributes a technique where the submission
of SPARQL queries to endpoints takes place in parallel, with
the aim of retrieving the data required to answer the query
within given time constraints.

The problem of federated SPARQL querying has been widely
recognised, with federated extensions to the SPARQL query
language for SPARQL 1.1 [8] which support a construct for
sending parts of a SPARQL query to specific SPARQL ser-
vices. This is implemented by using a SERVICE keyword
to merge distributed data, however this requires explicitly
indicating which services are to be accessed and the specific
parts of the query should be executed against them. In this
paper we study the problem of automatically optimising the
query without knowledge of this in advance across both the
Web of Linked Data and SPARQL services.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the background area and related work.
Section 3 describes the design and implementation of our
approach, followed by a performance evaluation used the
FedBench [21] Linked Data queries in Section 4 and finally
some concluding remarks in Section 5.

2. BACKGROUND
Guidelines for publishing Linked Data [16] propose best prac-
tices, based on the W3C set of RDF standards [17], for using
the RDF data model to publish structured data on the Web,
using RDF links to interlink data from different data sources.
Querying Linked Data requires accessing distributed data
held at different locations and in different formats. Issues re-
lated to scale, with respect to data distribution and volume,
in addition to the frequency with which it is updated, require
federated queries to access data sources directly rather than
data warehouse-based solutions.

2.1 Accessing Linked Data
First and foremost, Linked Data forms what is often referred
to as a “Web of Data”, consisting of dereferenceable URIs
which are accessed to provide information about whatever
the URI refers to using some standard format, such as RD-
F/XML [6], or RDFa [5]. In addition to accessing such data
via HTTP, RDF databases also exist, which in many cases
can be accessed using the SPARQL query language and its
associated protocol [12]. Public SPARQL endpoints, such
as DBpedia [2], provide a source of Linked Data, some of
which may be also published according to Linked Data prin-
ciples (dereferenceable URIs), and some of which may con-
tain URIs that are not dereferenceable but still vital when
answering certain SPARQL queries. Sindice [7] provides a
SPARQL query interface over RDF data that has been in-
dexed via crawling the Web of Data. Other SPARQL end-
points may provide access to data that is not available in
other Web documents, resulting in a scenario where the data
required to answer SPARQL queries may be found via either
the SPARQL protocol, Web documents, or both.

2.2 Distributed SPARQL Query Processing
Distributed SPARQL query processors are able to accept a
SPARQL query and answer the query by decomposing it into
multiple sub-queries each of which are sent to a SPARQL

endpoint. The results of the sub-queries are then combined
to answer the original query. The challenges here are decid-
ing on an initial query plan, including which SPARQL end-
points to access and in what order, and adapting to the un-
predictable nature of SPARQL endpoints in terms of query
response time, availability etc. Generating an efficient query
plan is generally only possible if some statistics are available
concerning the data contained within accessed endpoints,
for example if the endpoint has a Vocabulary of Interlinked
Datasets (VoID) [3] description associated with it. Another
significant challenge is caused by the fact that endpoints are
made available at the cost of the service provider, therefore
restrictions on the types of queries that can be executed, and
the results they can return, are commonplace. For example,
the DBpedia endpoint’s fair use policy at the time of writing
is as follows:

• Query execution time is limited to 2 minutes.

• A rate limitation is placed on the number of connec-
tions that can be made per second.

Such restrictions result in greater unpredictability and com-
plexity when optimising query execution plans over multiple
SPARQL endpoints.

2.3 Link Traversal based Query Processing
Link traversal-based queries utilise the Web of Data to deref-
erence URIs in the query, followed by recursively dereferenc-
ing URIs in the RDF data obtained. This may be enhanced,
for example by using indexes to find related data, for exam-
ple by storing owl:sameAs links to quickly expand the set
of possible links that can be explored. Issues in link traver-
sal based query processing include how to prioritise which
links to dereference to find the data that will be useful in
answering the query and how to determine when to termi-
nate, as traversing a Web-scale set of links is not guaranteed
to terminate in a reasonable amount of time. Issues related
to Web crawling, i.e. avoiding multiple repeated requests to
the same domain, are also pertinent.

2.4 Related work
Federated SPARQL query processing is currently an active
area of research, with various emerging techniques proposed
as solutions to the above problems, such as [11, 20, 18,
10]. Link traversal based query processors also exist such
as SQUIN [9]. Indexing approaches also exist such as the
aforementioned Sindice, which perhaps provides the most
convenient way to query the Semantic Web so far. The
amount of Semantic Web data is growing however, in par-
ticular with the adoption of formats such as RDFa, use of
which is becoming increasingly widespread. This means that
indexing may be a costly approach that eventually cannot
scale. The Semantic Web is also becoming more dynamic,
for example with ontologies such as Good Relations [4] and
schema.org being used to represent data that is constantly
being updated, meaning that indexes such as Sindice may
struggle to provide an up-to-date reflection of the Semantic
Web.

