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Abstract. We show a relationship between two theoretical approaches
of Formal Concept Analysis working with so-called heterogeneous formal
context i.e. such context in which each object and attribute can have
own data-type. One of them is presented in [19]; each value in a formal
context is some Galois connection between the lattices corresponding
to the appropriate object and attribute. Another approach is presented
in our paper [1] and it is a unifying platform of approaches from [14]
and [11], [12]. In this paper, we prove that each of them can be derived
from another.
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1 Introduction

The Formal Concept Analysis is a well-known data-mining method on a rect-
angle matrix of data where each row corresponds to some object, each column
corresponds to some attribute and a matrix field value expresses the presence of
the column attribute to the row object. One of the goals of this method is to find
so-called concepts – the stable (in some sense) pairs of subsets of objects and
attributes. This method can be considered as a nice application of the algebraic
notion of a Galois connection. The Formal Concept Analysis is based and deeply
described in the classical Ganter & Wille’s book [9] where authors concentrate
mainly to the so-called crisp case with binary data in the matrix. The natural
question arose: What if the matrix data have a non-binary character?
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Beside the conceptual scaling from [9] which returns concepts with crisp sub-
sets in both coordinates, some other answers arose which return concepts with
fuzzy subsets at least in one coordinate: The first one was done by Burusco &
Fuentes-Gonzalez [8] and it was improved (independently) by Bělohlávek [2], [3]
and Pollandt [21], [22] which use values from the same residual lattice for values
of the matrix and for the fuzziness of subsets of the objects and the attributes.
Another approach independently (and with slight differences) given by Ben Yahia
& Jaoua [7], Bělohlávek, Sklenář, & Zacpal [4], and Krajči [10] was not so sym-
metric – it considers fuzzy subsets in one coordinate and crisp (binary) subsets
in another one. All these approaches where covered by a common platform – so-
called generalized concept lattices [12], [13] which diversifies fuzziness of subsets
of the attributes, fuzziness of subsets of the objects and moreover fuzziness of
the matrix values.

Then Medina and Ojeda-Aciego brought the idea of multi-adjointness used in
logic-programming [16], [17], [18] to the Formal Concept Analysis too [14], [15].
Because of this novelty and originality, this approach is not (at least immedi-
ately) covered by the above-mentioned generalized concept lattices.

This fact has inspired us to modify our old approach in such a way that this
will work with different mutual relationships between the objects and the at-
tributes. Moreover we work with different lattices for different rows and columns
and for the matrix data. To compare with the till known approaches which works
with attributes and objects of the same type, an important advantage of this
new, totally diversifying, approach is the possibility to apply the Formal Con-
cept Analysis to heterogeneous data too. This is the reason why we will call this
new approach heterogeneous. We have described this approach in [1] and recall
it in Section 2.

Another answer to the problem of data heterogeneity was given by [19] and
[20]. In this approach, each datum in a formal context are not a simple number
or other singular value but (sic!) a Galois connection which describes in a some
way the behavior between the corresponding object and attribute. We recall this
approach in Section 3.

2 Heterogeneous formal context

In this section we recall the basic definitions and results from [1].
Let A and B be non-empty sets. Let P = ((Pa,b,≤Pa,b

) : a ∈ A, b ∈ B) be
a system of posets and let R be a function from A×B such that R(a, b) ∈ Pa,b, for
all a ∈ A and b ∈ B. Let C = ((Ca,≤Ca

) : a ∈ A) and D = ((Db,≤Db
) : b ∈ B)

be systems of complete lattices. (For simplicity, we will omit the indices of all
noticed ≤?, it will be always clear which of one is used.)

Let ⊙ = ((•a,b) : a ∈ A, b ∈ B) be a system of operations such that •a,b is
from Ca × Db to Pa,b and it is isotone and left-continuous in both arguments,
i. e.

1a) c1 ≤ c2 implies c1 •a,b d ≤ c2 •a,b d for all c1, c2 ∈ Ca and d ∈ Db,
1b) d1 ≤ d2 implies c •a,b d1 ≤ c •a,b d2 for all c ∈ Ca and d1, d2 ∈ Db,
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2a) if c •a,b d ≤ p for some d ∈ Db, p ∈ Pa,b and for all c ∈ X ⊆ Ca then
supX •a,b d ≤ p,

2b) if c •a,b d ≤ p for some c ∈ Ca, p ∈ Pa,b and for all d ∈ Y ⊆ Db then
c •a,b supY ≤ p.

