
Case Study Evaluation of Mahout as a Recommender
Platform

Carlos E. Seminario
Software and Information Systems Dept.

University of North Carolina Charlotte
cseminar@uncc.edu

David C. Wilson
Software and Information Systems Dept.

University of North Carolina Charlotte
davils@uncc.edu

ABSTRACT
Various libraries have been released to support the devel-
opment of recommender systems for some time, but it is
only relatively recently that larger scale, open-source plat-
forms have become readily available. In the context of such
platforms, evaluation tools are important both to verify and
validate baseline platform functionality, as well as to pro-
vide support for testing new techniques and approaches de-
veloped on top of the platform. We have adopted Apache
Mahout as an enabling platform for our research and have
faced both of these issues in employing it as part of our
work in collaborative filtering. This paper presents a case
study of evaluation focusing on accuracy and coverage eval-
uation metrics in Apache Mahout, a recent platform tool
that provides support for recommender system application
development. As part of this case study, we developed a new
metric combining accuracy and coverage in order to evaluate
functional changes made to Mahout’s collaborative filtering
algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval–Information filtering

General Terms
Algorithms, Experimentation, Measurement

Keywords
Recommender systems, Evaluation, Mahout

1. INTRODUCTION
Selecting a foundational platform is an important step in

developing recommender systems for personal, research, or
commercial purposes. This can be done in many different
ways: the platform may be developed from the ground up,
an existing recommender engine may be contracted (e.g.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright is held by the author/owner(s). Workshop on Recommen-
dation Utility Evaluation: Beyond RMSE (RUE 2012), held in conjunction
with ACM RecSys 2012. September 9, 2012, Dublin, Ireland.
Copyright 2012 ...$10.00

OracleAS Personalization1), code libraries can be adapted,
or a platform may be selected and tailored to suit (e.g.,
LensKit2, MymediaLite3, Apache Mahout4, etc.). In some
cases, a combination of these approaches will be employed.

For many projects, and particularly in the research con-
text, the ideal situation is to find an open-source platform
with many active contributors that provides a rich and var-
ied set of recommender system functions that meets all or
most of the baseline development requirements. Short of
finding this ideal solution, some minor customization to an
already existing system may be the best approach to meet
the specific development requirements. Various libraries have
been released to support the development of recommender
systems for some time, but it is only relatively recently
that larger scale, open-source platforms have become readily
available. In the context of such platforms, evaluation tools
are important both to verify and validate baseline platform
functionality, as well as to provide support for testing new
techniques and approaches developed on top of the platform.
We have adopted Apache Mahout as an enabling platform
for our research and have faced both of these issues in em-
ploying it as part of our work in collaborative filtering rec-
ommenders.

This paper presents a case study of evaluation for rec-
ommender systems in Apache Mahout, focusing on metrics
for accuracy and coverage. We have developed functional
changes to the baseline Mahout collaborative filtering algo-
rithms to meet our research purposes, and this paper exam-
ines evaluation both from the standpoint of tools for baseline
platform functionality, as well as for enhancements and new
functionality. The objective of this case study is to evaluate
these functional changes made to the platform by comparing
the baseline collaborative filtering algorithms to the changed
algorithms using well known measures of accuracy and cov-
erage [6]. Our goal is not to validate algorithms that have
already been tested previously, but to assess whether, and
to what extent, the functional enhancements have improved
the accuracy and coverage performance of the baseline out-
of-the-box Mahout platform. Given the interplay between
accuracy and coverage in this context, we developed a uni-
fied metric to assess accuracy vs. coverage trade-offs when
evaluating functional changes made to Mahout’s collabora-
tive filtering algorithms.

1http://download.oracle.com/docs/cd/B10464 05/bi.904/
b12102/1intro.htm
2http://lenskit.grouplens.org/
3http://www.ismll.uni-hildesheim.de/mymedialite/
4http://mahout.apache.org

45

pablo
Texto digitado

pablo
Texto digitado

pablo
Retângulo

2. RELATED WORK
Revisiting evaluation in the context of recommender plat-

forms has received recent attention in the thorough evalua-
tion of the LensKit platform using previously tested collabo-
rative filtering algorithms and metrics, as reported in [2]. A
comprehensive set of guidelines for evaluating recommender
systems was provided by Herlocker et al [6]; these guidelines
highlight the use of evaluation metrics such as accuracy and
coverage and suggest the need for an ideal “general cover-
age metric” that would combine coverage with accuracy to
yield an overall “practical accuracy” measure. Many of these
evaluation metrics and techniques have also been covered re-
cently in [12].