The hybrid approach to Linked Data query processing was
first proposed in [15] and work inspired by this idea is start-

ing to appear. One such approach that uses both SPARQL
endpoints and RDF documents to ensure the freshness of
SPARQL query results is [22]. Similar to our approach, this
approach combines accessing RDF documents and SPARQL
endpoints, however this is achieved by executing two query
engines in sequence to perform each step using a static query
plan. This contrasts to our approach which aims to do both
in parallel within fixed time constraints and very limited
static query planning.

3. HYBRID LINKED DATA QUERY PRO-
CESSING WITH TIME CONSTRAINTS

In this section an approach toward hybrid Linked Data query
processing is presented, which aims to combine link traver-
sal and distributed query processing on-the-fly in order to
retrieve relevant data within a fixed time boundary and
present best-effort results within that time-frame. The main
characteristics of this approach are:

• Parallel query execution: accessing multiple SPARQL
endpoints and dereferencing Linked Data URIs takes
place in parallel. The aim is to retrieve data from as
many sources as possible while avoiding simultaneous
or very fast repeated requests to the same providers.

• Optimise communication costs: the bottleneck when
querying a diverse set of distributed resources is re-
trieving the data rather than processing it once it has
been retrieved.

• Execute for a fixed amount of time: instead of allow-
ing execution time to continue until all results are ob-
tained, or a fixed number of results are obtained, it is
assumed that a best effort should be made within a
fixed amount of time to provide a result.

The process involved is illustrated in Figure 1, which consists
of the following steps:

1. The initial SPARQL query is parsed and compiled into
a set of triple patterns and the query execution compo-
nent is initialised. This query is subsequently referred
to as the federated query; other SPARQL queries is-
sued to SPARQL endpoints to contribute towards an-
swering the federated query are referred to as sub-
queries.

2. A local graph component is initialised, which will store
intermediate results, i.e. triples which have been found
to match the set of triple patterns in the query.

3. Two components are executed, the endpoint query man-
ager and the active discovery manager. The endpoint
query manager sends queries to SPARQL endpoints
and the active discovery manager dereferences URIs,
analogous to a link traversal style of query answering.

4. After a time t, for which the query is scheduled to run,
the endpoint query manager and active discovery man-
ager are terminated and the local graph component is
used to obtain the result of the federated query.

3.1 Query Compilation
During query compilation the federated SPARQL query is
decomposed into a set of triple patterns TP = tp1, tp2, ..., tpi,
where there are i triple patterns in the SPARQL query. Any
applicable FILTER predicates are associated with a triple
pattern by the compiler as they are potentially pushed down
to SPARQL endpoints or applied by the active discovery
manager. The local store component is initialised to be an
empty RDF graph to which RDF data retrieved from data
sources that matches patterns in TP will be added. The
local graph has the following properties:

• When a triple m is added to the local graph that
matches a triple pattern tpi, any variables in tpi are
associated with the relevant subject, predicate or ob-
ject value in m, for example if tpi contains a subject
variable, var, then the subject value of the triple m is
stored as one of the bindings of var (each variable can
have multiple bindings). Bindings in the local graph
are not necessarily variable bindings in the query re-
sult; they have the potential to be so depending on the
final evaluation of the query.

• Triples containing blank nodes and duplicate triples
are ignored.

• If the predicate is an owl:sameAs link and the subject
and object are both URIs from the DBpedia names-
pace, the value is ignored due to the fact that this often
leads to processing sameAs links between different lan-
guages, which leads to an explosion of the amount of
data in the local store which may be relatively unim-
portant for answering the query in many scenarios. As
we are aiming to process queries within fixed time con-
straints, the assumption is made that following such
links is not desirable and leave for future work how to
detect cases where multi-lingual query results would
be desirable and how more sophisticated ways to rank
the importance of sameAs links could be integrated or
substituted within the system.

Subsequently the active discovery manager and endpoint
query manager are started, passing a parameter t, equal to
the number of seconds for which the query should be exe-
cuted and the empty local graph to which both components
will have access.

3.2 Active Discovery Manager
The active discovery manager creates a single thread for each
pay-level-domain (PLD) encountered during query process-
ing, starting with the initial set of URIs in the query and
starting new threads as they are encountered, as shown in
Algorithm 1.