Then the tuple 〈A,B,P, R, C,D,⊙〉 will be called a heterogeneous formal context.
Notice that if Ca = Db and •a,b is commutative these conditions can be

reduced to these two:

1) c1 ≤ c2 implies c1 •a,b d ≤ c2 •a,b d for all c1, c2, d ∈ Ca = Db,
2) if c •a,b d ≤ p for some d ∈ Ca = Db, p ∈ P and for all c ∈ X ⊆ Ca = Db

then supX •a,b d ≤ p.

Let F be the set of all functions f with the domain A such that f(a) ∈ Ca, for
all a ∈ A (i. e., more formally, F =

∏

a∈A Ca) and G be the set of all functions
g with the domain B such that g(b) ∈ Db, for all b ∈ B. (i. e. G =

∏

b∈B Db).
Define the following mappingր : G→ F : If g ∈ G thenր(g) ∈ F is defined

by
(ր(g))(a) = sup{c ∈ Ca : (∀b ∈ B)c •a,b g(b) ≤ R(a, b)}.

Symmetrically define the mapping ւ : F → G: If f ∈ F then ւ(f) ∈ G is
defined as following:

(ւ(f))(b) = sup{d ∈ Db : (∀a ∈ A)f(a) •a,b d ≤ R(a, b)}.

Theorem 1. Let f ∈ F and g ∈ G. Then the following conditions are equiva-
lent:

1) f ≤ ր(g).
2) g ≤ ւ(f).
3) f(a) •a,b g(b) ≤ R(a, b) for all a ∈ A and b ∈ B.

Corollary 1. Mappings ր and ւ form a Galois connection.

Corollary 2.

1a) g1 ≤ g2 implies ր(g1) ≥ ր(g2).
1b) f1 ≤ f2 implies ւ(f1) ≥ ւ(2).
2a) g ≤ ւ(ր(g)).
2b) f ≤ ր(ւ(f)).
3a) ր(g) =ր(ւ(ր(g))).
3b) ւ(f) =ւ(ր(ւ(f))).

We use a Galois connection (ր,ւ) for the concept lattice construction via
classical Ganter-Wille’s approach from [9].

Lemma 1. 1) Let {gi : i ∈ I} ⊆ G. Then

ր

(

∨

i∈I

gi

)

=
∧

i∈I

ր(gi).
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2) Let {fi : i ∈ I} ⊆ F . Then

ւ

(

∨

i∈I

fi

)

=
∧

i∈I

ւ(fi).

By a concept we will understand a pair 〈g, f〉 from G×F such thatր(g) = f
and ւ(f) = g.

Lemma 2. If 〈g1, f1〉 and 〈g2, f2〉 are concepts then g1 ≤ g2 iff f1 ≥ f2.

This lemma allows to define the following ordering of concepts: 〈g1, f1〉 ≤
〈g2, f2〉 iff g1 ≤ g2 (or equivalently f1 ≥ f2).

The poset of all such concepts ordered by ≤ will be called a heterogeneous
concept lattice and denoted by HCL(A,B,P, R, C,D,⊙,ւ,ր,≤).

The following theorem shows that the word lattice in its name corresponds
with reality.

Theorem 2. (The Basic Theorem on Heterogeneous Concept Lattices)

1) A heterogeneous concept lattice HCL(A,B,P, R, C,D,⊙,ւ,ր,≤) is a com-
plete lattice in which

∧

i∈I

〈gi, fi〉 =

〈

∧

i∈I

gi,ր

(

ւ

(

∨

i∈I

fi

))〉

and
∨

i∈I

〈gi, fi〉 =

〈

ւ

(

ր

(

∨

i∈I

gi

))

,
∧

i∈I

fi

〉

.

2) For each a ∈ A, b ∈ B, let Pa,b have the least element 0Pa,b
such that

0Ca
•a,b d = c •a,b 0Db

= 0Pa,b
, for all c ∈ Ca, d ∈ Db. Then a complete

lattice L is isomorphic to HCL(A,B,P, R, C,D,⊙,ւ,ր,≤) if and only if
there are mappings α :

⋃

a∈A({a} × Ca) → L and β :
⋃

b∈B({b} ×Db) → L
such that:
a) α does not increase in the second argument (for the fixed first one).
b) β does not decrease in the second argument (for the fixed first one).
c) Rng(α) is inf-dense in L.
d) Rng(β) is sup-dense in L.
e) For every a ∈ A, b ∈ B and c ∈ Ca, d ∈ Db

α(a, c) ≥ β(b, d) if and only if c •a,b d ≤ R(a, b).

