
A Generalized Next-Closure Algorithm –

Enumerating Semilattice Elements

from a Generating Set

Daniel Borchmann

TU Dresden, Institute of Algebra
daniel.borchmann@mailbox.tu-dresden.de

Abstract. A generalization of the well known Next-Closure algorithm is
presented, which is able to enumerate finite semilattices from a generating
set. We prove the correctness of the algorithm and apply it on the
computation of the intents of a formal context.

1 Introduction

Next-Closure is one of the best known algorithms in Formal Concept Analysis [8]
to compute the concepts of a formal context. In its general form it is able to
efficiently enumerate the closed sets of a given closure operator on a finite set.
This generality might be a drawback concerning efficiency compared to other
algorithms like Close-by-One [1,9,11]. On the other hand, the general formulation
of Next-Closure widens its field of application. However, there are still applications
where Next-Closure might be useful, but is not applicable, because a closure
operator on a finite set is not explicitly available. One such example might be
the computation of concepts of a fuzzy formal context [3]. In those cases most
often an ad hoc variation of Next-Closure can be constructed. The aim of this
paper is to provide a generalization of Next-Closure which covers those cases,
and may even go beyond them.

As it turns out, Next-Closure is not about enumerating closed sets of a closure
operator, even not on an abstract ordered set. The algorithm is merely about
enumerating elements of a certain semilattice, given as an operation together
with a generating set. This observation shall turn out to be quite natural.

It has to be noted that there have been prior attempts to generalize Next-
Closure to a more general setting [7]. But this approach is, as far as the author
can tell, not related to the one presented in this paper.

This paper is organized as follows. First of all we shall revisit the original
version of Next-Closure, together with the basic definitions. Then we present our
generalized version working on semilattices, together with a complete proof of its
correctness. Then we show how this generalized form is indeed a generalization
of the original Next-Closure. Additionally, we present another algorithm for
enumerating the intents of a given formal context, which is very similar to
Close-by-One. Finally, we give some outlook on further questions which might
be interesting within this line of research.

c© 2012 by the paper authors. CLA 2012, pp. 9–20. Copying permitted only for private
and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.



2 The Next-Closure Algorithm

Before we are going to discuss our generalized form of Next-Closure, let us
revisit the original version as it is given in [6,8]. To make our discussion a bit
more consistent, we shall allow ourselves a minor deviation from the standard
description of the algorithm, which we shall mention explicitly.

Let M be a finite set and let c : PpP q ÝÑ PpP q be a function such that

a) c is idempotent, i.e. cpcpAqq “ cpAq for all A Ď M ,
b) c is monotone, i.e. if A Ď B, then cpAq Ď cpBq for all A, B Ď M , and
c) c is extensive, i.e. A Ď cpAq for all A Ď M .

The mapping c is then said to be a closure operator on P . A set A Ď M is called
closed (with respect to c) if A “ cpAq, and the image of c is defined as

crPpMqs :“ t cpAq | A Ď M u.

Without loss of generality, let M “ t 1, . . . , n u for some n P N. For two sets
A, B P crPpMqs with A ‰ B and i P M we say that A is lectically smaller than
B at position i if and only if

i “ minpA ∆ Bq and i P B,

where A ∆ B “ pAzBq Y pBzAq denotes the symmetric difference of A and B.
We shall write A ăi B if A is lectically smaller than B at position i. Finally, we
say that A is lectically smaller than B, for A, B P crPpMqs, if A “ B or A ăi B

for some i P M . We shall write A ĺ B in this case.
It has to be noted that, in contrast to our definition, the lectic order is

normally defined for all sets A, B Ď M in the very same spirit as given above.
However, as we shall see, this is not necessary, which is why we have restricted
our definition to closed sets only.

Now let us define for A P crPpMqs and i P M

A ‘ i :“ cpt j P A | j ă i u Y t i uq.

Then we have the following result.

Theorem 1 (Next-Closure [6]). Let A P crPpMqs. Then the next closed set
A` P crPpMqs after A with respect to the lectic order ĺ, if it exists, is given by

A` “ A ‘ i

with i P M being maximal with A ăi A ‘ i.

This is the original version of Next-Closure, as it is given in [6,8]. Therein,
the term “next closed set” has the obvious meaning, namely

A` “ minăt B P crPpMqs | A ă B u.