Separate threads are created by the active discovery man-
ager in order to dereference URIs within that domain only,
without swamping the domain with requests. Each thread
implements a policy that ensures a gap of at least 0.5 sec-
onds takes place before subsequent HTTP requests to a do-
main. Each thread first dereferences any URIs in the query
itself, and then chooses URIs by calling Algorithm 2 ev-
ery 0.5 seconds until the query execution engine is termi-
nated. The URI is dereferenced and triple patterns in the

Execution Engine

Active Discovery
Manager

Endpoint Query
ManagerLocal Graph

Input Query

Query Compilation

Evaluation

Result

SPARQL

SPARQL

SPARQL

Figure 1: Hybrid approach
Once the query is compiled, two components are executed in parallel. The active discovery manager (left) aims to retrieve data
from the Web of Linked Data. The endpoint query manager (right) aims to retrieve data from SPARQL endpoints. Linked
data that matches triple patterns in the federated query are placed in the local graph, which is also utilised by the endpoint
query manager and active discovery manager to retrieve new data. Following a fixed time, t, the query execution engine is
terminated and the results extracted from the local graph.

Algorithm 1 The algorithm executed by the active discov-
ery manager.

1: for all tpi ∈ TP do
2: PLD := ∅
3: if tpi.subject is a URI then
4: PLD := PLD ∪ getPLD(tpi.subject)
5: end if
6: if tpi.predicate is a URI then
7: PLD := PLD ∪ getPLD(tpi.predicate)
8: end if
9: if tpi.object is a URI then

10: PLD := PLD ∪ getPLD(tpi.object)
11: end if
12: end for
13: while time < t do
14: PLD := PLD ∪ localGraph.getPLDs()
15: for all pldi ∈ PLD do
16: Start Active Discovery Thread for pldi (if not

yet started)
17: end for
18: end while
19: Terminate all active discovery threads

Lines 1-12 add the PLDs from URIs in the query. The subse-
quent while loop starts new threads for these PLDs and for
any PLDs encountered during query processing. getPLD
takes a URI and returns the PLD. localGraph.getPLDs re-
turns the set of PLDs from all URIs in the local graph.

query (plus any applicable FILTER predicates) are matched
against the RDF data retrieved from the URI (if any), with
matches added to the local graph. The ranking function,
bestRanking, used by Algorithm 2, takes a set of URIs and
aims to choose the one most likely to produce triples that
match patterns in the query and therefore potentially yield
results. As the number of URIs dereferenced by one active
discovery thread will be relatively small (e.g. for a 10 second
query a maximum of 20 requests assuming a 0.5 delay be-
tween requests), and nothing is known about the RDF data
that can be retrieved from each URI before query execu-
tion, it is necessary to make a very quick and approximate
estimation to choose one URI to dereference from a poten-
tially large number of possible URIs. Although it is unre-
alistic to achieve significant improvements over a random
selection with samples of less than 20, each active discov-
ery thread selects a URI on the basis of string similarity,
compared to URIs that have previously been dereferenced
by the same thread (therefore within the same domain) and
matched triples patterns. In order to see why, consider the
following example based on FedBench Linked Data query 9:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dbc: <http://dbpedia.org/resource/category>
PREFIX dbp: <http://dbpedia.org/resource/property>
SELECT * WHERE {

?x dc:subject dbc:FIFA_World_Cup-winning_countries .
?p dbp:managerclubs ?x .
?p foaf:name "Luiz Felipe Scolari"@en .

}

For the http://dbpedia.org PLD, following the initial deref-
erencing of the URI in the first triple pattern, consider the
following links that were dereferenced within that domain
during a trial run of the execution of the active discovery
manager (with the number of RDF triples retrieved that
matched triple patterns in the query in brackets):

/resource/England_national_football_team (25)
/resource/Spain_national_football_team (23)
/resource/Brazil_national_team (18)
/resource/FC_Bunyodkor (3)
/resource/Vicente_Feola (2)
/resource/Luiz_Felipe_Scolari (16)

From this it seems intuitive that URIs containing strings
similar to“national football team”and“Luiz Felipe Scolari”
would be more likely to contain RDF triples that match
query triple patterns. We base the selection of URIs on the
assumption that the URI itself contains some clue about how
many triple patterns will be matched (although they might
not lead to actual query results, the active discovery man-
ager aims to find as many triples as possible that may be
used to produce results). Given a set of URIs from which a
selection is to be made, the best bestRanking function used
in Algorithm 2 ranks all URIs based on string distance mea-
sures between the URI and the set of dereferenced (visited)
URIs, choosing a URI with the highest value obtained from
the following function:

rank(uri) =
X
u∈U

[matched(u) ∗ (1− distance(u, uri))] (1)

where the active discovery thread has visited the set of U
URIs, and visiting URI u ∈ U resulted in matched(u) triples
that matched triple patterns in the query. The function
distance(u, uri) gives the Levenshtein distance [19] between
the two URIs represented as strings, normalised in the range
[0-1].