3 Galois connectional approach

In this section, we recall the basic definitions and results of approach from [19],
[20] which is inspired by the (homogeneous) approach from [23].
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Let A and B be non-empty sets. Let C = ((Ca,≤Ca
) : a ∈ A) and

D = ((Db,≤Db
) : b ∈ B) be systems of complete lattices. Let G = ((φa,b, ψa,b) :

a ∈ A, b ∈ B) be a system of (antitone) Galois connection s.t. (φa,b, ψa,b) is a
Galois connection from (Ca,≤Ca

) to (Db,≤Db
). (Again we will omit the indices

of all noticed ≤?.)

Define the following mapping ↑ : G → F : If g ∈ G then ↑(g) ∈ F is defined
by

(↑(g))(a) =
∧

b∈B

ψa,b(g(b)).

Symmetrically define the mapping ↓ : F → G: If f ∈ F then ↓(f) ∈ G is defined
as following:

(↓(f))(b) =
∧

a∈A

φa,b(f(a)).

Theorem 3. (↑, ↓) is a Galois connection.

Hence the classical Ganter-Wille’s process can be used for the concept lattice
construction, so it can be obtained the following.

By a concept in this approach it will be understand a pair 〈g, f〉 from G×F
such that ↑(g) = f and ↓(f) = g.

Lemma 3. If 〈g1, f1〉 and 〈g2, f2〉 are concepts then g1 ≤ g2 iff f1 ≥ f2.

This lemma allows to define the following ordering of concepts: 〈g1, f1〉 ≤
〈g2, f2〉 iff g1 ≤ g2 (or equivalently f1 ≥ f2).

The poset of all such concepts ordered by ≤ will be called a connectional
concept lattice and denoted by CCL(A,B, C,D,G, ↓, ↑,≤).

Theorem 4. (The Basic Theorem on Connectional Concept Lattices)

1) A connectional concept lattice CCL(A,B, C,D,G, ↓, ↑,≤) is a complete lattice
in which

∧

i∈I

〈gi, fi〉 =

〈

∧

i∈I

gi, ↑

(

↓

(

∨

i∈I

fi

))〉

and
∨

i∈I

〈gi, fi〉 =

〈

↓

(

↑

(

∨

i∈I

gi

))

,
∧

i∈I

fi

〉

.

2) A complete lattice L is isomorphic to CCL(A,B, C,D,G, ↓, ↑,≤) if and only
if there are mappings α :

⋃

a∈A({a}×Ca)→ L and β :
⋃

b∈B({b}×Db)→ L
such that for every a ∈ A, b ∈ B and c ∈ Ca, d ∈ Db

α(a, c) ≥ β(b, d) iff d ≤ φa,b(c) iff c ≤ ψa,b(d).
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4 Heterogeneous approach can be expressed by
connectional one

In this section, we modify method from [19] which was used for the proof that
connectional approach covers a generalized approach from [11] and [12]. It used
a notion of G-ideals defined in [24].

Let (L,≤L), (M,≤M ) be complete lattices. Then J ⊆ L × M is called a
G-ideal of L×M when the following conditions hold:

1) If (ℓ,m) ∈ J and (ℓ′,m′) ≤ (ℓ,m) (coordinate-wise, i.e. ℓ′ ≤ ℓ and m′ ≤ m)
then (ℓ′,m′) ∈ J .

2) If {(ℓi,mi) : i ∈ I} ⊆ J then (
∨

i∈I ℓi,
∧

i∈I mi), (
∧

i∈I ℓi,
∨

i∈I mi) ∈ J .
If I = ∅ then (0L, 1M ), (1L, 0M ) ∈ J .

Theorem 5. [24] Let (L,≤L), (M,≤M ) be complete lattices.