Recommender system research has been primarily con-
cerned with improving recommendation accuracy [7]; how-
ever, other metrics such as coverage [10, 4] and also novelty
and serendipity [6, 3] have been deemed necessary because
accuracy alone is not sufficient to properly evaluate the sys-
tem. Mcnee et al [7] states that recommendations that are
most accurate according to the standard metrics are some-
times not the most useful to users and outlines a more user-
centric approach to evaluation. The interplay between ac-
curacy and other metrics such as coverage and serendipity
creates trade-offs for recommender system implementers and
this has been widely discussed in the literature, e.g., see [4,
3] and our previous work discussing trade-offs between ac-
curacy and robustness [11].

3. SELECTING APACHE MAHOUT
To support our research in collaborative filtering, sev-

eral recommender system platforms were surveyed, includ-
ing LensKit, easyrec5, and MymediaLite. We selected Ma-
hout because it provides many of the desired characteristics
required for a recommender development workbench plat-
form. Mahout is a production-level, open-source, system
and consists of a wide range of applications that are useful
for a recommender system developer: collaborative filtering
algorithms, data clustering, and data classification. Mahout
is also highly scalable and is able to support distributed pro-
cessing of large data sets across clusters of computers using
Hadoop6. Mahout recommenders support various similarity
and neighborhood formation calculations, recommendation
prediction algorithms include user-based, item-based, Slope-
One and Singular Value Decomposition (SVD), and it also
incorporates Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) evaluation methods. Mahout is read-
ily extensible and provides a wide range of Java classes for
customization. As an open-source project, the Mahout de-
veloper/contributor community is very active; the Mahout
wiki also provides a list of developers and a list of websites
that have implemented Mahout7.

3.1 Uncovering Mahout Details
Although Mahout is rich in documentation, there are im-

plementation details on how Mahout works that could only
be understood by looking at the source code. Thus, for clar-
ity in evaluation, we needed to verify the implementation
of baseline platform functionality. The following describes
some of these details for Mahout 0.4 ‘out-of-the-box’:

5http://easyrec.org/
6http://hadoop.apache.org/
7https://cwiki.apache.org/MAHOUT/mahout-wiki.html

Similarity Weighting: Mahout implements the classic Pear-
son Correlation as described in [8, 5]. Similarity weighting is
supported in Mahout and consists of the following method:

scaleFactor = 1.0 - count / (num + 1);
if (result < 0.0)

result = -1.0 + scaleFactor * (1.0 + result);
else

result = 1.0 - scaleFactor * (1.0 - result);

where count is the number of co-rated items between two
users, num is the number of items in the dataset, and result
is the calculated Pearson Correlation coefficient.

User-Based Prediction Algorithm: Mahout implements a
Weighted Average prediction method similar to the approach
described in [1], except that Mahout does not take the abso-
lute value of the individual similarities in the denominator,
however, it does ensure that the predicted ratings are within
the allowable range, e.g., between 1.0 and 5.0.

Item-Based Prediction Algorithm: Mahout implements a
Weighted Average prediction method. This approach is sim-
ilar to the algorithm in [9], except that Mahout does not
take the absolute value of the individual similarities in the
denominator, however, it does ensure that the predicted rat-
ings are within the allowable range, e.g., between 1.0 and
5.0. Also, Mahout does not provide support for neighbor-
hood formation, e.g., similarity thresholding, for item-based
prediction.

Accuracy Evaluation calculation: Mahout executes the
recommender system evaluator specified at run time (MAE
or RMSE) and implements traditional techniques found in
[6, 12]. For MAE, this would be,

MAE =

∑n
i=1 | ActualRatingi − PredictedRatingi |

n
(1)

where n is the total number of ratings predicted in the test
run.

3.2 Making Mahout Fit for Purpose
Through personal email communication with one of the

Mahout developers, we were informed that Mahout intended
to provide basic rating prediction and similarity weighting
capabilities for its recommenders and that it would be up
to developers to provide more elaborate approaches. Sev-
eral changes were made to the prediction algorithms and
the similarity weighting techniques for both the user-based
and item-based recommenders in order to meet our specific
requirements and to match the best practices found in the
literature, as follows:

Similarity weighting: Defined as Significance Weighting in
[5], this consists of the following method:

scaleFactor = count/50.0;
if (scaleFactor > 1.0) scaleFactor = 1.0;
result = scaleFactor * result;

where count is the number of co-rated items between two
users, and result is the calculated Pearson Correlation co-
efficient.