3.3 Endpoint Query Manager
The endpoint query manager utilises known SPARQL end-
points to retrieve triples that match query triple patterns
and add them to the local graph. It is assumed prior to
query execution that the system is configured with a set
of endpoints to be used. Endpoint queries are performed
by mapping each triple pattern to a data source, combining
triple patterns into the same query where possible, and push-
ing down predicates where possible. To do this efficiently,
some information is required about the RDF triples con-
tained within each data source, which should be constructed
during an initialisation/configuration step taking place be-
fore any queries over the data sources can be executed. The
set of distinct predicate values is obtainable via a SPARQL
SELECT query using the DISTINCT function to select the
set of unique predicate values, or a sequence of SPARQL
ASK queries incorporating specific predicate values (e.g. ob-
tained from ontologies of interest or a specific query). This
information enables a function predMatch(tpi, endpoint)→
[true|false] to be implemented which determines whether
instances of a triple pattern can exist in an endpoint (the

Algorithm 2 The algorithm executed by each active dis-
covery thread every 0.5 seconds until the query is terminated
in order to choose a URI which should be dereferenced by
the active discovery manager.

1: T := Set of URIs already dereferenced
2: S1 := ∅
3: S2 := ∅
4: for all tpi ∈ TP do
5: if localGraph.allV arsBound(tpi) then
6: S2 := S2 ∪ localGraph.getBindings(tpi)− T
7: else
8: S1 := S1 ∪ localGraph.getBindings(tpi)− T
9: end if

10: end for
11: if S1 6= ∅ then
12: return bestRanking(S1)
13: else if S2 6= ∅ then
14: return bestRanking(S2)
15: else
16: return null
17: end if

Any triples in RDF data retrieved from the URI are added to
the local graph. S1 is a prioritised set of URIs that are more
likely to match triples for which there are not yet bindings in
the local graph (the allV arsBound(tp) function supported
by the local graph returns true if every variable in the triple
pattern has at least one associated value). Prioritising S1
is done to ensure that at least some results will be provided
by the query execution engine.

value will always be true if the triple pattern predicate is a
variable).

The endpoint query manager creates a separate thread for
each SPARQL endpoint to be used during query execution,
where each thread sends SPARQL sub-queries to that end-
point in order to retrieve triples that will be used to answer
the query. Each thread is designed to do the following:

• Execute simple queries by using the LIMIT feature of
the SPARQL language and sending a small number of
triple patterns. This provides results quickly, which
can then be used by the active discovery manager to
investigate URIs in parallel.

• Return relevant results by restricting the values of vari-
ables with FILTER clauses. For example, if the query
contains a triple pattern ?v1 <pred> ?v2, sending this
triple pattern alone in a sub-query to the endpoint
would results in many bindings that are probably ir-
relevant in answering the query. Instead bindings from
the local graph are added, for example assuming v1 has
values ‘<u1>’ and ‘<u2>’, a sub-query of the follow-
ing form may be constructed:
SELECT * WHERE { ?v1 <pred> ?v2 .

FILTER (?v1=<u1>||?v1=<u2>) }. This restricts sub-
query results to those which are likely to be of use in
answering the query.

• To avoid placing an excessive burden on a particular
endpoint, the endpoint query manager enforces a 5 sec-
ond gap between queries to the same endpoint. As the

Algorithm 3 The algorithm executed to compose sub-
queries by each endpoint query manager thread.

1: sq :=new sub-query
2: if number of sub-queries sent= 0 then
3: for all tpi ∈ TP do
4: if predMatch(tpi, endpoint) then
5: sq.addPattern(tpi)
6: end if
7: end for
8: else
9: for all var ∈ localGraph.boundV ar() do

10: sq1 :=new sub-query
11: sq1.addBinds(localGraph.getBinds(var))
12: for all tpi ∈ TP do
13: if predMatch(tpi, endpoint) & tpi.contains(var)

then
14: sq.addPattern(tpi)
15: end if
16: end for
17: if value(sq1) > value(sq) then
18: sq := sq1
19: end if
20: end for
21: end if
22: if valid(sq) then
23: return sq
24: else
25: return null
26: end if

Line 2 ensures that for the generation of the first sub-query
to the endpoint in question, all applicable triple patterns
in the federated query are added to the sub-query and this
query is returned (lines 3-7). Subsequent queries are con-
structed using bindings from the local graph to limit the
results to those useful in answering the federated query. For
each bound variable, var, the bindings for that variable are
used to constrain the set of possible results by adding FIL-
TER predicates to the sub-query. localGraph.boundV ar re-
turns all bound variables in the local graph, and getBinds
returns the values bound to a specific variable. A maximum
of 10 values are used to avoid very large query strings and
the addBinds operation also ignores any bindings that have
already been sent/received by to/from the endpoint. Each
triple pattern containing the variable var is then added to
the potential sub query, sq1, which is compared to any pre-
viously generated sub-queries using a cost function (line 17)
and the best sub-query finally returned, provided the con-
straints met by the valid function are satisfied.

aim of our approach is to execute queries within a time-
frame of 10 seconds, this corresponds to each endpoint
being queried twice at most.

