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Abstract

 

Fuzzy Cognitive Maps (FCM) is a technique to represent 

models of causal inference networks. Data driven FCM 

learning approach is a good way to model FCM. We 

present a hybrid FCM learning method that combines 

Nonlinear Hebbian Learning (NHL) and Extended Great 

Deluge Algorithm (EGDA), which has the efficiency of 

NHL and global optimization ability of EGDA. We 

propose using NHL to train FCM at first, in order to get 

close to optimization, and then using EGDA to make model 

more accurate. We propose an experiment to test the 

accuracy and running time of our methods. 

 

Introduction: 

Fuzzy Cognitive Maps (FCM) (1) is a modeling 
methodology that represents graph causal relations of 
different variables in a system. One way of developing the 
inferences is by a matrix computation. FCM is a cognitive 
map with fuzzy logic (2).FCM allows loops in its network, 
and it can model feedback and discover hidden relations 
between concepts (3). Another advantage is that Neuron 
network techniques are used in FCM, e.g. Hebbian 
learning(4), Genetic Algorithm (GA) (5), Simulated 
Anealling (SA) (6). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 An example of  FCM 

 
The structure of FCM is similar to an artificial neuron 
network, e.g. Figure 1. There are two elements in FCM, 
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concepts and relations. Concepts reflect attributes, qualities 
and states of system. The value of concepts ranges from 0 
to 1. Concepts can reflect both Boolean and quantitative 
value. For example, a concept can reflect either the state of 
light (while 0 means off and 1 means on), or water level of 
a tank. If it reflects a quantitative value, equation [1] can be 
used for normalization. 

                  
      

         
                          [1]  

where A is the concept value before normalization, and 
     and      are the possible maximum and minimum 
value of A. Relations reflect causal inference from one 
concept to another. Relations have direction and weight 
value.     is denoted as the weight value from concept    
to concept  . For a couple of nodes, there may be two, one 
or none relations between them. There are three possible 
types of causal relations: 

           the relation from concept    to concept    
is positive. When concept    increases (decreases), 
concept    also increases (decreases). 

           the relation from concept    to concept 
   is negative. When concept    increases (decreases), 
on the contrary, concept    decreases (increases). 

             there is no relations between    and    

When initial state of FCM is given, FCM will converge 
to a steady state through iteration process. One concept 
value is computed by the sum of weighted sum of all 
concepts that may be related to it. In each iteration, concept 
value is calculated by equation [2]. 
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where   
    is the value of conceptin iteration k+1,   

  is 

the value of concept    in iteration, and    
  is the weight 

value of the edge from concept    to concept   . And 

     
 

      , which is a transfer function to normalize 

weight value to [-1,1].   is a parameter that determines its 

steepness. 

For example, figure 2 is It is a problem an industrial 
process control problem (8). There is a tank with two 
valves where liquids flow into the tank. These two liquid 
had reaction in this tank. There is another valve which 
empties the fluid in the tank. There is also a sensor to 
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gauge the gravity of produced liquids (proportional to the 
rate of reaction) in tank. As described in the figure below 

 
Figure 2 An industrial control problem 

 

There are two constraints of this problem. The first one 
is to maintain value of G in a particular range, and the 
second one is to keep height of liquids (T) in a range. 
Parsopoulos et al. (8) proposes that there should be five 
concepts: (a) height of liquid in the tank, (b) the state of 
valve 1, (c) the state of valve 2, (d) the state of valve 3, and 
(e) the gravity of produced liquid in the tank. Our aim is to 
find out the causal inference value from one concept to 
another one. 

There are mainly two strategies to learn an FCM. One is 
to exploit expert domain knowledge and formulate a 
specific application’s FCM (7), this can be used when 
there is no good automated or semi-automated methods to 
build this model. If there are multiple domain experts 
available, each expert choose a value (e.g. very weak, 
weak, medium, strong, very strong) for the causal effect 
from one concept to another one; then the values are 
quantified and combined together into one value between -
1 and 1. This strategy has its own shortage: when the 
problem is complex and need a large number of concepts 
to describe a system, the cost of expert strategy is very 
high; moreover, it is difficult to discover new hidden 
relations by this strategy. Another strategy is to develop a 
data driven learning method. Input, output and state of a 
system are recorded when it is running, and these records 
are used as a neuron network training dataset.  