User-user mean-centered prediction: After identifying a
neighborhood of similar users, a prediction, as documented
in [8, 5, 1], is computed for a target item i and target user
u as follows:

pu,i = ru +

∑
vεV simu,v(rv,i − rv)∑

vεV | simu,v |
(2)

46

where V is the set of k similar users who have rated item i,
rv,i is the rating of those users who have rated item i, ru is
the average rating for the target user u over all rated items,
rv is the average rating for user v over all co-rated items,
and simu,v is the Pearson correlation coefficient.

Item-item mean-centered prediction: A prediction, as doc-
umented in [1], is computed for a target item i and target
user u as follows:

pu,i = ri +

∑
jεNu(i) simi,j(ru,j − rj)∑

jεNu(i) | simi,j |
(3)

where Nu(i) is the set of items rated by user u most similar
to item i, ru,j is u’s rating of item j, rj is the average rating
for item j over all users who rated item j, ri is the average
rating for target item i, and simi,j is the Pearson correlation
coefficient.

Item-item similarity thresholding: This method was added
to Mahout and used in conjunction with the item-item mean-
centered prediction described above. Similarity threshold-
ing, as described in [5], defines a level of similarity that is
required for two items to be considered similar for purposes
of making a recommendation prediction; item-item similar-
ities that are less than the threshold are not used in the
prediction calculation.

Coverage and combined accuracy/coverage metric: As sug-
gested in [6], the easiest way to measure coverage is to select
a random sample of user-item pairs, ask for a prediction for
each pair, and measure the percentage for which a predic-
tion was provided. To calculate coverage, code changes were
made to Mahout to provide, for each test run, the total num-
ber of rating predictions requested that were unable to be
calculated as well as the total of number of rating predic-
tions requested that were actually calculated; the sum of
these two numbers is the total number of ratings requested.
Coverage was calculated as follows:

Coverage =
Total#RatingsCalculated

Total#RatingsRequested
(4)

Code changes were also made to calculate a combined accu-
racy and coverage metric as defined in Section 4.

4. ACCURACY AND COVERAGE METRIC
The metrics selected for this case study, accuracy and cov-

erage, were chosen because they are fundamental to the util-
ity of a recommender system [10, 6]. Although other metrics
such as novelty and serendipity can, and should, be used in
conjunction with accuracy and coverage, our objective was
to evaluate the very basic requirements of a recommender
system. Our implementation of coverage, referred to as pre-
diction coverage in [6], measures the percentage of a dataset
for which the recommender system is able to provide predic-
tions. High coverage would indicate that the recommender
system is able to provide predictions for a large number of
items and is considered to be a desirable characteristic of
the recommender system [6]. A combination of high accu-
racy (low error rate) and high coverage are indeed desirable
by users and system operators because it improves the util-
ity or usefulness of the system from a user standpoint [10,
6].

What constitutes ‘good’ accuracy or coverage, however,
has not been well defined in the literature: studies such
as [10, 4, 5] and many others, endeavor to maximize accu-
racy (achieve lowest possible value) and/or coverage (achieve

highest possible value) and view these metrics on a rela-
tive basis, i.e., how much the metric has increased or de-
creased beyond a baseline value based on empirical results.
Furthermore, the interplay between accuracy and coverage,
i.e., coverage decreases as a function of accuracy [4, 3], cre-
ates a trade-off for recommender system implementers that
has been discussed previously but not been developed thor-
oughly. Inspired by the suggestion in [6] to combine the cov-
erage and accuracy measures to yield an overall “practical
accuracy” measure for the recommender system, we devel-
oped a straightforward “AC Measure” that combines both
accuracy and coverage into a single metric as follows:

ACi =
Accuracyi
Coveragei

, (5)

where i indicates the ith trial in an evaluation experiment.