These objectives are obtained by executing Algorithm 3,
which selects a sub-query every 5 seconds until the query
execution engine is terminated. Results from the queries
are stored in the local graph shared by the active discovery
manager.

When sending queries with bindings, the value function
utilised by Algorithm 3 estimates the relative value of send-
ing a sub-query sq to a given endpoint:

value(sq) =
X

var∈V

s

max(1, localGraph.numBindings(var))

(2)

where V is the set of non-bound variables in the sub-query, s
is the number of different values in the FILTER clause used
to bind the bound variable, and localGraph.numBindings
returns the number of bindings already stored in the local
graph for a variable var. The function estimates the value
of the sub-query by summing the fractional increase in vari-
able bindings that would be obtained under the simplifying
assumption that a new value is obtained for every bound
variable sent. The motivation for this is that queries with
the potential to bind variables with relatively few bindings
in the local graph should be prioritised in order to poten-
tially yield more results when the federated query is finally
evaluated.

Algorithm 3 aims to select the best possible sub-query to
send to an endpoint, however a query is only sent if the
constraints of the valid function are met. valid returns true
if:

1. The sub-query has bindings in the FILTER clause from
the local graph. (Any sub-query with variable bindings
is likely to return results that are useful with respect
to obtaining a query result).

OR

2. The sub-query contains at least two triple patterns
which are joined by shared variables, or a single triple
pattern with only one variable. (Single triple pattern
sub-queries with more than one variable are unlikely
to return relevant results).

3.4 Implementation
The proposed approach is implemented in Java, and the
active discovery manager uses the standard Java libraries
for retrieving documents via HTTP. Jena [1] is used by the
endpoint query manager to send sub-queries to SPARQL
endpoints and process the results. Jena is also used for RD-
F/XML parsing. The local graph component is also im-
plemented using the Jena RDF graph model, and the Jena
libraries are used once the query execution engine has fin-
ished to execute the federated query against the local graph
to obtain the final query results.

4. EVALUATION
This section presents a performance analysis of the approach
discussed in the previous section, made using the FedBench
Linked Data queries. The aim of the evaluation is to analyse
the extent to which results can be obtained under tight time
constraints (10 seconds) when answering queries over the
Web of Linked Data in conjunction with publicly available
SPARQL endpoints. This section is structured as follows:
firstly the FedBench Linked Data queries are described, sec-
ondly an analysis is presented of the results (while relax-
ing time constraints) that be obtained using (a) only link
traversal and (b) sending the queries to specific SPARQL
endpoints. Finally, a comparison is made with our pro-
posed approach, using both link traversal and SPARQL end-
points in parallel under strict time constraints. The follow-
ing SPARQL endpoints are utilised and accessed in parallel
during query execution:

• Sindice:
http://sparql.sindice.com/sparql

• DBpedia
http://dbpedia.org/sparql

• Semanticweb.org
http://data.semanticweb.org/sparql

Experiments are performed on a 2.4GHz Intel Xeon Dual
Processor machine running Fedora 17 Linux with 16GB mem-
ory, connected to the Internet via a 100Mbs Ethernet LAN.
The query execution engine is executed using a single Java
Virtual Machine (version 1.7) using Jena version 2.7.1.

4.1 FedBench Linked Data Queries
FedBench is a benchmark suite for Semantic data query
processing, aimed at allowing developers to test the perfor-
mance of the query engines against a standard data set and
analyse both efficiency and effectiveness. Various categories
exist within FedBench, such as Life Science and cross domain
queries, however in this paper we focus on the Linked Data
queries, a set of basic graph pattern queries, designed pri-
marily for link traversal style query processing. The queries
are shown in Figure 2, along with some minor changes that
were required to get some of them to return results. Two
queries, 6 and 8, could not be executed with any combination
of SPARQL endpoints and link traversal that we attempted
(see Figure 2 for details) and are therefore omitted.

4.2 Using Link Traversal only
In order to determine a baseline for link traversal perfor-
mance alone, the active discovery manager is executed with-
out the endpoint query manager for 10 minutes. Table 1
shows the number of triples in the local graph and the num-
ber of query results. In all cases the time taken for a query
result to be obtained from the local graph was negligible
compared to query execution time (less than 40 millisec-
onds) Some queries ran out of URIs to dereference fairly
quickly (queries 5 and 7), or halfway towards the 10 minute
limit (query 10). Query 9 returned no results, showing that
even if quite a lengthy execution time is allowed, using a sim-
ple link traversal-based querying approach does not provide
adequate results for these queries.

Query Local Graph Size Result Size Completion
Time(minutes)

1 2064 141
2 2250 112
3 40767 26
4 2944 28
5 257 59 1.8
7 3 1 0.13
9 4056 0
10 512 3 4.91
11 10908 520

Table 1: FedBench Linked Data queries executed
using the active discovery manager for 10 minutes.
Completion time refers to the time after which all URIs have
been dereferenced, there are no more links to traverse, and
therefore the query execution engine terminates early.