10 Daniel Borchmann



Our generalization now starts with the following observation: the set A ‘ i

can be seen as the smallest closed set containing both t j P A | j ă i u and t i u,
or equivalently, both cpt j P A | j ă i uq and cpt i uq. This means that we can
rewrite A ‘ i as

A ‘ i “ cpt j P A | j ă i uq _ cpt i uq,

where X _ Y is the smallest closed set containing both X, Y P crPpMqs, the
supremum of X and Y , which is simply given by X _ Y “ cpX Y Y q. This
observation suggests to consider Next-Closure on abstract algebraic structures
with a binary operation _ with some certain properties, namely on semi-lattices.
To do so we need a more general notion of cpt i uq, since we do not necessarily
deal with subsets, and a more general notion of t j P A | j ă i u, which likewise
might not be expressible in a more general setting. Finally, we need to find a
starting point for our enumeration, which is cpHq in the original description of
Next-Closure, but may vary in other cases. Luckily, all this is possible and quite
natural, as we shall see in the next section.

3 Generalizing Next-Closure for Semilattices

The aim of this section is to present a generalization of the Next-Closure algorithm
that works on semilattices. For this recall that a semilattice L “ pL, _q is an
algebraic structure with a binary operation _ which is associative, commutative
and idempotent. It is well known that by

x ďL y :ðñ x _ y “ y, px, y P Lq

an order relation on L is defined in such a way that for every two elements
a, b P L the element a _ b is the least upper bound of both a and b with respect
to ďL.

For the remainder of this section let L “ pL, _q be an arbitrary but fixed
semilattice. Furthermore, let pxi | i P Iq be an enumeration of a finite generating
set t xi | i P I u Ď L of L. Finally, let ďI be a total order on I.

Definition 1. Let a, b P L and let i P I. Set

∆a,b :“ t j P I | pxj ďL a and xj ďL bq or pxj ďL a and xj ďL bq u.

We then define
a ăi b :ðñ i “ min ∆a,b and xi ďL b.

Furthermore we write a ă b if a ăi b for some i P I and write a ď b if a “ b or
a ă b.

One can see the similarity of this definition to the one of the lectic order.
Here, the set ∆a,b generalizes a ∆ b and xi ďL b somehow represents the fact
that i P b, or equivalently t i u Ď b, in the special case of L “ PpMq and i P M .

Note that if a ăi b and k P I with k ăI i, then

xk ďL a ðñ xk ďL b.

A Generalized Next-Closure Algorithm 11



This observation is quite useful and will be used in some of the proofs later on.
The first thing we want to consider now are two easy results stating that ď

is a total order relation on L extending ďL.

Lemma 1. The relation ă is irreflexive and transitive. Furthermore, for every
two elements a, b P L with a ‰ b, it is either a ă b or b ă a.

Proof. If a “ b, then the set ∆a,b defined above is empty, therefore we cannot
have a ăi a for some i P I. This shows the irreflexivity of ă. Let us now consider
the transitivity of ă. For this let a, b, c P L, i, j P I and suppose that a ăi b and
b ăj c. We have to show that a ă c. Let us consider the following cases.

Case i ăI j. We have xi ďL a and xi ďL b because of a ăi b. Due to i ăI j

it follows that xi ďL c. Suppose that there exists k P I, k ăI i with xk ďL a

and xk ďL c. Then if xk ďL b we would have xk ďL a because of k ăI i, a
contradiction. But if xk ďL b, then xk ďL c because of k ăI i ăI j, again a
contradiction. Thus we have shown that a ă c.

Case j ăI i. We have xj ďL b, xj ďL c because of b ăj c. Due to j ăI i

it follows that xj ďL a. Now if there were a k P I, k ăI j with xk ďL a and
xk ďL c, then xk ďL b would imply xk ďL c and xk ďL b would imply xk ďL a,
analogously to the first case, a contradiction. Hence such a k cannot exist and
a ă c.

Case i “ j. This cannot occur since otherwise xi ďL b, because of a ăi b, and
xi ďL b, because of b ăi c, a contradiction.

Overall we have shown that a ă c in any case and therefore ă is a transitive
relation.

Finally let a, b P L with a ‰ b. Then because t xi | i P I u is a generating set,
the set ∆a,b is not empty, since otherwise a “ b. With i :“ min ∆a,b we either
have a ăi b if xi ďL b and b ăi a otherwise.

Lemma 2. Let a, b P L with a ďL b. Then a ď b. In particular, if a ďL c and
b ďL c for a, b, c P L, then a _ b ď c.

Proof. We show xi ďL a ùñ xi ďL b for all i P I. This shows b ă a, hence
a ď b by Lemma 1. Now if xi ďL a, then because of a ďL b we see that xi ďL b

and the claim is proven.