Figure 1: Illustration of the AC Measure

The AC Measure simply adjusts (upward) the Accuracy
according to the level of Coverage metrics found in an ex-
perimental trial and is agnostic to the accuracy metric used,
e.g., MAE or RMSE. Using a family of curves for the Mean
Absolute Error (MAE) accuracy metric, Figure 1 illustrates
the relationship between accuracy, coverage, and the AC
Measure. As an example, following the “MAE : 0.5’’ curve
we see that at 100% coverage, the AC Measure is 0.5, and
at 10% coverage, the AC Measure has increased to 5. The
intuition behind this metric is that when the recommender
system is able to provide predictions for a high percentage
of items in the dataset, the accuracy metric more closely
indicates the level of system performance; conversely, when
the coverage is low, the accuracy metric is “penalized” and is
adjusted upwards. We believe that the major benefit of the
AC Measure is that it formulates a solution for addressing
the trade-off between accuracy and coverage and can be used
to create a ranked list of results (low to high) from multiple
experimental trials to find the best (lowest) AC Measure for
each set of test conditions. The simplified visualization of
the combined AC Measure shown in Figure 1 is an additional
benefit. For our evaluation purposes, the use of a combined
metric was ideal in addressing the inherent trade-offs be-
tween accuracy and coverage, especially in the cases where
accuracy is found to be high when coverage is low; we posit
that the AC Measure will also be useful for other researchers
performing evaluations using accuracy and coverage.

47

5. EXPERIMENTAL DESIGN
The objective of this case study was to understand Ma-

hout’s baseline collaborative filtering algorithms and evalu-
ate functional changes made to the platform using accuracy
and coverage metrics. The main intent of making functional
changes to Mahout recommender algorithms was to bring
the Mahout algorithms in line with best practices found in
the literature. Therefore, the overall hypothesis to be tested
in this case study was that the modified algorithms improve
Mahout’s ‘out-of-the-box’ prediction accuracy for both user-
based and item-based recommenders while maintaining rea-
sonable coverage.

5.1 Datasets and Algorithms
The data used in this study were the MovieLens datasets

downloaded from GroupLens Research8: the 100K dataset
with 100,000 ratings for 1,682 movies and 943 users (re-
ferred to as ML100K in this study) and the 10M dataset
with 10,000,000 ratings for 10,681 movies and 69,878 users
(referred to as ML10M in this study). Ratings provided in
these datasets consist of integer values between 1 (did not
like) to 5 (liked very much).

For User-based (see §3.1), Mahout uses Pearson Corre-
lation similarity (with and without similarity weighting),
Neighborhood formation (similarity thresholding or kNN),
and Weighted Average prediction. This was tested against
a modified algorithm (see §3.2) consisting of Pearson Cor-
relation similarity (with and without similarity weighting),
Neighborhood formation (similarity thresholding or kNN),
and Mean-centered prediction. For Item-based (see §3.1),
Mahout uses Pearson Correlation similarity (with and with-
out similarity weighting), no Neighborhood formation, and
Weighted Average prediction. This was tested against a
modified algorithm (see §3.2) consisting of Pearson Corre-
lation similarity (with and without similarity weighting),
Neighborhood formation (similarity thresholding), and Mean-
centered prediction.

5.1.1 Test Cases
In order to test the overall hypothesis, the following test

cases were developed and executed for both user-based and
item-based recommenders using the ML100K and ML10M
datasets:

1. Mahout Prediction, No weighting
2. Mahout Prediction, Mahout weighted
3. Mahout Prediction, Significance weighted
4. Mean-Centered Prediction, No weighting
5. Mean-Centered Prediction, Mahout weighted
6. Mean-Centered Prediction, Significance weighted

5.1.2 Accuracy and Coverage Metrics
We used Mahout’s MAE evaluator to measure the accu-

racy of the rating predictions. For prediction coverage, we
used dataset training data to estimate the rating predictions
for the test set; the random sample of user-item pairs in our
testing was 30K pairs for ML100K and 25K pairs for ML10M
(see §3.2). AC Measures were calculated for all test cases.

5.1.3 Dataset Partitioning
The Mahout evaluator creates holdout 9 partitions accord-

ing to a set of run-time parameters. For the tests using the
8http://www.grouplens.org
9Holdout is a method that splits a dataset into two parts, a

ML100K dataset, the training set was 70% of the data, the
test set was 30% of the data, and 100% of the user data was
used; a total 30K rating predictions from 943 users were re-
quested for each test set. For the tests using the ML10M
dataset, the training set was 95% of the data, the test set
was 5% of the data, and 5% of the user data was used; a
total 25K rating predictions from 3180 users were requested
for each test set.

5.1.4 Test Variations
Various similarity thresholds and kNN neighborhood sizes

were executed for each test case in order to understand and
evaluate the corresponding behavior of the recommenders.
For User-based recommender testing, similarity thresholds
of 0.0, 0.1, 0.3, 0.5, and 0.7 and kNN neighborhood sizes of
600, 400, 200, 100, 50, 20, 10, 5, and 2 were tested. For
Item-based recommender testing, in addition to using no
similarity thresholding, similarity thresholds of 0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, and 0.7 were tested.

