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Abstract. In this paper we propose a spatial ontology for reasoning
about holes, rigid objects and strings, taking a classical puzzle as a mo-
tivating example. In this ontology the domain is composed of spatial re-
gions whereby a theory about holes is defined over a mereological basis.
We also assume primitives for representing shapes of objects (including
the string). From these primitives we propose a sufficient condition for
object’s penetrability through holes. Additionally, a string is represented
as a data structure defined upon a sequence of sections limited by points
where the string crosses itself or points where it passes through a hole.
This paper first appeared as as technical report [7] and presents the
initial framework that was further developed in [8, 2].

1 Introduction

Real life situations where we must deal with strings tying objects and passing
through holes appear from time to time in very different contexts. Examples
range from tying shoelaces, to handling ropes in a sailboat or organising the
cable connections map inside an office, a building or a whole city. Although hu-
mans show an amazing intuition for solving problems of this nature, a formal
representation for reasoning about holes and strings is still a relatively unex-
plored area. To understand the problem, note for instance that using a fully
detailed mathematical model of the involved objects does not seem feasible for
computational purposes, let alone when we consider deformable objects like a
string. Moreover, humans typically describe solutions to spatial reasoning prob-
lems in terms of qualitative descriptions instead. This is, in fact, the orientation
followed by Qualitative Spatial Reasoning (QSR) [9], a field that attempts the
logical formalisation of spatial knowledge based on primitive relations defined
over elementary spatial entities.

To obtain a suitable representation for strings and holes we have adopted the
following methodology. We begin from specific formalisations of particular sce-
narios, which usually imply a more abstract and simplified description level, and
advance them towards more general representations to cover different domains,



implying a more fine-grained ontology. As a starting point, puzzle-like examples
constitute a good test bed, as they offer a small number of objects while keeping
enough complexity for a challenging problem of KR.

Following this line, we take as a starting point the work developed in [1],
which presented an automated solution to a classical string puzzle called Fish-

erman’s Folly (see Figure 1). To solve the problem, the authors applied several
strong assumptions like identifying a single-holed object with its unique hole, as-
suming that each hole always has two entry boundaries or ignoring that strings
may form knots. The treatment of knots, for instance, is unnecessary for the
final solution, but it may be reasonably objected that there is no direct justifi-
cation for discarding knots from the very beginning, or that a slight change in
the puzzle goal could easily require handling knots.

In this paper we go one step further and remove these assumptions to propose
a more general ontology applicable to other scenarios. On the one hand, we
describe a theory about holes defined over a mereological basis, proposing a
sufficient condition for object’s penetrability through holes. In this way, we can
derive information of which objects can pass through a given hole, something
that was taken as given in [1].

2 The Fisherman’s Folly

The elements of the puzzle are a holed post (P ) fixed to a wooden base (B), a
string (Str), a ring (R), a pair of spheres (S1, S2) and a pair of disks (D1, D2).
The spheres can be moved along the string, whereas the disks are fixed at each
string endpoint. The string passes through the post’s hole in a way that one
sphere and one disk remain on each side of the post. It is worth pointing out
that the spheres are larger than the post’s hole, therefore the string cannot
be separated from the post without cutting either the post, or the string, or
destroying one of the spheres. The disks and the ring, in contrast, can pass
through the post’s hole. In this work we assume that neither the length nor
the thickness of the string constrain any solution to the puzzle, i.e. the string is
infinitely extensible and one-dimensional. Relaxing these assumptions is a matter
for future work.

(a) Initial (b) Goal

Fig. 1. A spatial puzzle: the Fisherman’s Folly.



In the initial state (shown in Figure 1(a)) the post is in the middle of the
ring, which in its turn is supported on the post’s base. The goal of this puzzle
is to find a sequence of transformations that, while maintaining the physical
integrity of the domain objects, allow us to free the ring from the rest of objects,
regardless their final configuration. Figure 1(b) shows one possible goal state.
As we shall see, the representation for initial and (one possible) goal states is
shown, respectively, on line 0 and line 5 of Figure 2.

A crucial observation is that the puzzle actually deals with four holes: the
post hole (Ph), the ring hole Rh and the two sphere holes Sh1 and Sh2. Note
that in a natural language description we would probably identify holes with
their host objects, saying that “the string passes through the sphere” (hole) or
that “the post passes through the ring” (hole). Furthermore, we would talk about
“sliding the ring upwards the post,” rather than “moving the post downwards
the ring hole.”

In [1] the puzzle entities were classified into three different sorts: long ob-

jects, regular objects and holes, corresponding in the puzzle to the sets {P, Str},
{R, S1, S2, D1, D2, B} and {Ph, Rh, Sh1, Sh2}, respectively. A distinguishing fea-
ture of a long object x is that we usually identify the two opposite extremities
of its major axis. These extremities, denoted as x− and x+, respectively receive
the names of negative terminal and positive terminal of x. As a thumb rule,
when not stated, we assume in all figures that rightmost or topmost extremi-
ties are positive, whereas leftmost or bottom are negative (where the left-right
dichotomy dominates the top-bottom one to solve any ambiguity). To put an
example of this notation, the right disk D2 is linked to Str+, while the post base
B is linked to P−.

