
Storing XML Data In a Native Repository

Kamil Toman

Dept. of Software Engineering
Charles University, Faculty of Mathematics and Physics

Malostranské náměst́ı 25
118 00 Praha 1

E-mail: ktoman@ksi.mff.cuni.cz

Abstract. This paper is concerned with storing XML data in a native
repository suitable for querying with modern languages such as XPath or
XQuery. It contains a description of the experimental database, SXQ-DB,
its basic principles and system internals. Some of query evaluation tech-
niques and problems related with those methods in relation to amount
of stored information are mentioned.

1 Introduction

The XML language [1] was first published in 1998 but it has already become
very popular. In the first place it is used as a standard for electronic interchange
of application data and also as a flexible format allowing to store various infor-
mation in a human readable form. With the expansion of Internet the data are
gathered from various locations thus we cannot rely on their homogenity. On
the contrary, we need to adapt applications to be able to handle them.

XML documents are logically formated documents which lessen the difference
between pure text without any explicit formatting and rigidly structured data
stored traditionally in relational databases.

Contents of XML documents are split up to smaller parts—elements—which
are specifically named and which form one logical unit. From this point of view
we can look on XML data as a database however it does not have a given hard-
set structure and the structure of XML document itself provides a portion of
complete information.

XML documents are often bound to their respective DTDs (Document Type
Definitions). The purpose of DTD is to define the legal building blocks of an
XML document. It defines possible structures together with a list of legal el-
ements and attributes which might appear in the document. XML documents
with a common DTD are called document collections.

To retrieve XML data from XML databases several new XML query lan-
guages have been proposed but only the minority survived. The most studied
XML query languages with the most recent experimental implementations are
XPath [6] and XQuery [5]. Both of them use path expressions as one of their ba-
sic constructs. Path expressions allow users to navigate through arbitrary paths
of the XML tree and to address some portions of documents.

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 51–62, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.



52 Kamil Toman

Despite many attempts to store XML data in relational, object-relational or
object-oriented databases all existing approaches fail to supply sufficient func-
tionalities to effectively manage and query XML data. Often, to process a simple
path expression a sort of XML tree traversal is necessary. This might result in
complex highly nested SQL queries which are hard to be effectively executed.
Similarly in object-oriented databases, OQL is also not very suitable for ex-
pressing XML queries because it does not cover all basic constructs of XPath or
XQuery.

In order to efficiently answer database queries the traditional DBMS leverage
the usage of various indices. However, these index structures are tightly bound
to a rigid database schema. That is something what, to some extent, prevents
us from using them for XML indexing.

The database systems specially designed to store XML data are called native
XML repositories or native XML databases. The storage is maximally adapted
for tree shaped data contained in XML documents and as such it can be imple-
mented in a practically arbitrary way. In comparison with traditional systems
the index structures in native repositories are even more important. Often there
is no way how to evaluate XML queries without a particular type of index. It
does not, however, mean that a native XML database has to be implemented all
over from the beginning. Some parts of such systems like the transaction man-
ager, access control etc. can be often adopted from existing object or relational
database systems with minimum changes.

In this text the new native XML database SXQ-DB (Simple XQuery
DataBase) is described. In Section 2 the overall architecture and some im-
plementation details of its XML storage module are discussed. Later on this
section the query processing module is described. In Section 3 the brief overview
how other systems process XML queries is presented. Conclusions summarize
the contribution of this paper and give outlook to future work.

2 Native XML Database

SXQ-DB [3] is an experimental database suitable to store and manage collections
of XML documents. Its current implementation consists of a native XML storage
and a simple implementation of a non-trivial XML query language.

The goal of the work was to design a general and extensible architecture
usable for testing various implementations of database operations and for verifi-
cation basic qualities of the generic XML framework XMLCollection [2]. Unlike
other projects the most important aspect was not the overall performance but
the high-level design and the evaluation of the used data model with respect to
more complex constructions of XML query languages. The accent was also on
the fact that all accessed XML data were stored in the external memory.

As the XML query language has been implemented the language SXQ (Sim-
ple XQuery) which has been designed to cover the most important aspects of
XQuery.



Storing XML Data In a Native Repository 53

2.1 Overall Architecture

Due to given qualities and requirements of the initial XML framework the ap-
plication operates on collections of XML documents characterized by a common
DTD. These documents are stored in the external memory in a special binary
format which is appropriate for more flexible access to data and hastens the
effective successive processing.