4.3 Using SPARQL Endpoints only
In order to determine a baseline for the use of a single end-
point to answer the query, each query was sent to the set of
endpoints used and the largest result sets and their response
times listed in Table 2. It can be seen that Sindice is able
to answer all the queries, providing in most cases a large
number of results. Although the LIMIT keyword would re-
duce query response time if a known number of results are
required, it is still difficult for a client to know exactly what
the impact would be on processing time. Furthermore, al-
though the DBpedia and SemanticWeb.org endpoints are
expected to be in sync with the data they represent, an
indexing approach such as Sindice may not be, as shown
in [22].

4.4 Using a Hybrid Approach with Fixed Time
Constraints

Queries were executed for 10 seconds using both the end-
point query manager and active discovery manager. All sub-
queries sent by the endpoint query manager were restricted
to a result size of 100 using LIMIT in order to avoid time-
consuming sub-queries. Table 3 summarises the number of
results obtained, the size of the local graph and evaluation
time (this refers to the use of the Jena query execution imple-
mentation to produce the result of the federated query from
the local graph). Firstly it can be observed that regardless of
the size of the local graph constructed within 10 seconds of
query execution, the evaluation time was negligible in com-
parison. The largest evaluation time, 36 milliseconds, hardly
makes a difference to a 10 second query response time. The
approach returned results for all the queries execute, apart
from the aforementioned queries 6 and 8.

Regarding the freshness of the results and the range of PLDs
accessed, Table 4 shows that last modified dates of the RD-
F/XML pages retrieved were shown to be within the last 24
hours in 5 out of the 9 queries. Although this does not neces-
sarily mean that the data has definitely changed within that
time, it does indicate that there is the potential to retrieve
fresher results than indexers which crawl the Semantic Web
with less frequency, and may be of more benefit with queries
executed over a broader set of Linked Data than the Fed-
Bench queries used here. The number of PLDs accessed was

PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbprop: <http://dbpedia.org/property/> PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX dbowl: <http://dbpedia.org/ontology/> PREFIX gn: <http://www.geonames.org/ontology#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Evaluated queries:

1 SELECT * WHERE {
?paper <http://data.semanticweb.org/ns/swc/ontology#isPartOf>

<http://data.semanticweb.org/conference/iswc/2008/poster_demo_proceedings> .
?paper <http://swrc.ontoware.org/ontology#author> ?p . ?p rdfs:label ?n
}

2 SELECT * WHERE {
?proceedings <http://data.semanticweb.org/ns/swc/ontology#relatedToEvent>

<http://data.semanticweb.org/conference/eswc/2010> .
?paper <http://data.semanticweb.org/ns/swc/ontology#isPartOf> ?proceedings .
?paper <http://swrc.ontoware.org/ontology#author> ?p .
}

3 SELECT * WHERE {
?paper <http://data.semanticweb.org/ns/swc/ontology#isPartOf>

<http://data.semanticweb.org/conference/iswc/2008/poster_demo_proceedings> .
?paper <http://swrc.ontoware.org/ontology#author> ?p .
?p owl:sameAs ?x . ?p rdfs:label ?n .
}

4 SELECT * WHERE {
?role <http://data.semanticweb.org/ns/swc/ontology#isRoleAt> <http://data.semanticweb.org/conference/eswc/2010> .
?role <http://data.semanticweb.org/ns/swc/ontology#heldBy> ?p .
?paper <http://swrc.ontoware.org/ontology#author> ?p .
?paper <http://data.semanticweb.org/ns/swc/ontology#isPartOf> ?proceedings .
?proceedings <http://data.semanticweb.org/ns/swc/ontology#relatedToEvent>

<http://data.semanticweb.org/conference/eswc/2010> .
}

5 SELECT * WHERE { 7 SELECT * WHERE {
?a dbowl:artist dbpedia:Michael_Jackson . <http://sws.geonames.org/2921044/> gn:parentFeature ?x.
?a rdf:type dbowl:Album . ?x gn:name ?n .
?a foaf:name ?n . }
}

9 SELECT * WHERE {
?x <http://purl.org/dc/terms/subject> <http://dbpedia.org/resource/Category:FIFA_World_Cup-winning_countries> .
?p dbprop:managerclubs ?x . ?p foaf:name "Luiz Felipe Scolari"@en .
}

10 SELECT * WHERE {
?n <http://purl.org/dc/terms/subject> <http://dbpedia.org/resource/Category:Chancellors_of_Germany> .
?p2 owl:sameAs ?n . ?p2 <http://data.nytimes.com/elements/latest_use> ?u .
}