A second important observation is that a long object may be simultaneously
crossing several holes. In fact, although the post just crosses Rh, when executing
the puzzle’s solution, the string may be simultaneously passing through all the
holes and, moreover, it may cross the same hole several times. Thus, we associate
to each long object x a list Chain(x) collecting the sequence of all hole cross-
ings made by x following, for instance, the arbitrary ordering from x− to x+.
Furthermore, the direction in which the string crosses the hole is also relevant in
order to provide an unambiguous description of distinct puzzle states. To under-
stand why, just consider the partial configuration represented in Figure 2(a). If
we represent this situation using Chain(Str) = [. . . , Ph, Ph], then it would not
be possible to distinguish it from the state shown in Figure 2(b), which clearly
represents a substantially different situation: the disk D2 is now to the right (or
positive side) of the post hole Ph. Therefore, in an analogous way to long object
terminals, we also denote two poles1, h− and h+ per each hole h in the puzzle,
considering that in this case holes have only two entry boundaries. Thus, we can
describe Chain(x) as a list of (outgoing) hole poles – those through which x exits

when going from x− to x+. As a result, Chain(Str) = [. . . , Ph−, Ph−] would
represent Figure 2(a) whereas Chain(Str) = [. . . , Ph+, Ph+] would correspond
to the crossings in Figure 2(b).

1 We follow the same thumb rule criterion of identifying right or top as positive.
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Fig. 2. Two distinct puzzle states.

Under this setting, the solution deals with two elementary actions: an action
PassOb(t, p) for passing an object terminal t towards a hole pole p, and an action
PassH(h, p) for passing the (object containing) hole h towards the hole pole p.
For brevity sake, we omit here the detailed effects of these actions (see [1]),
although they can be guessed from the description of the puzzle’s solution in
Figure 3. In that figure, each state is identified by its sequence number plus the
pair of lists Chain(P ) and Chain(Str) in this order. The performed actions in
each transition are interlaced between each state i and the next one i + 1.

0 : [Rh+], [Sh+

1 , Ph+, Sh+

2 ]
PassOb(Str+, Ph−)

1 : [Rh+], [Sh+

1 , Ph+, Sh+

2 , Ph−]
PassOb(P+, R−) & PassH(Ph,R−)

2 : [ ], [Sh+

1 , Rh−, Ph+, Rh+, Sh+

2 , Rh−, Ph−, Rh+]
PassH(Sh2, Rh−)

3 : [ ], [Sh+

1 , Rh−, Ph+, Sh+

2 , Ph−, Rh+]
PassH(Rh,Ph+)

4 : [ ], [Sh+

1 , Ph+, Rh−, Sh+

2 , Rh+, Ph−]
PassH(Sh2, Rh+)

5 : [ ], [Sh+

1 , Ph+, Sh+

2 , Ph−]

Fig. 3. A formal solution for the Fisherman’s puzzle.

Note that State 5 has actually reached the goal since, at this point, the ring
hole Rh does not occur in any list, i.e., it is not crossed by any long object.
Rather than the particular mechanics of the puzzle, our main concern in this
work is to analyse in more detail the spatial knowledge representation used to
obtain this solution. For instance, it must be noticed that [1] used additional
information to constrain the possible actions to be performed, including a predi-
cate CannotPass(x, h) to describe when an object x cannot pass through a hole
h. The information for this predicate was assumed as given and had the form of
an explicit list of ground atoms. We claim that, with a suitable representation
for holes and objects, this predicate should be derived. Furthermore, it should
also account for groups of objects rather than for a single object x. To under-



stand why, note that if we just consider that the sphere S2 can pass through the
ring hole Rh, the action PassOb(Sh2, Rh−) (that is, moving S2 down the ring
hole) could be performed in the initial situation. But this movement is physically
impossible, since there would be a moment in which the post P and the sphere
S2 would cross Rh, and both objects altogether cannot pass through the ring.

3 A theory about holes

In this section we follow the guidelines proposed in [11, 3] and construct a basic
ontology about holes using mereological relations.

The domain objects in this work are identified with their occupancy regions.
Holes are defined as the spatial region that is part of the portion of an object’s
complement that lies inside that object’s occupancy region. We name this object
the host of a hole.

There are at least three distinct types of holes: cavities, i.e. holes that are en-
tirely hidden inside their hosts; hollows, which are superficial depressions on the
host; and, perforating holes (or tunnels), which are holes that have at least two
distinct entrance boundaries. In this paper we shall deal only with perforating
holes, since only these are relevant to the puzzle’s solutions2.

In the formalisation described below, holes are assumed as open regions whose
boundaries belong to their host objects. The relationship between holes and their
hosts is formalised using the elementary relation: H(h, x), meaning “h is a hole
in the object x” (conversely, “x is the host of h”) [3]. For example, it is a fact
about the puzzle domain described above that H(Rh, R).