The important decision on the implementation of the system was the choice
of the modular architecture which allows an easy addition or a replacement of
any system component.

Unlike programs managing XML files mostly in internal memory the module
providing data querying is strictly separated from the actual XML repository.
The Query Processing Module ensures syntactic analysis, processing and evalu-
ating a query, the XML repository serves just for manipulation with persistent
XML data. This design also allows the usage of several different XML storage
modules without imposing other changes to the system. The overall architecture
is depicted on Figure 1.

Query Processing Module

XML Repository

User Interface

XML Repository

XML Data XML Data

User Interface

Fig. 1. Overall Architecture of SXQ-DB

2.2 XML Repository

The essential part of the SXQ-DB is the native XML repository implemented by
utilizing the application framework XMLCollection. This module intermediates



54 Kamil Toman

via an application interface information about data and structure of stored XML
documents to other modules. It also provides access to individual elements and
attributes stored in external memory.

The data repository also allows to limit the system resources—for example
the size and number of system buffers or the maximal number of simultaneously
accessed objects. Unlike other modules we put the accent on effectivity of data
management.

Representation of XML Document. The used data model generally adheres
the model as defined in XML Information Set [4] augmented by constructions
defined by XQuery Data Model [5]. In our representation we use only those
qualities which are required for evaluation of the SXQ language. In brief, we look
on XML documents as oriented trees where to each vertex is associated a type
of the node and a label. The vertices relevant to a common parent are ordered
left-to-right. This ordering is imposed by the global document order requirement.

Text values are not assigned to all elements and attributes but only to special
(artificial) nodes. This approach is primarily advantageous because all elements
and attributes can be accessed the same way including elements with mixed
contents.

Node Identification. In order to reasonably access individual nodes of XML
tree we need to select a system of node identification. By a numbering scheme
of the logical document model we understand a function which assigns a unique
binary identifier (binary string) to each node of an XML tree. This identifier
then can be used as a reference to the given node in an index or while a query
evaluation.

The most common and also the simpliest numbering scheme in systems man-
aging XML data is the sequential numbering scheme. The individual identifiers
are assigned to particular nodes starting from one immediately after the nodes
have been inserted to the system. The primary advantage of this scheme is its in-
herent simplicity and the maximal size of identifier which is at most 1+blog2(n)c
bits where n is number of nodes inserted to the system (including already deleted
nodes).

The major disadvantage of the sequential numbering scheme is that it does
not provide structural information – relations between nodes must be stored in
separate.

The best way seems to be to leverage one of existing structural number
schemes [7], [11], [14] which allow very effectively to determine the relation of
arbitrary two nodes of the XML tree just from the information contained in
their respective identifiers and thus they allow effective query evaluation using
for example structural joins [11]. The maximum size of an identifier is still at
most 2b1 + log2(n)c bits.

On the other hand we have to take into account that we might need not only
to change contents of individual XML nodes but also the document structure.
Unfortunately all currently known structural numbering schemes are basically



Storing XML Data In a Native Repository 55

static – the numbering of nodes is based on the fact that we know or at least we
assume the potential shape of the XML tree. If there are substantial differences
from the anticipated XML data it is necessary to renumber the whole XML tree.

At the same time, neither contemporary techniques used for XML data man-
agement nor languages specially developed for XML document actualization like
XUpdate [13] give us enough information about possible shapes of inserted sub-
trees or about scale of modifications to be done on the stored documents.

In general, it is possible to create a structural numbering scheme which is us-
able even in case when we know nothing about shapes of inserted trees. However,
as proven in [14], the worst-case maximum size of resulting identifiers assigned
to individual nodes is O(n) bits.

Occasional renumbering of nodes in some XML subtrees does not imply an
insurmountable problem because it can be partially prevented by a sensible
utilization of structural statistics. Much bigger problem is that the renumbering
of XML nodes imposes changes in practically all indexes that might be built
up upon stored data. As XML indices are often relatively complex the total
overhead related to their actualization might be enormous.

For this reason it is sensible to choose a compromise. For the direct numbering
of nodes (in the core of XML repository) we use the basic sequential numbering
scheme, plus we define a secondary numbering scheme (secondary identifiers)
which will hold the structural information useful for quering.

In all indices we will use only references to primary node identifiers thus we
avoid forced updates of indices if the structure changes. The disadvantage of
this approach is slower evaluation of structural joins because of another level of
logical mapping and also increased requirements for the disk space to manage
primary and secondary identifiers.