6. RESULTS AND DISCUSSION

6.1 ML10M Results
Figures 2 and 3 show the results of test cases 1 through

6 for user and item-based algorithms, respectively10. The
key results of the experiment, for both user-based and item-
based algorithms unless otherwise noted, were as follows:

1. MAE for mean-centered prediction with significance
weighting is a significant improvement (p<0.01) over MAE
for Mahout prediction, regardless of weighting, across simi-
larity thresholds (except item-based at similarity threshold
of 0.7) and kNN neighborhood sizes (except user-based at
kNN of 2, not shown).

2. Mahout similarity weighting does not significantly im-
prove (p<0.01) Mahout prediction MAE over prediction with
no similarity weighting (except Mahout prediction for user-
based and item-based at a similarity threshold of 0.4, not
shown). This would indicate that Mahout similarity weight-
ing is not very effective as a weighting technique, especially
as compared to significance weighting.

6.2 ML100K Results
The results and trend lines for the ML100K experiment

are similar to ML10M. The key results, for both user-based
and item-based algorithms unless otherwise noted, were:

1. MAE for mean-centered prediction with significance
weighting is a significant improvement (p<0.01) over MAE
for Mahout prediction, regardless of weighting, across simi-
larity thresholds and kNN neighborhood sizes (except user-
based at kNN of 400).

2. Mahout similarity weighting does not significantly im-
prove (p<0.01) Mahout prediction MAE over prediction with

training set and a test set, and the partitioning is performed
by randomly selecting some ratings from all, or some, of the
users. The selected ratings constitute the test set, while the
remaining ones are the training set.

10The following curves are superimposed over each other be-
cause the values are very similar: MAE results for mean-
centered prediction (no weighting and Mahout weighted),
MAE results for Mahout prediction (No weighting and
Mahout weighted), Coverage results for Mahout predic-
tion and mean-centered prediction (No weighting and Ma-
hout weighted), Coverage results for Mahout prediction and
mean-centered prediction (both Significance weighted).

48

Figure 2: User-based Mahout Recommender Re-
sults for ML10M, Test cases 1 through 6

no similarity weighting (except Mahout prediction for user-
based and item-based at a similarity threshold of 0.4).

6.3 Discussion
As hypothesized, results for both of the ML100K and

ML10M experiments show significant improvements in MAE
using the mean-centered prediction algorithm with signifi-
cance weighting compared to the Mahout baseline predic-
tion algorithm. However, when coverage is considered, the
“best” MAE results may need a second look. Can an MAE
of 0.5 or less be considered “good” when the associated cov-
erage is in the single digits? In this case, the recommender
system may only be able to provide recommendations to a
very small subset of its users and is a situation that must
be avoided by system operators. To help address the ac-
curacy vs. coverage trade-off, combined measures such as
the AC Measure (Section 4), can help by considering both
accuracy and coverage simultaneously. For the ML10M ex-
periment, we determined that the lowest MAE for the User-
based algorithm using mean-centered prediction with sig-
nificance weighting was 0.578 at a similarity threshold of
0.7 and coverage of 0.833%; the AC Measure for this result
is calculated as 69.42. Similarly, the lowest MAE for the
Item-based algorithm using mean-centered prediction with
significance weighting was 0.371 at a similarity threshold of
0.7 and coverage of 1.02%; the AC Measure for this result is
calculated as 36.32. In each of these cases, the exceedingly
high values for the AC Measure indicate that these results
are not very desirable in a recommender system.

Figures 4 and 5 show the AC Measure results for user and

Figure 3: Item-based Mahout Recommender Re-
sults for ML10M, Test cases 1 through 6

item-based algorithms using ML10M, respectively. Rather
than show all 30 results for each algorithm (5 similarity
thresholds x 2 prediction methods x 3 weighting types), we
show only the results with calculated AC Measure values
less than 1.0; therefore, the lowest MAE results reported
above for user-based and item-based algorithms are clearly
beyond the range of this chart. We found that the best
combined accuracy/coverage results were found at higher
levels of coverage and lower levels of similarity threshold,
i.e., the best (lowest) AC Measure for user-based was 0.688
at a similarity threshold of 0.1 and for item-based was 0.665
at a similarity threshold of 0.0, both using mean-centered
prediction and significance weighting. We can also see that,
with few exceptions, mean-centered prediction is improved
over the Mahout prediction for the same similarity weight-
ing and similarity threshold. We observed similar results
using the ML100K dataset where the best (lowest) AC Mea-
sure for user-based was 0.765 and for item-based was 0.746,
both at a similarity threshold of 0.0 and both using mean-
centered prediction and significance weighting. These re-
sults demonstrate that the “best” MAE may not always be
the lowest MAE, especially when coverage is also considered;
furthermore, recommender system settings such as similarity
weighting and neighborhood size also need to be considered
during system evaluation.

