ICBO: International Conference on Biomedical Ontology

July 28-30, 2011 - Buffalo, NY, USA

owl_cpp, a C++ Library for Working
with OWL Ontologies

Mikhail K. Levin!, Alan Ruttenberg?3, Anna Maria Masci4, Lindsay G. Cowell!

1Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, TX, USA
2School of Dental Medicine, University at Buffalo, NY, USA
3Science Commons, Mountain View, CA, USA
4Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA

Abstract. Here we present owl_cpp (http:/sf.net/projects/owl-cpp/), an open-source C++
library for parsing, querying, and reasoning with OWL 2 ontologies. owl_cpp uses Raptor,
FaCT++, and Boost libraries. It is written in standard C++, and therefore can be used on most
platforms. owl_cpp performs strict parsing and detects errors ignored by other parsers. Other
advantages of the library are high performance and a compact in-memory representation.

1 Introduction

The OWL Web Ontology Language, one of the
Semantic Web technologies, is designed to
formally represent human knowledge and
facilitate its computational analysis and
interpretation. OWL and other Semantic Web
technologies have been successfully applied in
many areas of biomedicine. Their success is in
part due to a broad spectrum of software
developed in support of the Semantic Web.
Working with ontologies involves several

common tasks, such as parsing OWL
documents, querying their in-memory
representation, passing information to a

Description Logic (DL) reasoner, and executing
DL queries. In computer memory ontologies are
represented either as RDF triples or as axioms
and annotations. A triple is a simple statement
consisting of three nodes, where the predicate
node expresses a relationship between the
subject and object nodes. Although a set of
triples can represent a complex graph of
interrelated entities, in computer memory it is
stored as a uniform array that can be efficiently
searched and queried. Therefore, triple stores
are used when one needs to efficiently perform
relatively simple queries. Axioms are
statements about ontological classes and
instances. Each axiom may be seen as a graph
corresponding to one or many RDF triples.
Since axioms are more complex than triples,
querying them is less efficient. However, with
the help of a reasoner, one can execute more

255

sophisticated DL queries and discover
knowledge implicitly contained in the ontology.

Despite the availability of highly developed
tools, working with large biomedical ontologies
remains challenging. Some of the problems we
face are a) detection and elimination of errors in
OWL documents; b) absence of Java virtual
machine (JVM) support on some high-
performance computing (HPC) platforms; c)
limited availability of semantic web tools in
programming languages such as C++, Python
and Perl; d) a large footprint of ontology
in-memory representation; and e) poor parsing
and querying performance.

To address these problems we developed owl
cpp, a library for parsing, querying, and
reasoning with ontologies. Its key features
include a) strict parsing, detecting errors in
OWL documents; b) written in standard C++,
can be compiled on most platforms; ¢) requires
no virtual machine; d) possibility of creating
efficient APIs for other languages, e.g., Java,
Perl, Python; e) small memory footprint; and f)
high performance.

2 Implementation

The following basic operations should be
supported by owl_cpp: a) making a catalog of
OWL 2 RDF/XML documents in user-supplied
locations, b) parsing OWL 2 RDF/XML
documents and their imports, ¢) storing and
searching resulting RDF triples, d) converting
the triples into axioms and loading them into a

Open access article distributed under the terms of the Creative Commons Attribution License 3.0, which permits
unrestricted use, distribution, and reproduction, provided the original work is properly cited.

reasoner, and e) performing description logic
queries. This functionality should be
implemented along the following guidelines:

= Correctness and reproducibility should be
verified with extensive unit tests.

= Strict syntactic verification should be
performed during parsing and axiom
generation to prevent possible semantic
errors.

= Error messages should contain sufficient
information to correct the error.

= Efficiency should be maximized both in
terms of speed and in terms of runtime
memory footprint to be able to process large
ontologies.

= Portability should be maximized by using
only standard C++ features.

= Maintainability should be maximized by
implementing owl_cpp as a decoupled
modular structure and by utilizing well-
-established libraries, i.e., the C++ Standard
Library and Boost (http://www.boost.org).

Currently, owl_cpp 1is composed of three
modules. The parsing module is a C++
wrapper for Raptor, a popular C library for RDF
parsing [1]. To our knowledge, Raptor is the only
C/C++ RDF parser under active development. To
parse XML, Raptor uses the SAX interface of
Libxml2 library (http://xmlsoft.org). owl_cpp
reads ontologies only from STL input streams
and from filesystem locations specified by the
user. Although, by default, Raptor may attempt
to fetch ontologies from the internet, this
functionality is disabled in the interests of
reliability, security, and performance.

The triple store module is responsible for
storing, searching, and retrieving of RDF
triples. The store internally provides separate
containers for namespace URIs, nodes, and
triples. The containers keep track of the objects
by mapping them against light-weight IDs.
Retrieval of an object by such an ID is as
efficient as array indexing. Each RDF triple is
stored as the three IDs of its corresponding
nodes. Although many mentions of the same
node may be found in an ontology document,
only one instance of each node is kept in the
store.