Document Collections. We can also take advantage of the above approach to
store the whole collection of XML documents at once. Because we use a simple
sequential scheme as a primary identification mechanism the shape and the size
of the tree does not pose a problem. Thus we can look on the whole collection as
one XML document. It suffices to create two new special types of elements – the
artificial root and document root elements. The abstraction of XML collection
illustrates Figure 2.

The usage of the artificial collection root has one small additional advantage
– it will always exist even if the collection is empty and can serve as a stable
entry point with a fixed identifier.

Elements DOCUMENT allow mutual differentiation between individual XML
documents and their attributes may also be used to keep user’s information
about stored documents like title, author, date etc. The information then can
be later accessed even by the standard constructions of the query language.

Besides API simplification, the storage of the whole XML collection in one
tree is often advantageous when the indices are built up. For example, if we
create a word index it will be certainly more space efficient to build it up upon
the whole collection than to build individual indices for every document in the



56 Kamil Toman

Dokument 1 Dokument 2 Dokument 3

ROOT

1

DOCUMENT

354

DOCUMENT

1245

DOCUMENT

2

Fig. 2. Representation of XML Collection

collection. In case we want to query the whole collection at once it is also much
more effective.

XML Node Types. Because we manage only XML documents with a com-
mon DTD we can also use numbers instead of labels for all types of elements
and attributes (within different namespaces). The translation tables then can
be stored together with DTD of the collection. This has two advantages: this
approach to type identification is much more economical than storing text labels
directly and it is also much easier and faster to use them during evaluation.

Architecture of XML Repository. The implemented XML repository can
be logically divided into several modules. Each of them operates independently
and ensures a different type of functionality:

– the DTD Storage module holds the DTD of the collection, name mapping
tables, types and logical mapping of identifiers,

– the Element Storage module maintains the relations between XML nodes,
– the Value Storage module manages text values associated with elements and

attributes,
– the rest of modules are mostly repository indices.

Strict module separation allows to hide unimportant details from the rest of
the system. The communication between individual modules proceeds only via
general application interface.

Naturally, this does not prevent us from using a common infrastructure. It
is implemented as a separate module as well. The advantage is that potential
changes in basic infrastructure can be done just once. The overview of the ar-
chitecture of the XML repository module is demonstrated on Figure 3.



Storing XML Data In a Native Repository 57

Structure Index

DTD Storage Value Storage

Element Storage

Common Infrastructure

Word Index

Value Index

Fig. 3. Representation of XML Collection

The core modules cover only the basic functionality of the repository. For real
utilization we have to take into consideration various indices as well. However,
the indices might differ substantially from each other not only in implementation
details but also by usage. It is hard to design a common interface which would
allow a direct integration of an arbitrary index into the system.

To resolve this problem we expose only descriptions of events that may occur
instead of detailed application interface between the core modules and indices –
for instance a creation or a deletion of an XML node, its value actualization etc.

Each index is registered at particular modules so it can react to arisen events.
That means we neither need to anticipate what data the index requires nor we
need to know anything about its functionality. On the other hand we must ensure
that the implementation of each index will be able to work with data structures
of modules where it is registered.

Each index can propagate all events towards the rest of the modules which
are built up on other than core modules of the system. Thanks to this mechanism
we are able to sustain the whole system up-to-date.

Physical Access To External Memory. The important feature of the original
implementation was to limit the system resources, the memory consumption in
the first place. This property is ensured by the general paging mechanism.



58 Kamil Toman

Storage of Document Structure. The storage of a XML document structure
is based on modeling local relations between XML nodes where every vertex
“knows” only its direct neighbours. The representation of more complex relations
is left to structural indices or to the query processing module.

The XML nodes are assigned indentifiers by the simple sequential numbering
scheme and together with their types and identifiers of adjacent nodes are stored
into fixed-length records in a binary file.

In order to access the nodes effectively we need to be able to quickly localize
the information about individual nodes of the XML tree. To achieve this we
index all records in a B+-tree.

Secondary Object Cache. If there are some nodes which are accessed much
more frequently during a query evaluation the above described method of lo-
cating nodes has still great overhead. The position of every located node must
be at first looked up in the external index (possibly unbuffered) and then the
respective position must be computed. The located page has to be loaded into
main memory and requested data obtained from the computed offset.