The next step towards a general notion of Next-Closure is to provide a
generalization of ‘.

Definition 2. Let a P L and i P I. Then define

a ‘ i :“
ł

jăI i
xj ďLa

xj _ xi.

With all these definitions at hand we are now ready to formulate and prove
the promised generalization. For this, we generalize the proof of Next-Closure as
it is given in [8, page 67].

12 Daniel Borchmann



Lemma 3. Let a, b P L and i, j P I. Then the following statements hold:

i) a ăi b, a ăj c, i ăI j ùñ c ăi b.
ii) a ă a ‘ i if xi ďL a.

iii) a ăi b ùñ a ‘ i ď b.
iv) a ăi b ùñ a ăi a ‘ i.

Proof. i) It is xi ďL a and due to i ăI j we get xi ďL c as well. Furthermore,
xi ďL b because of a ăi b. Now if there would exist a k P I with k ăI i

such that xk ďL c, xk ďL b, then xk ďL a because of k ăI i and xk ďL a

because of k ăI i ăI j, a contradiction. With the same argumentation a
contradiction follows from the assumption that there exists a k P I, k ăI i

with xk ďL c, xk ďL b. In sum we have shown c ăi b, as required.
ii) We have xi ďL a and xi ďL a ‘ i. Furthermore, for k P I, k ăI i and

xk ďL a we have xk ďL a ‘ i by definition. This shows a ă a ‘ i.
iii) Let a ăk b for some k P I. Then

Ž

jăI k,xj ďLa xj ďL b and xk ďL b, hence

with Lemma 2 we get a ‘ k ď b.
iv) Let a ăi b. Then xi ďL a and with (ii) we get a ă a ‘ i. By (iii), a ‘ i ď b.

If for k P I, k ăI i it holds that xk ďL a ‘ i and xk ďL a, then we also
have xk ďL a ‘ i ďL b, i.e. xk ďL b, contradicting the minimality of i.

Theorem 2 (Next-Closure for Semilattices). Let a P L. Then the next
element a` P L with respect to ă, if it exists, is given by

a` “ a ‘ i

with i P I being maximal with a ăi a ‘ i.

Proof. Let
a` “ minăt b P L | a ă b u

be the next element after a with respect to ă. Then a ăi a` for some i P I and
by Lemma 3.iv we get a ăi a ‘ i and with Lemma 3.iii we see a ‘ i ď a`, hence
a ‘ i “ a`. The maximality of i follows from Lemma 3.i.

To find the correct element i P I such that a` “ a‘i we can utilize Lemma 3.ii.
Because of this result, only elements i P I with xi ďL a have to be considered, a
technique which is also known for the original form of Next-Closure.

However, to make the above theorem practical for enumerating the elements of
a certain semilattice, one has to start with some element, preferably the smallest
element in L with respect to ď. This element must also be minimal in L with
respect to ďL, by Lemma 2. Since t xi | i P I u is a generating set of L, and
a ď a _ b for all a, b P L, the minimal elements of L with respect to ďL must be
among the elements xi, i P I. So to find the first element of L with respect to ď,
find all minimal elements in t xi | i P I u and choose the smallest element with
respect to ď from them. But because of xi ď xj if and only if j ăI i, one just
has to take the largest index j with respect to ăI to find the smallest element in
L with respect to ď.

A Generalized Next-Closure Algorithm 13



As a final remark for this section note that the set t xi | i P I u must always
include the _-irreducible elements of L. These are all those elements a P L that
cannot be represented as a join of other elements, or, equivalently,

t b P L | b ăL a u “ H or
ł

băLa

b ăL a.

It is also easy to see that the set of _-irreducible elements of L is also sufficient,
i. e. that it is a generating set of L.

4 Computing the Intents of a Formal Context

We have seen an algorithm that is able to enumerate the elements of a semilattice
from a given generating set. We have also claimed that this is a generalization of
Next-Closure, which we want to demonstrate in this section. Furthermore, we
want to give another example of an application of this algorithm, namely the
computation of the intents of a given formal context.