1) If (φ, ψ) is an (antitone) Galois connection from (L,≤L) to (M,≤M ) then

{(ℓ,m) : φ(ℓ) ≥M m} = {(ℓ,m) : ψ(m) ≥L ℓ}

is a G-ideal on L×M .
2) If J is a G-ideal on L ×M then the mappings φ : L → M and ψ : M → L

defined by

φ(ℓ) =
∨

{m ∈M : (ℓ,m) ∈ J}

and
ψ(m) =

∨

{ℓ ∈ L : (ℓ,m) ∈ J}

form a Galois connection from (L,≤L) to (M,≤M ).

Moreover, this correspondences between Galois connections and G-ideals are each
other inverse.

The paper [19] uses these facts in the following way:

Lemma 4. Let (L,≤L), (M,≤M ) be complete lattices, (P,≤P ) be poset and
• : L×M → P is isotone and left-continuous in both arguments. Then

{(ℓ,m) : ℓ •m ≤ p}

is a G-ideal.

Assume that we have a heterogeneous concept lattice HCL(A,B,P, R, C,D,⊙,
ւ,ր,≤). For each a ∈ A and b ∈ B define

Ja,b = {(c, d) ∈ Ca ×Db : c •a,b d ≤ R(a, b)},

by the previous Lemma 4 we know that Ja,b is a G-ideal on Ca × Db. Then
again for each a ∈ A and b ∈ B define the mappings φa,b : Ca → Db and
ψa,b : Db → Ca defined by

φa,b(c) =
∨

{d ∈ Db : (c, d) ∈ Ja,b}
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and
ψa,b(d) =

∨

{c ∈ Ca : (c, d) ∈ Ja,b}

and we know by Theorem 5 that (φa,b, ψa,b) is a Galois connection from Ca to
Db. Finally, we define mappings ↓ and ↑ as before:

(↑(g))(a) =
∧

b∈B

ψa,b(g(b)), (↓(f))(b) =
∧

a∈A

φa,b(f(a)).

Theorem 6. (↑, ↓) = (ր,ւ).

Proof. We prove ↑ = ր only, the second equality can be proved dually. Let
g ∈ G and a ∈ A, we are going to prove (↑(g))(a) = (ր(g))(a).

By the definition we have

(↑(g))(a) =
∧

b∈B

ψa,b(g(b)) =
∧

b∈B

∨

{c ∈ Ca : (c, g(b)) ∈ Ja,b}

=
∧

b∈B

∨

{c ∈ Ca : c •a,b g(b) ≤ R(a, b)}

and
(ր(g))(a) = sup{c ∈ Ca : (∀b ∈ B)c •a,b g(b) ≤ R(a, b)}.

Denote
X = {c ∈ Ca : (∀b ∈ B)c •a,b g(b) ≤ R(a, b)}

and, for each b ∈ B,

Xb = {c ∈ Ca : c •a,b g(b) ≤ R(a, b)},

then we want to prove
∧

b∈B supXb = supX.

≥ For each b ∈ B we have Xb ⊇ X hence supXb ≥ supX. It follows that
∧

b∈B supXb ≥ supX.
≤ Let b ∈ B. Then for each c ∈ Xb we have c •a,b g(b) ≤ R(a, b). By the left-

-continuity of •a,b in the first argument we have supXb •a,b g(b) ≤ R(a, b).
Because clearly

∧

b′∈B supXb′ ≤ supXb, by the isotonity of •a,b in the first
argument

∧

b′∈B supXb′ •a,b g(b) ≤ R(a, b). This holds for each b ∈ B, which
means that

∧

b′∈B supXb′ ∈ X, hence
∧

b′∈B supXb′ ≤ supX.
⊓⊔

5 Connectional approach can be expressed by
heterogeneous one

In this section we show opposite direction to the previous one, namely that the
heterogeneous approach covers the connectional one, moreover by the surpris-
ingly simply way.

Firstly, one fact from [24] analogous to Lemma 1:
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Lemma 5. Let (L,≤L), (M,≤M ) be complete lattices and (φ, ψ) be a Galois
connection from (L,≤L) to (M,≤M ).

1) For arbitrary subset {ℓi : i ∈ I} of L

φ

(

∨

i∈I

ℓi

)

=
∧

i∈I

φ(ℓi).

2) For arbitrary subset {mi : i ∈ I} of M

ψ

(

∨

i∈I

mi

)

=
∧

i∈I

ψ(mi).