For that reason a secondary object cache is implemented. Queries for infor-
mation about an XML node are directed at first to this cache and only if it does
not already contain the requested information the mechanism described above
is used.

Notice that information about XML nodes is mostly short-lived. We often
need to reach the record of the node just to find its neighbours or to check its
value. If we implemented objects holding such information in a standard way
frequent allocations and repeatedly released memory would kill the application
performance. All cache objects are therefore kept in the main memory at all
times and only if needed they are reinitialized with new data. The number of
cache objects is given by the configuration of the XML repository module.

2.3 Query Processing Module

The XQuery language was created only recently and despite its basic features
have their origin in previous proposals of XML query languages there is still
no general technique how to evaluate all its queries. There is still nothing like
relation algebra for classic relational database systems.

This is one of the reasons why classic navigational methods are still used
for the evaluation of more general XML queries. More effective techniques like
structural joins can be used only for special cases—mostly for path expressions
and indispensable minimum of conditional expressions. Furthermore, expressions
which can be evaluated by structural joins are very hard to distinguish from those
which cannot be evaluated this way. Many of practical implementations avoid
this problem simply by supporting only a limited set of XML queries [11], [20], [8].
The rest is modestly ignored.

Unlike other implementations our goal was to support all basic constructs of
XPath and XQuery languages, not only path expressions. The implementation



Storing XML Data In a Native Repository 59

of SXQ language thus reminds a simple compiler of a general programming
language. The architecture of the module and the individual phases of query
processing is demonstrated on Figure 4.

Query Result

Symbols

Syntactic Tree

Canonic Tree

Optimized Query Tree Query Plan

Query Optimization

Lexical Analysis

Syntactic Analysis

Plan Generation Query Plan Evaluation

Query Normalization

Document
Information

XML

Repository

XML
Query

Data

Model

Operations

Fig. 4. SXQ Query Processing

At first the module disassembles the query to individual lexical elements
which are subsequently used for syntactic analysis. In this phase context depen-
dent keywords are resolved. In current implementation this is done via a finite
automaton. The output of this stage is the syntactic tree which represents the
independent form of a given query. However this tree is yet too complex for
further processing. For that reason it is at first normalized into a canonic tree.

The canonic tree can be distilled from the syntactic tree by applying suc-
cessive sequence of formal rewriting rules eliminating compound operations and
“syntactic sugar”, i.e. operations which are not indispensable and can be equiv-
alently described using basic operations. Part of a query normalization is also a
unification of expressions—for instance, we can reorder some constructs to ad-
here a fixed form though formally the expressions do not depend on the order of
terms. The important thing is that the canonic tree is semantically equivalent
to syntactic tree but substantially simplified and also with rather more rigid



60 Kamil Toman

structure. The canonic tree is more suitable for logical optimization, apart from
other things, because by tree normalization we radically decrease the number of
different shapes an XML query tree might have.

Similarly, the logical optimization usually constitutes of a set of rewriting
rules. Unlike the previous ones the goal is not to simplify the structure of the
canonic tree but to reduce the time needed for the query evaluation. The rules are
often heuristic but the processing time generally should not be much longer if the
conditions were mispredicted. As an example of such a logical optimization we
can mention e.g. invariant motion (a separation and a movement of some parts
of the query away from a repeatedly evaluated expressions) or constraint motion
(evaluation of constraints and conditions as soon as possible). The overview of
such rewriting rules can be found in [12]. This phase might also include the
elimination of common subexpressions of the query.

The logically optimized query tree is then passed to a generator of query
plans. This module constructs possible procedures of query evaluation and ac-
cordingly to information supplied by XML repository it chooses the optimal
plan.

This plan of query evaluation is consecutively executed by the computation
engine which makes up the result of the query.

3 Query Processing In Other XML Database Systems

Tree pattern queries or correlated path expressions are the most accented con-
structs of XPath and XQuery querying languages. A pattern trees represent-
ing parent-child, ancestor-descendant relations between XML nodes bound with
some additional constraints are to be matched against a source XML tree or a
XML document collection.

The currently used evaluation techniques use extensive indices built mostly as
combinations of structural path summaries [15], value indexing and tree traversal
(Lore [16]) or identifier schemes (XISS [11]). However the storage efficiency is
often not considered in these approaches.