Firstly, let us reconstruct the original Next-Closure algorithm from Theorem 2
and the corresponding definitions. For this let M be a finite set and let c be a
closure operator on M “ t 0, . . . , n ´ 1 u, say. We then apply Theorem 2 to the
semilattice P “ pcrPpMqs, _q. We immediately see that ďP “ Ď and that ăi is
the usual lectic order on P . Then the set

t cpt i uq | i P M u Y t cpHq u

is a finite generating set of P and we can define xi :“ cpt i uq and xn :“ cpHq,
i.e. I “ t 0, . . . , n u. For a closed set A Ď M and i P I then follows

A ‘ i “
ł

jăi
xj ĎA

xi _ xi

“ cp
ď

jăi
xj ĎA

xjq _ xi

“ cp
ď

t cpt j uq | j ă i, j P A uq _ cpt i uq

“ cpt j | j ă i, j P A uq _ cpt i uq

“ cpt j | j ă i, j P A u Y t i uq

which is the original definition of ‘ for Next-Closure. Furthermore, it is A‘n “ A

since cpHq Ď A for each closed set A. We therefore do not need to consider xn

when looking for the next closed set, and indeed, the only reason why xn “ cpHq
has been included is that it is the smallest closed set in P . All in all, we see that
Next-Closure is a special case of Theorem 2.

However, for a closure operator c on a finite set M it seems more natural to
consider the semilattice P “ pcrPpMqs, Xq, because the intersection of two closed
sets of c again yields a closed set of c. One sees that ďP “ Ě. As a generating

14 Daniel Borchmann



set we take the set of X-irreducible elements t Xi | i P G u for some index set G.
Let A, B P crPpMqs and let ăG be a linear ordering on G. Then A ă B if and
only if there exists i P G such that

i “ mint j P G | pXi Ě A, Xi Ğ Bq or pXi Ğ A, Xi Ě Bq u and Xi Ě B

and ‘ is just given by

A ‘ i “
č

jăGi
Xj ĚA

Xj X Xi.

Now note that ‘ does not need the closure operator c anymore. This means
that if the computation of c is very costly and the X-irreducible elements (or
a superset thereof) is known, this approach might be much more efficient. In
general, however, it is not known how to efficiently determine the X-irreducible
closed sets of c. But if c is given as the ¨2 operator of a formal context, these
irreducible elements can be determined quickly [8]. We shall describe this idea in
more detail.

Let G and M be two finite sets and let J Ď G ˆ M . We then call the triple
K :“ pG, M, Jq a formal context, G the objects of the formal context and M

the attributes of the formal context. For g P G and m P M we write g J m for
pg, mq P J and say that object g has attribute m.

Let A Ď G and B Ď M . We then define the derivations of A and B to be

A1 :“ t m P M | @g P A : g J m u

B1 :“ t g P G | @m P B : g J m u.

Then the ¨2 operator is just the twofold derivation of a given set of attributes. It
turns out that this is indeed a closure operator, and that every closure operator
can be represented as a ¨2 operator of a suitable formal context [4,8]. The closed
sets of ¨2, i.e. all sets B Ď M with B “ B2, are called the intents of K and shall
be denoted by IntpKq. It is clear from the previous remarks that pIntpKq, Xq is a
semilattice.

The advantage of representing a closure operator is that the X-irreducible
elements of pIntpKq, Xq can be directly read off from the format context. As
discussed in [8], the set

t t g u1 | g P G u

contains the irreducible elements we are looking for, except M (note that the order
relation on pIntpKq, Xq is Ě.) Furthermore, it is possible to omit certain objects
g from K without changing IntpKq. Every object g P G can be omitted from K
for which the set t g u1 is either equal to M or can be represented as a proper
intersection of other sets t g1 u1, . . . , t gn u1 for some elements g1, . . . , gn P G. It is
also clear that if there exist two distinct objects g1 and g2 with t g1 u1 “ t g2 u1,
that we can remove one of them without changing IntpKq. A formal context
for which no such objects exist is called object clarified and object reduced. If
K “ pG, M, Jq is an object clarified and object reduced formal context, then the

A Generalized Next-Closure Algorithm 15



Listing 1.1. Compute the Next Intent of a Formal Context

0 define next-intent(K “ pG, M, Jq ,A)
1 for g P G , descending

2 i f t g u1 Ğ A then

3 let (B := A ‘ g)
4 i f @h P G, h ăG g, t h u1 Ğ A : t h u1 Ğ B then

5 return B

6 end if

7 end let

8 end if

9 end for

10 return nil

11 end

set t t g u1 | g P G u is exactly the set of X-irreducible intents of K, except for the
set M .