Other observations of our experiments that match results
reported in [5] and serve to validate our evaluation and in-
crease our confidence in the results are: (a) In general, signif-
icance weighting improves prediction MAE, as compared to
predictions using Mahout similarity weighting or no similar-

49

Figure 4: AC Measure for selected User-based re-
sults (lower is better)

Figure 5: AC Measure for selected Item-based re-
sults (lower is better)

ity weighting; (b) As the similarity threshold increases, MAE
for mean-centered prediction with significance weighting im-
proves and coverage degrades, whereas MAE and coverage
both degrade for Mahout prediction with Mahout weighting;
(c) Coverage decreases as neighborhood size decreases.

7. CONCLUSION
Our case study of Mahout as a recommender system plat-

form highlights evaluation considerations for developers and
also shows how straightforward functional enhancements im-
proves the performance of the baseline platform. We eval-
uated our changes against current Mahout functionality us-
ing accuracy and coverage metrics not only to assess base-
line results, but also to provide a view of the trade-offs be-
tween accuracy and coverage resulting from using different
recommender algorithms. We reported cases where the low-
est MAE accuracy results were not necessarily always the
‘best’ when coverage results were also considered, and we
instrumented Mahout for a combined accuracy and cover-
age metric (AC Measure) to evaluate these trade-offs more
directly. We believe that this case study will provide use-
ful guidance in using Mahout as a recommender platform,

and that our combined measure will prove useful in evalu-
ating algorithm changes for the inherent trade-offs between
accuracy and coverage.

8. REFERENCES
[1] C. Desrosiers and G. Karypis. A comprehensive survey

of neighborhood-based recommendations methods. In
F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook. Springer,
2011.

[2] M. D. Ekstrand, M. Ludwig, J. A. Konnstan, and
J. T. Riedl. Rethinking the recommender research
ecosystem: Reproducibility, openness, and lenskit. In
Proceedings of the 5th ACM Recommender Systems
Conference (RecSys ’11), October 2011.

[3] M. Ge, C. Delgado-Battenfeld, and D. Jannach.
Beyond accuracy: Evaluating recommender systems
by coverage and serendipity. In Proceedings of the 4th
ACM Recommender Systems Conference (RecSys ’10),
September 2010.

[4] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers,
B. Sarwar, J. Herlocker, and J. Riedl. Combining
collaborative filtering with personal agents for better
recommendations. In Proceedings of the 16th National
Conference on Artificial Intelligence (AAAI-99), July
1999.

[5] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In Proceedings of the ACM
SIGIR Conference, 1999.

[6] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on
Information Systems, 22(1):5–53, 2004.

[7] S. Mcnee, J. Riedl, and J. Konstan. Accurate is not
always good: How accuracy metrics have hurt
recommender systems. In Proceedings of the
Conference on Human Factors in Computing
Systems(CHI 2006), April 2006.

[8] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: an open architecture for
collaborative filtering of netnews. In Proceedings of the
ACM CSCW Conference, 1994.

[9] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the World Wide Web
Conference, 2001.

[10] B. M. Sarwar, J. A. Konstan, A. Borchers,
J. Herlocker, B. Miller, and J. Riedl. Using filtering
agents to improve prediction quality in the grouplens
research collaborative filtering system. In Proceedings
of the ACM 1998 Conference on Computer Supported
Cooperative Work (CSCW ’98), November 1998.

[11] C. E. Seminario and D. C. Wilson. Robustness and
accuracy tradeoffs for recommender systems under
attack. In Proceedings of the 25th Florida Artificial
Intelligence Research Society Conference
(FLAIRS-25), May 2012.

[12] G. Shani and A. Gunawardana. Evaluating
recommendation systems. In F. Ricci, L. Rokach,
B. Shapira, and P. B. Kantor, editors, Recommender
Systems Handbook. Springer, 2011.

50

	paper4.pdf
	1 Introduction & Motivation
	2 3D Recommendation Evaluation
	3 Evaluation Setting
	3.1 Current evaluation methodologies
	3.2 Currently existing metrics
	3.3 Possible Extensions of Methods & Metrics

	4 Conclusion
	5 References