Earlier systems relied on tree traversal techniques and structural indices like
DataGuides or T-indices which are very inefficient when they are stored in the ex-
ternal memory. These methods have been surpassed with more modern structural
joins (XISS, eXist [20]) which compose the tree patterns by pairwise matching
parent-child and ancestor-descendant relations between candidate XML nodes.
However the most commonly used indices used for structural joins can gener-
ally exceed the size of the whole source XML tree not giving any additional
information besides the transitive ancestor-descendant relationship [17].

A few other indexing schemes like SphinX [18] or APEX [19] reduce the size
of resulting indices by deliberately not covering all necessary information at the
expense of generality or guaranteed performance. Though in practice they may
perform quite well.

A novel approach of processing XML queries is being developed for project
Timber [9] which is based on a complete and closed algebra named TAX which is



Storing XML Data In a Native Repository 61

a generalization of the current relational algebra for tree structures. The project
still uses the old object manager Shore to manage the XML persistence but a
transition to a native XML repository Natix [10] is planned.

4 Conclusions and Future Work

In this text, we described concepts and the implementation of SXQ-DB, the
experimental native XML database. We demonstrated some advantages of its
modular architecture and showed the basic data flow in the system. We also out-
lined some problems concerned with XML node insertions, numbering schemes
and XML query evaluations, the tree pattern matching queries in the first place.

Future work in this area should probably be focused on two things: to find a
more general way how to express and evaluate the most common XML queries
and also to reduce space needed for structural and term indices used by the
database application. Some recent more advanced proposals of XML indexing
like multidimensional trees and UB-trees [21] are also subjects to be studied.

References

1. XML CoreWorking Group: Extensible Markup Language (XML). (2000)
http://www.w3.org/XML/

2. M. Kopečný: Implementan prosted pro kolekce XML dat. Thesis (In Czech), MFF
UK (2002)

3. K. Toman: XML data na disku jako databáze. Thesis (In Czech), MFF UK (2003)
4. J. Cowan, R. Tobin: XML Information Set. (2001)

http://www.w3.org/TR/xml-infoset

5. M. Marchiori: XML Query Specifications. (2003)
http://www.w3.org/XML/Query#specs

6. J. Clark, S. DeRose: XML Path Language (XPath) Version 1.0. (1999)
http://www.w3.org/TR/xpath

7. P. F.‘Dietz: Maintaining order in a linked list. Proc. of the Fourteenth Annual
ACM Symposium on Theory of Computing: 122-127. (1982)

8. A. Sahuguet: Kweelt, the Making-of Mistakes Made and Lessons Learned. Techni-
cal report, Department of Computer and Science, University of Pensylvania. (2000)

9. H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman,
S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, C. Yu: TIM-
BER: A Native XML Database. (2002)
http://www.eecs.umich.edu/db/timber

10. C. Ch. Kanne, G. Moerkotte: Efficient Storage of XML Data. Poster abstract in
Proc. ICDE: 198. (2000)

11. Q. Li, B. Moon: Indexing and Querying XML Data for Regular Path Expressions.
VLDB Conference: 361-370 (2001)

12. M. Grinev, S. Kuznetsov: Towards an Exhaustive Set of Rewriting Rules for
XQuery Optimization: BizQuery Experience Advances in Databases and Infor-
mation Systems (2002)

13. XUpdate Working Group: XUpdate – XML Update Language. (2003)
http://www.xmldb.org/xupdate/



62 Kamil Toman

14. E. Cohen, H. Kaplan, T. Milo: Labeling Dynamic XML Trees. Symposium on
Principles of Database System (PODS): 271-281 (2002)

15. R. Goldman, J. Widom: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. VLDB Conference (1997)

16. J. McHugh, J. Widom, S. Abiteboul, Q. Luo, A. Rajaraman: Indexing Semistruc-
tured Data. Technical report, Stanford University (1999)

17. C. Zhang, G. He, D. J. DeWitt, J. F. Naughton: On supporting containment queries
in relational database management systems. In SIGMOD International Conference
on Management of Data: 425-436 (2001)

18. L. K. Poola, J. R. Haritsa: Schema-consious XML Indexing. Indian Institute of
Science, Dept. of Computer Science & Automation (2001)

19. Ch.-W. Chung, J.-K. Min, K. Shim: APEX: An Adaptive Path Index for XML
data. ACM SIGMOD (2002)

20. W. Meier: eXist: An Open Source Native XML Database. (2002)
http://exist-db.org

21. M. Krátký, J. Pokorný, V. Snášel. Indexing XML Data with UB-Trees. ADBIS
(2002)