The algorithm described above now takes the following form when applied
to the semilattice pIntpKq, Xq. As index set we choose the set G of object of the
given formal context, ordered by ăG. For every object g P G we set xg :“ t g u1.
Then the set t xg | g P G u is a generating set of the semilattice pIntpKqzt M u, Xq,
which we want to enumerate (since we get the set M for free). For A being an
intent of K and g P G we have

A ‘ g :“
č

t h u1ĚA
hăGg

t h u1 X t g u1

and as the first intent we take M . For an intent A Ď M of K we then have to
find the maximal object g P G (with respect to ăG) such that A ăg A ‘ g. This
is equivalent to g being maximal with t g u1 Ğ A and @h P G, h ăG g : t h u1 Ě
A ðñ t h u1 Ě A ‘ g. However, the direction “ùñ” is clear, hence we only have
to ensure

@h P G, h ăG g : t h u1 Ğ A ùñ t h u1 Ğ A ‘ g.

All these considerations yield the algorithm shown in Listing 1.1. Of course, the
derivations of the form t g u1 should not be computed every time they are needed
but rather stored somewhere for reuse.

Let us simplify Listing 1.1 a bit further. If A is an intent of K, then for g P G

it is true that

t g u1 Ğ A ðñ g R A1.

This is because

t g u1 Ě A ùñ t g u2 Ď A1

ùñ g P A1

16 Daniel Borchmann



Listing 1.2. Simplified version of Listing 1.1

0 define next-intent(K “ pG, M, Jq ,A)
1 for g P G , descending

2 i f g R A1 then

3 let (B := A ‘ g)
4 i f B1 X Gg Ď A1 X Gg then

5 return B

6 end if

7 end let

8 end if

9 end for

10 return nil

11 end

and

g P A1 ùñ t g u Ď A1

ùñ t g u1 Ě A2 “ A,

and therefore t g u1 Ě A ðñ g P A1, i. e. t g u1 Ğ A ðñ g R A1. Using this, we
can simplify the condition

@h P G, h ăG g, t h u1 Ğ A : t h u1 Ğ B

to
@h P G, h ăG g : h P B1 ùñ h P A1

or equivalently to B1 X Gg Ď A1 X Gg, where Gg :“ t h P G | h ăG g u. This leads
to the algorithm of Listing 1.2.

Curiously enough, this algorithm is now very similar to Close-by-One. To
make this similarity more apparent, let us give a brief description of the algorithm
Close-by-One. In contrast to Next-Closure, which enumerates the intents of the
formal context K, Close-by-One enumerates the formal concepts of K. These are
pairs pC, Dq of sets C Ď G, D Ď M such that C 1 “ D and D1 “ C. The set of all
formal concepts of K is denoted by BpKq. The formal concepts BpKq of K can
be ordered by

pC1, D1q ď pC2, D2q ðñ C1 Ď C2p ðñ D2 Ď D1q.

It turns out that the set pBpKq, ďq forms a (complete) lattice, i. e. an ordered
set such that for each set of formal concepts there exists a smallest upper and a
largest lower bound. This lattice is also called the concept lattice of K.

Close-by-One now performs a depth-first search in this lattice to compute
all formal concepts of K. Following the description of [10], the main part of the
work is done by the function generate-from, as it is described in Listing 1.3.
To simplify the description of this function, we again assume that the set M of

A Generalized Next-Closure Algorithm 17



Listing 1.3. Close-by-One [10]

0 define generate-from(K “ pG, M, Jq ,pC, Dq ,ℓ)
1 output pC, Dq
2

3 i f D “ M or ℓ ą |M | then

4 return

5 end if

6

7 for m P t ℓ, . . . , n u , ascending

8 i f m R D then

9 let (E := C X t m u1 ,
10 F := E1 )
11 i f F X Mm Ď D X Mm then

12 generate-from(pE, F q ,m ` 1)
13 end if

14 end let

15 end if

16 end for

17 end

18

19 define all-concepts(K “ pG, M, Jq)
20 generate-from(K ,pH1, H2q ,1)
21 end

attributes of K is just the set M “ t 1, . . . , n u. Furthermore, if m P M , we define
Mm :“ t 1, . . . , m ´ 1 u.

We can now spot some similarities between the functions next-intent from
Listing 1.2 and generate-from. The most striking similarity to note is the
occurrence of the same tests in both functions: “B1 X Gg Ď A1 X Gg” in line 4 of
Listing 1.2, and “F X Mm Ď D X Mm” in line 11 of Listing 1.3. If we substitute
the definitions of the involved variables, these tests get the following form:

next-intent: pA X t g u1q1 X Gg Ď A1 X Gg

generate-from: pC X t m u1q1 X Mm Ď C 1 X Mm

So except that we consider sets of objects in the function next-intent and sets
of attributes in the function generate-from, both test conditions are the same.