We use it in the following way:

Theorem 7. Let (L,≤L), (M,≤M ) be complete lattices and (φ, ψ) be a Galois
connection from (L,≤L) to (M,≤M ). Let • : L×M → ({0, 1},≤) be defined in
the following way:

ℓ •m =

{

0 if φ(ℓ) ≥ m (iff ψ(m) ≥ ℓ),

1 elsewhere.

Then • is isotone and left-continuous in both arguments.

Proof. Because of duality, it is enough to prove isotonity and left-continuity in
the first argument.

– Let ℓ1, ℓ2 ∈ L where ℓ1 ≤ ℓ2 and m ∈ M . We want to prove that ℓ1 •m ≤
ℓ2 •m.

– If ℓ2 •m = 1, the inequality is trivial.
– If ℓ2•m = 0, then by the definition φ(ℓ2) ≥ m. Because (φ, ψ) be a Galois

connection and ℓ1 ≤ ℓ2, we have φ(ℓ1) ≥ φ(ℓ2) which by transitivity
implies φ(ℓ1) ≥ m. So, by the definition ℓ1 •m = 0 hence ℓ1 •m ≤ ℓ2 •m.

– Let m ∈ M , X ⊆ L and ℓ • m ≤ p for all ℓ ∈ X. We want to prove that
supX •m ≤ p.

– If p = 1, the inequality is trivial.
– If p = 0, then by the definition φ(ℓ) ≥ m for all ℓ ∈ X which means
∧

ℓ∈X φ(ℓ) ≥ m. Because (φ, ψ) is a Galois connection, by Lemma 5 we
have

∧

ℓ∈X φ(ℓ) = φ(supℓ∈X ℓ). This implies φ(supℓ∈X ℓ) ≥ m, so, by the
definition supℓ∈X ℓ •m = 0.

Assume that we have a connectional concept lattice CCL(A,B, C,D,G, ↓, ↑,≤).
For each a ∈ A and b ∈ B take the same Pa,b = ({0, 1},≤), R(a, b) = 0 (sic!)
and •a,b : Ca ×Db → Pa,b such that for all c ∈ Ca and d ∈ Db,

c •a,b d =

{

0 if φa,b(c) ≥ d (iff ψa,b(d) ≥ c),

1 elsewhere.

By Theorem 7 •a,b is isotone and left-continuous in both arguments, so we have
a frame for heterogeneous approach a we can define the mappings ր and ւ as
before.
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Theorem 8. (ր,ւ) = (↑, ↓).

Proof. We prove ր = ↑ only, the second equality can be proved dually. Let
g ∈ G and a ∈ A. Then by the definitions we have

(ր(g))(a) = sup{c ∈ Ca : (∀b ∈ B)c •a,b g(b) ≤ R(a, b)} =

= sup{c ∈ Ca : (∀b ∈ B)c •a,b g(b) ≤ 0} =

= sup{c ∈ Ca : (∀b ∈ B)ψa,b(g(b)) ≥ c} =

= sup{c ∈ Ca :
∧

b∈B

ψa,b(g(b)) ≥ c} =
∧

b∈B

ψa,b(g(b)) = (↑(g))(a).

⊓⊔

6 Conclusions

In this paper we recall two rather new common platform for till-known fuzzifi-
cations of the Formal Concept Analysis which work on the context without lim-
itation of the same data-types of objects and/or attributes. The first one arises,
defined in [1], as rather straightforward extension of the previous so-called gen-
eralized approach from [11] and [12] to such heterogeneous context. The second
one, from [19] and [20] is based on interesting idea to put some Galois connection
to each field of the table. We show that each of these two approaches covers and
is covered by the other one (in some canonical way).

In the end, let us say one “philosophical” aspect about our approach (that
from Section 2). In this case, a pair consisting of some • and some value is put
into each field of the table. The part • can be understood as behavior of the
corresponding object with respect to the corresponding attribute. This behavior
can be known long before than data come to the table, hence it can be thought
as metadata. Data can change through the time but this metadata are fixed. In
other words, we divide information on relationship of an object and an attribute
to the stable and dynamic part. (Of course, this division has meaning only in the
case that we consider possible changing of the data in the table.) In our opinion,
the connectional approach has not this advantage, because it mixes metadata
and data parts.

Then we can formulate this problem: In Section 5 we can see a surprising (and
maybe suspicious) transformation of connectional approach to heterogeneous
with the data part constantly equal to 0, i.e. all this is transformed to metadata
part. The question is: Is there some other (natural, canonical) transformation
which is not constant?
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