11 SELECT * WHERE {
?x dbowl:team dbpedia:Eintracht_Frankfurt .
?x rdfs:label ?y . ?x dbowl:birthDate ?d . ?x dbowl:birthPlace ?p . ?p rdfs:label ?l .
}

Unevaluated queries:

6 SELECT * WHERE {?director dbowl:nationality dbpedia:Italy .
?film dbowl:director ?director . ?x owl:sameAs ?film . ?x foaf:based_near ?y .
?y gn:officialName ?n .
}

8 SELECT * WHERE {drugCategory:micronutrient . ?drug drugbank:casRegistryNumber ?id .
?drug owl:sameAs ?s . ?s foaf:name ?o . ?s skos:subject ?sub
}

Figure 2: FedBench Linked Data Queries.
Query 7 was modified – the subject and object in the final triple pattern were swapped as no results were obtained originally.
Where queries used the predicate skos:subject, this was changed to dcterms:subject. We believe these changes were
necessary to reflect the evolving nature of the active data utilised by the FedBench Linked Data queries. The language
extension @en was added to query 9 as without it no results were returned. Queries 6 and 8 were problematic for the
following reasons. Query 6 attempts to join Italian film directors from DBpedia and the locations of their films joining triple
pattens. Even when using a combination of SPARQL endpoints and link-traversal, we could not find any such films with
foaf:based_near and gn:officialName properties in the Linked Movie Database or elsewhere. For Query 8 using DrugBank
to list information about the micronutrient drug category, even when omitting the final triple pattern we were unable find
any results. It is possible that the data over which they are designed to be executed has changed since the initial formulation
of the queries.

Query Local Graph Size Active Discovery Triples Result Size Evaluation Time (ms)
1 711 17 297 36
2 210 17 147 9
3 649 274 304 18
4 415 296 50 7
5 420 4 241 13
7 4 0 1 3
9 263 252 1 3
10 123 65 3 4
11 684 189 892 36

Table 3: FedBench Linked Data queries executed using the proposed approach for 10 seconds.
The “Active discovery triples” column lists the number of triples that were added to the local graph by the active discovery
manager. These may represent fresher results than those obtained from SPARQL endpoints.

SemanticWeb.org
Query Response Time Result Size

1 55614 6408
2 17328 1480
3 105298 13256
4 12956 1600

Sindice
Query Response Time Result Size

1 84611 22428
2 12407 1587
3 330630 60849
4 27107 3000
5 34387 14736
7 10328 3870
9 1190 1
10 1082 14
11 512798 100000

DBpedia
Query Response Time Result Size

5 885 74
9 592 1

Table 2: FedBench Linked Data queries executed
using single SPARQL endpoints.
Where it was possible to obtain results for queries using a
single endpoint, the number of results and response times in
milliseconds are shown. Note that query 11 initially failed
with a “509 Bandwidth Limit Exceeded” error when exe-
cuted using Sindice, and was therefore re-run with a LIMIT
100000 clause in the query.

small for most queries, and we anticipate that better results
could be obtained by exploiting the parallelism of the active
discovery manager for queries which access Linked Data over
a more diverse set of domains.

5. CONCLUSIONS
An approach utilising hybrid query execution to support
Linked Data query processing within fixed time bounds has
been presented. Although the approach has a disadvantage
in that complete query answering is not guaranteed, the ad-
vantages of the proposed approach are:

• Fault tolerance: the approach uses multiple data
sources, if any one data source is unavailable the ef-
fects can be mitigated.

• Freshness: where SPARQL endpoints based on in-
dexing systems may be out of date, RDF data from
the Web of Linked Data may provide more up-to-date
results.

• Increased coverage: the approach can potentially
provide more results than any one source.

• Mitigating usage restrictions: where fair-use re-
strictions prevent complete result sets to be obtained
from SPARQL endpoints, combining data from multi-
ple sources can increase the number of results.

As the approach exploits parallelism to retrieve data from
multiple endpoints and PLDs concurrently, we expect that
better performance will be obtainable as the Linked Data be-
comes more widely adopted. The number of PLDs accessed
by the active discovery manager for the FedBench queries
was quite small, and we expect more impressive results for
more diverse queries.

Future work will look at such queries and the use of emerging
benchmarks for Linked Data query processing in conjunction
with further optimisations, for example caching previously
retrieved results to further enhance the effectiveness of the
approach.

6. ACKNOWLEDGMENTS
This work is partly supported by the Japan Society for
the Promotion of Science (JSPS) KAKENHI grant numbers
24240015, 24680010 and 24700111.