Still, the functions next-intent and generate-from are very different in
how they compute the next intent and formal concept, respectively. While
next-intent computes for a given intent just a new one, generate-from per-
forms a depth-first search and enumerate all formal concepts of K.

5 Conclusion

We have seen a natural generalization of the Next-Closure algorithm to enumerate
elements of a semilattice from a generating set. We have proven the algorithm to

18 Daniel Borchmann



be correct and applied it to the standard task of computing the intents of a given
formal context, yielding a another algorithm to accomplish this. This algorithm
turned out to have a lot of similarity to Close-by-One.

There are still some interesting ideas one might want to look at.

Firstly, a variation of the original Next-Closure algorithm is able to compute
the canonical base of a formal context, a very compact representation of its impli-
cational knowledge. It would be interesting to know whether the generalization
given in this paper gives more insight into the computation, and therefore into
the nature of the canonical base. This is, however, quite a vague idea.

Secondly, the algorithm discussed above to compute the intents of a formal
context enumerates them in a certain order, which might or might not be a
lectic one. Understanding this order relation might be fruitful, especially with
respect to the complexity results obtained recently which consider enumerating
pseudo-intents of a formal context in lectic order [5].

Thirdly, there exists a variant of the Next-Closure algorithm that is able to
compute intents of a formal context up to symmetry [8, Theorem 51]. Given a set
Γ of automorphisms of a formal context, this variant is able to compute for each
orbit of intents under Γ exactly one representative. It would be interesting to
know whether we can find a variant of our generalized Next-Closure algorithm
that accomplishes the same thing.

Finally, and more technically, it might be interesting to look for other ap-
plications of our general algorithm. As already mentioned in the introduction,
the enumeration of fuzzy concepts of a fuzzy formal context might be worth
investigating (and it might be interesting comparing it to [2]).

Acknowledgments

The author is grateful for the useful comments of the anonymous reviewers,
especially for pointing out the similarity of Listing 1.1 to Close-by-One, which
the author had overlooked.

References

1. Simon Andrews. In-Close, a fast algorithm for computing formal concepts. In Sebas-
tian Rudolph, Frithjof Dau, and Sergei O. Kuznetsov, editors, ICCS Supplementary

Proceedings, Moscow, 2009.
2. Radim Belohlávek, Bernard De Baets, Jan Outrata, and Vilém Vychodil. Computing

the Lattice of All Fixpoints of a Fuzzy Closure Operator. IEEE T. Fuzzy Systems,
18(3):546–557, 2010.

3. Radim Belohlávek and Vilém Vychodil. Attribute Implications in a Fuzzy Setting.
In Rokia Missaoui and Jürg Schmid, editors, ICFCA, volume 3874 of Lecture Notes

in Computer Science, pages 45–60. Springer, 2006.
4. Daniel Borchmann. Decomposing Finite Closure Operators by Attribute Explo-

ration. In ICFCA 2011, Supplementary Proceedings, 2011.

A Generalized Next-Closure Algorithm 19



5. Felix Distel. Hardness of Enumerating Pseudo-intents in the Lectic Order. In
Léonard Kwuida and Baris Sertkaya, editors, ICFCA, volume 5986 of Lecture Notes

in Computer Science, pages 124–137. Springer, 2010.
6. Bernhard Ganter. Two basic algorithms in concept analysis. FB4-Preprint Nr. 831,

1984.
7. Bernhard Ganter and Klaus Reuter. Finding all closed sets: A general approach.

Order, 8(3):283–290, 1991.
8. Bernhard Ganter and Rudolph Wille. Formal Concept Analysis: Mathematical

Foundations. Springer, Berlin-Heidelberg, 1999.
9. Sergei O. Kuznetsov. A fast algorithm for computing all intersections of objects

in a finite semi-lattice. Automatic Documentation and Mathematical Linguistics,
27:11–21, 1993.

10. Jan Outrata and Vilém Vychodil. Fast algorithm for computing fixpoints of galois
connections induced by object-attribute relational data. Inf. Sci., 185(1):114–127,
2012.

11. Vilém Vychodil, Petr Krajča, and Jan Outrata. Advances in algorithms based on
CbO. In Marzena Kryszkiewicz and Sergei Obiedkov, editors, Concept Lattices and

Their Application, pages 325–337, 2010.

20 Daniel Borchmann