The search of triples 1is frequently
performed and therefore should be highly

256

optimized. Although a straightforward task, it
is made complicated by the number of potential
configurations. Depending on the node IDs
provided by the user, the triples may be
searched in eight different ways: just by the
subject, predicate, or object, or by any of their
combinations, including the configuration,
where no IDs are provided, which should return
all triples in the store. Furthermore, as a result
of the search, the user may be interested in
three types of return values: a complete list of
triples that match the provided IDs, only the
first triple found, or merely a boolean indicating
whether the search was successful. Since for
any of the eight search configurations, any of
the three types of return values may be
required, the total number of possible
configurations is 24. Clearly, implementing a
separate method for every search configuration
would unacceptably clutter the interface. On
the other hand, a one-for-all-configurations
method would necessarily sacrifice performance.
Therefore, in keeping with “you pay only for
what you wuse” principle, the search was
implemented as a non-member template func-
tion that accepts either Node id or Blank types
for each of the three terms. The return type is a
boost::iterator range
(http://[www.boost.org/doc/libs/release/libs/rang
e/index.html), which can be implicitly converted
to a boolean or used for iterating over the
matching triples.

The reasoning module functionality is
performed by FaCT++, which 1is, to our
knowledge, the only open-source C/C++ DL
reasoner library [2]. owl_cpp passes information
from the triple store to FaCT++ by converting
triples to axioms. Currently the conversion is
done using the Visitor design pattern [3, 4]. DL
queries are currently performed directly
through the FaCT++ interface with the aid of
actor and predicate classes supplied by owl_cpp.

3 Results and Discussion

The interface of owl_cpp is designed to simplify
basic operations with ontologies. For example,
the file ontology.owl is read into the triple
store by calling
store). To load the ontology along with its
imports, a catalog of ontology IDs and locations
should also be provided:
load ("ontology.owl",

load ("ontology.owl",

store, catalog).

Open access article distributed under the terms of the Creative Commons Attribution License 3.0, which permits
unrestricted use, distribution, and reproduction, provided the original work is properly cited.

Once loaded into the store, the triples can
be queried. For example, expression
find triples(blank, T rdf type::id(), T
owl Class::id (), store) finds all triples that
declare classes. The axioms are copied from the
triple store to the FaCT++ reasoning kernel by
calling add (store, kernel).

The accuracy of parsing and reasoning of
owl_cpp was tested with many ontologies. Some
of the smaller OWL documents (e.g., several
OWL 2 Test Cases, http://owl.semantic
web.org/page/OWL 2 Test Cases) were
incorporated into unit tests, which assert their
consistency and satisfiability. Further testing
was done during the development of the
Ontology of Biological Pathways [5] by
executing DL queries formulated by domain
experts and comparing the results with ones
from Protégé (FaCT++ and HermiT reasoners).
The results were always identical.

One of the advantages of owl_cpp over other
OWL libraries is its ability to discover syntactic
errors, thus preventing incorrect semantic
interpretation of ontologies. During ontology
development in our group, owl_cpp has detected
inconsistent import statements, undeclared
property and annotation predicates, misspelled
standard OWL terms, and other problems.
Parsing performance of owl_cpp was tested
using OpenGALEN ontologies version 8 in
OWL/RDF format (http://www.opengalen.org/).
The ontologies occupied 0.5 GB on the hard disk
and consisted of 9.7 million triples. Their
parsing was successful after correcting several
errors, e.g., replacing owl:propertyChain terms
with owl:propertyChainAxiom. The rate of
parsing was estimated to be 108 thousand
triples per second. The bottleneck of this
process appeared to be the insertion of new
terms into the triple store. The ways to
streamline this step are currently being
investigated.

257

Future development of owl_cpp includes
the following tasks: @) defining high-level C++
APIs for parser, triple store, and reasoner; b)
designing axiom-based API; ¢) improving
readability of error messages; d) designing
APIs for other programming languages; e)
introducing support for other OWL 2 syntaxes,
e.g., Manchester, Turtle, OWL/XML; and f)
designing a module for batch execution of OWL
2 Test Cases.

Acknowledgments

The authors would like to thank Dmitri
Tsarkov for his help with FaCT++ library. This
work was supported by an NIAID-funded RO1
(AI077706) and a Burroughs Wellcome Fund
Career Award to LGC.

References
1. D Beckett (2001) The Design and
Implementation of the Redland RDF

Application Framework, in Proc. of the Tenth
International World Wide Web Conference.

2. D Tsarkov, I Horrocks (2006) FaCT++
Description Logic Reasoner: System De-
scription, Lecture Notes in Artificial

Intelligence, in Proc. of the Int. Joint Conf. on
Automated Reasoning (IJCAR 2006), Lecture
Notes in Artificial Intelligence (Springer), Vol.
4130, pp 292-297.

3. E Gamma, R Helm, R Johnson, J Vlissides
(1995) Design Patterns (Addison-Wesley,
Boston, MA).

4. A Alexandrescu (2001) Modern C++ design:
generic programming and design patterns
applied (Addison-Wesley, Boston, MA).

5. AM Masci, MK Levin, A Ruttenberg, LG Cowell
(2011) Connecting Ontologies for the
Representation of Biological Pathways, in Proc.
International Conference on Biomedical
Ontology.

Open access article distributed under the terms of the Creative Commons Attribution License 3.0, which permits
unrestricted use, distribution, and reproduction, provided the original work is properly cited.