 

Background 

One branch of Fuzzy Cognitive map (FCM) learning is 
Hebbian learning. Different Hebbian learning has been 
proposed, for example, Differential Hebbian Learning 
(DHL)(4), and its modified version Banlanced Differential 
Hebbian Learning (BDHL)(9). DHL changes weight 
matrix by the difference of two records, but it did not 
consider the scenario that multiple concepts have effect on 
one mutually. BDHL covers this situation, but it is costly 
owe to lack of optimization. The two Hebbian learning 
methods that have been used in real world is Active 
Hebbian learning (AHL) (10) and Nonlinear Hebbian 
Learning(NHL) (11), and both of them require expert 

knowledge before computation. AHL explores a method to 
determine the sequence of active concepts. For each 
concept, only concepts that may affect it are activated. 
AHL is fast but requires expert intervention. Experts 
should determine the desired set of concepts and initial 
structure of FCM. NHL is a nonlinear extension of DHL. In 
NHL, before iteration starts,experts have to indicate an 
initial structure and sign of each non-zero weight. Weight 
values are updated synchronously, and only with concepts 
that experts indicate.  

Another branch of learning FCM structure is population-
based method. Koulouriotis (12)proposes evolution 
strategies to train fuzzy cognitive maps.  In 2007 
Ghazanfari et al. (6) proposes using Simulated Annealing 
(SA) to learn FCM, and he compared Genetic Algorithm 
(GA)(5) and SA. They concluded that when there are more 
concepts in the network, SA has a better performance than 
genetic algorithm. In 2011, Baykasoglu and Adil (13) 
proposed an algorithm called extended great deluge 
algorithm (EGDA) to train FCM. EGDA is quite similar to 
SA, but it demands smaller number of parameters than SA.  
Population-based method is capable to reach global 
optimization even if the initial weight matrix is not good, 
but it is usually computationally costly, especially when the 
initial weight matrix is far from optimal position. Moreover, 
population-based methods have many parameters that have 
to be set before processing. The parameters are set usually 
by experiences, and then duplicated experiments with 
different parameters should be made to get better 
performance. Hebbian learning methods are relatively fast, 
but their performance depends on initial weight matrix and 
predefined FCM structure very much. Expert intervention 
is usually essential. Experts need to indicate a structure 
before experiments.  

The third branch is hybrid method, which takes both the 
effectiveness of Hebbian learning and global search 
capability of population-based methods. Papageorgiou and 
Groumpos (14) proposed a hybrid learning method that 
combines NHL and Differential Evolution algorithm (DE). 
First, NHL is used to learn FCM, and then its result is feed 
to DE algorithm. This method makes uses of both the 
effectiveness of Hebbian learning and the global search 
ability of population-based method. The three experiments 
they did show this hybrid method is capable to train FCM 
effectively. Zhu et.al(15) proposes another hybrid method 
which combines NHL and Real-coded Genetic Algorithm 
(RCGA) 

Here I suggest a hybrid method combing NHL and 
EGDA. EGDA has global search ability and relatively less 
demand of parameters. If its initial weight matrix is close to 
optimal condition, it will save much computing expense. 
Here we use NHL to train FCM roughly first, and then feed 
its result to EGDA. NHL is picked because it is simple and 
fast, and it can deal with continuous range of value of 
concepts 
 



Hybrid Method Using NHL and EGDA 

This hybrid method is processed by two stages.  
Stage 1  use nonlinear Hebbian learning (NHL) 

(11)to train FCM 
Step 1: Initialize weight matrix    with help of experts 

and read input concept   . We feed the initial weight 
matrix to feed    

Step2:  
Calculate    (concept value in iteration 1.Initial values 

can be denoted as values in iteration 0) by the equation [3] 
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where      
 

      . λis a parameter that determines 

increasing rate of curve. It is a transfer function. When x 

changes from -∞  to ∞ , f(x) changes from 0 to 1. 

Therefore, final result of concept value is still from zero to 

one.  
Step 3: 
Use equation [4] to update weights, 
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where    is learning rate function, and it decreases as k 
increases. 

Step 4: At the end of each updating, the error function is 
computed as equation [5] 

  ∑    
      

  2 
                                 [5] 

where k is the iteration number. There are two 
termination conditions. One is that value of error function 
[3] is below a threshold, and the other is there are enough 
times of iterations. If one of the termination conditions is 
reached, the iteration ends. Otherwise, go on the next 
iteration. 