Freshness
Query Same day More than 1 month / Unknown PLDs

1 12 14 xmlns.com, ontologydesignpatterns.org,
olmedilla.info, semanticweb.org, eswc2006.org, ontoworld.org

2 10 2 semanticweb.org, ontoworld.org
3 11 28 xmlns.com, uni-leipzig.de, revyu.com

olmedilla.info, semanticweb.org, olafhartig.de
uni-koblenz.de, eswc2006.org, ontoworld.org

4 7 0 semanticweb.org
5 0 14 dbpedia.org
7 0 2 geonames.org
9 0 12 dbpedia.org
10 3 24 nytimes.com, zitgist.com, mpii.de

dbpedia.org, freebase.com
11 0 12 dbpedia.org

Table 4: Freshness and PLDs of documents accessed by the active discovery manager.
The table summarises the gap between the last modified dates of RDF/XML pages accessed by the active discovery manager
and the time at which they were accessed. 5 out of the 9 queries executed accessed an RDF/XML document that had a last
modified date within the last 24 hours.

7. REFERENCES
[1] Apache Jena. http://jena.apache.org/.

[2] DBPedia. http://dbpedia.org/.

[3] Describing Linked Datasets with the VoID Vocabulary
(W3C Interest Group Note 03 March 2011).
http://www.w3.org/TR/void/.

[4] Good Relations: The Web Vocabulary for
E-Commerce.
http://www.heppnetz.de/projects/goodrelations/.

[5] RDFa Primer.
http://www.w3.org/TR/xhtml-rdfa-primer/.

[6] RDF/XML Syntax Specification.
http://www.w3.org/TR/REC-rdf-syntax/.

[7] Sindice: The Semantic Web Index.
http://sindice.com/.

[8] SPARQL 1.1 Federation Extensions.
http://www.w3.org/2009/ sparql/docs/fed/gen.html.

[9] SQUIN - Query the Web of Linked Data.
http://squin.sourceforge.net/.

[10] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and
E. Ruckhaus. ANAPSID: An Adaptive Query
Processing Engine for SPARQL Endpoints. In
Proceedings of the 10th international conference on
The semantic web - Volume Part I, ISWC’11, pages
18–34, Berlin, Heidelberg, 2011. Springer-Verlag.

[11] C. B. Aranda, M. Arenas, and Ó. Corcho. Semantics
and Optimization of the SPARQL 1.1 Federation
Extension. In G. Antoniou, M. Grobelnik, E. P. B.
Simperl, B. Parsia, D. Plexousakis, P. D. Leenheer,
and J. Z. Pan, editors, ESWC (2), volume 6644 of
Lecture Notes in Computer Science, pages 1–15.
Springer, 2011.

[12] K. G. Clark, L. Feigenbaum, and E. Torres. SPARQL
Protocol for RDF. Technical report, W3C, 2008.

[13] S. H. Garlik, A. Seaborne, and E. Prud’hommeaux.
SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparql11-query/.

[14] O. Hartig and J.-C. Freytag. Foundations of traversal
based query execution over linked data. In E. V.

Munson and M. Strohmaier, editors, HT, pages 43–52.
ACM, 2012.

[15] O. Hartig and A. Langegger. A Database Perspective
on Consuming Linked Data on the Web.
Datenbank-Spektrum, 10(2):57–66, 2010.

[16] T. Heath and C. Bizer. Linked Data: Evolving the Web
into a Global Data Space. Synthesis Lectures on the
Semantic Web. Morgan & Claypool Publishers, 2011.

[17] G. Klyne and J. J. Carroll. Resource description
framework (rdf): Concepts and abstract syntax:
http://www.w3.org/TR/rdf-concepts/. 2004.

[18] A. Langegger, A. Woss, and W. Bloch. A Semantic
Web Middleware for Virtual Data Integration on the
Web. In 5th European Semantic Web Conference
(ESWC 2008), 2008.

[19] G. Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88, Mar.
2001.

[20] B. Quilitz and U. Leser. Querying Distributed RDF
Data Sources with SPARQL. In 5th European
Semantic Web Conference (ESWC 2008), 2008.

[21] M. Schmidt, O. GÃűrlitz, P. Haase, G. Ladwig,
A. Schwarte, and T. Tran. FedBench: A Benchmark
Suite for Federated Semantic Data Query Processing.
In L. Aroyo, C. Welty, H. Alani, J. Taylor,
A. Bernstein, L. Kagal, N. F. Noy, and E. Blomqvist,
editors, International Semantic Web Conference (1),
volume 7031 of Lecture Notes in Computer Science,
pages 585–600. Springer, 2011.

[22] J. Umbrich, M. Karnstedt, A. Hogan, and J. X.
Parreira. Freshening up while Staying Fast: Towards
Hybrid SPARQL Queries. In A. ten Teije, J. Völker,
S. Handschuh, H. Stuckenschmidt, M. d’Aquin,
A. Nikolov, N. Aussenac-Gilles, and N. Hernandez,
editors, EKAW, volume 7603 of Lecture Notes in
Computer Science, pages 164–174. Springer, 2012.