For example, now we have time series data of each 
concept value as Table 1 

A1 A2 A3 

0.5 0.5 0.1 

0.6 0.4 0.2 

0.5 0.3 0.3 

Table 1 Concept value record 

 
Each tuple is a record of three concept value. 
Initial weight matrix is predicted by experts or generated 

randomly. Here it is as Table 2 

W 1 2 3 

1 N/A 0.3 0 

2 0.7 N/A 0.2 

3 -0.6 -0.3 N/A 

Table 2 Initial weight matrix 

 

    (the weight from concept I to concept j) is the value 

in line I and column j. For example,  2      
For example, we want to update  2  and  3  using the 

first tuple of data. First, we use equation [3] to calculate   
 . 

  is set to 1 here. 
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Then we use equation [2] to update  2  and  3 .Here 

the learning rate       
 2 
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Other weights are updated as above. Then we got the 
new weight matrix as below 

W 1 2 3 

1 N/A 0.475 0 

2 0.707 N/A 0.317 

3 -0.32 0.565 N/A 

 
And A1=0.677, A2= 0.65, A3=0.55 
             2            2            2 
         

If J is larger than termination threshold, then go to step 2. 
Otherwise, terminate this algorithm and got to stage 2. 

Stage 2: use extended great deluge algorithm 
(EGDA)(13) to train FCM. 

Step 1: Initialize the weight matrix with the suggested 
value from stage 1. The output of step 1 is feed to this step. 
Assume the weight matrix we got from last step is as Table 
3 

W 1 2 3 

1 N/A 0.3 0 

2 0.6 N/A 0.1 

3 -0.4 -0.3 N/A 

Table 3 Weight matrix after stage 1 

 

Step 2: find a new neighbor of the current weight matrix. 
For each non-zero weight (because the edge with zero 
weight does not exist by expert prediction)in the matrix, 
use the equation below to generate their neighbor. 

   
                                          [6] 

where random( ) is a function to generate random value 
from 0 to 1, and then               is a function to 
generate random value from -1 to 1.       is a step size of 
moving. It is gradually decreased so this algorithm can 
have a more detailed search during the end of the search.  

Step 3: Use equation [1] and new weight matrix to 
calculate estimated concept value. Then calculate fitness 
function to determine if new configuration is better than 
current one. Here we use the total error to be fitness 
function. The equation is as below 

            
 

  
∑         
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where K is the number of iteration, and N is the number 
of concepts.  

Step 4: If the fitness function value of the neighbor 
configuration is better than tolerance, it is picked as current 
configuration. And then go to step 5, otherwise, go to step 
2. Then reduce the tolerance. 



Step 5: If the value of fitness function is better than best 
condition, update best condition. 

For example: First we find a new neighbor for this. 
      is set as 0.2.  

  2
                         

                         *0.2  
         0.3191 
(random()=0.5478, generated randomly by matlab) 
Using the same equation, we could get new weight 

matrix 

W 1 2 3 

1  0.3197 0 

2 0.5482  0.2945 

3 -0.2453 -0.4583  

 
Then calculate the concept value 

  
         ,  2

         ,  3
         . In this example we use 

the record below 

A1 A2 A3 

0.5 0.5 0.1 
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If this value is above a tolerance, it is denoted as current 

configuration, and then it is compared with best 
configuration to see if it is the best so far. If the new 
neighbor is not below tolerance, find another neighbor near 
current one. Reduce tolerance after each search. If the total 
error is below a threshold or there is enough number of 
iteration, then this algorithm terminates. 
 

Experiment Design: 

There are two steps of our experiment. First we are 
going to test our method by simulated data, and try to find 
out the scenario that our method can be most efficient and 
accurate. On the second step, we will use our method in a 
real application. 

In this experiment, data is generated by a random 
process. First the number of concepts and density of 
relations are set. We can try different number of concepts, 
from small to large, in order to test the performance of this 
method in network with different complexity. Density 
represents how many percent of edges exist in a network. 
It is defined as equation [8].    
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 For example, if we set number of concepts as 5, and 

density as 0.4, number of edges is computed as below 

                              

then there would be eight edges in this network. 

 After number of concepts and edges are set, a model can 

be generated with random weight, and we name it original 

model. Then random data is generated, and they are fed to 

equation [1] iteratively, until it reaches a steady state (the 

error in equation [7] is lower than threshold). The steady 

state would be a record for simulated data. After a certain 

time of iteration, if it still cannot reach steady state, a new 

tuple of data would be generated randomly and fed to 

equation [1]. After hundreds of times, we will have a series 

of data as training set. This data is used to learn FCM by 

our method. The weight matrix we get would be compared 

with the original model. The error is calculated as equation 

[9] 
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where N is the number of concepts in this model. 
Some other methods (NHL, EGDA, SA) can also be 

programmed, and compared with this method. These 
methods will be compared in accuracy and running time, in 
several conditions. 

After simulated experiment, based on the best conditions 
for our method, we will apply it on a real practical problem. 

 

Conclusion 

We propose a hybrid method to learn FCM. Our method 
has taken advantages of fast speed of NHL and global 
search ability of EGDA. Moreover, we propose an 
experiment to test our algorithm, and try to apply it into 
practice.  
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