As we assumed that the space is only populated by spatial regions, apart from
the relation H/2, it is convenient to include in the basic theory about holes a
set of mereological relations accounting for the degree of connectedness between
regions. In this work we assume RCC-8 ([5]) which is a first-order axiomatisation
of spatial relations based on a dyadic primitive relation of connectivity (C/2)
between two regions. Informally, assuming two regions x and y, the relation
C(x, y), read as “x is connected with y”, is true if and only if the closures of x
and y have a point in common. Assuming the C/2 relation as primitive, and that
x, y and z are variables for spatial regions, the following mereological relations
can be defined: DC(x, y), which stands for “x is disconnected from y”; EQ(x, y),
for “x is equal to y”; PO(x, y), for “x partially overlaps y”; EC(x, y), for “ the
closure of x and y are externally connected”; TPP (x, y), for “x is a tangential
proper part of y”; NTPP (x, y), for “x is a non-tangential proper part of y”;
and, TPPi/2 and NTPPi/2 are the inverse relations of TPP/2 and NTPP/2
respectively.

Assuming RCC, the relation H(h, x) can be constrained by the axioms (1)
and (2) below. Axiom (1) guarantees that the host of a hole is not itself a
hole; whereas Axioms (2) states that the hole and it’s host object are externally

2 Therefore, in the remainder of this paper we will use the words: tunnels, perforating

holes and holes interchangeably.



connected.

H(h, x) → ¬H(x, y) (1)

H(h, x) → EC(h, x) (2)

Moreover, Axiom 1 implies that the relation H is irreflexive (meaning that
no hole hosts itself) and anti-symmetric (i.e., the host cannot be a hole of its
hole).

An essential characteristic of holes is that they can be interpenetrated by
other objects. Therefore, the hole ontology has to include relations about the
relative location of a hole wrt the penetrating object. In a world uniquely pop-
ulated by spatial regions, relative location can be expressed by mereological
relations. In order to define relative location wrt a hole, we need the concept of
a hole entry boundary (EB) that is defined in [3] by the relation EB(hi, h, x),
read as “hi is the maximally connected part of the hole h (fiat) boundary that
is nowhere a boundary of the host x.” If a hole h has n entry boundaries, we
denote them as hi with 1 ≤ i ≤ n (as we deal with tunnels, n ≥ 2).

We can now express the following relations wrt an object x and a hole h:

– x is wholly outside h (WOut(x, h)) iff DC(x, h);
– x is just outside h wrt the hole entry boundary hi (JOut(x, h, hi)) iff

∃y(H(h, y) ∧ EB(hi, h, y)) ∧ EC(x, hi) ∧ ¬TPP (x, h);

– x is partially outside h wrt the EB hi (POut(x, h, hi)) iff

∃y(H(h, y) ∧ EB(hi, h, y)) ∧ PO(x, h) ∧ ¬PO(x, y);

– x is just inside h wrt the EB hi (JIn(x, h, hi)) iff

∃y(H(h, y) ∧ EB(hi, h, y)) ∧ EC(x, hi) ∧ TPP (x, h).

– x is wholly inside h (WIn(x, h)) iff

TPP (x, h) ∨ NTPP (x, h)) ∧ ¬∃hiJIn(x, h, hi).

WOut, JOut, POut, WIn and JIn are schematised in Figure 4, where the host
object is the cuboid, the hole is the cylindrical figure inside the cuboid and the
penetrating object is the v-shaped figure.

It is worth pointing out that, in contrast to [3], encoding the relative location
of an object wrt a hole using RCC relations allowed us to include both JOut
and JIn into the same formalism since RCC is defined over the closure of re-
gions. Therefore, the concepts of just inside and just outside can coexist with
the initial assumption of holes as open regions. Another difference between the
formalism presented above wrt that proposed in [3] is the inclusion of the hole
entry boundary in the definitions of JOut, POut and JIn, in order to account
for the action of an object passing through a particular hole entry.



h

(a) WOut

h

(b) JOut

h

(c)
POut

h

(d) JIn

h

(e)
WIn

Fig. 4. Relative location of an object v wrt a hole h
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Figure 4 can be understood as a sequence of continuous transitions from the
relation wholly outside to wholly inside. In order to provide a formal solution to
the Fisherman’s Folly, however, we need to be able to locate an object in space
that is WOut, with respect to every hole, but that is near a particular entry
boundary of a tunnel. In effect, tunnels are important qualitative landmarks
that could be used as local reference frames. This idea is developed in the next
section.

3.1 Hole subspaces

It is not unusual in the common language to characterise sections of a road by
the sections before and after a tunnel. In a domestic domain, we decide where to
locate (non-wireless) electronic objects according to the nearby plugs (which are,
in fact, tunnel entry boundaries). The issue of reasoning about tunnels becomes
quite critical when the problem is to locate buried infrastructure so that repairs
can be conducted on a particular network of pipes and cables underground.
However, to the best of our knowledge, there are no references that account to
the potential use of hole entry boundaries as local reference frames. This section
describes an initial attempt to cope with this issue.

Following the previously introduced notation, each entry boundary is uniquely
identified by a symbol referring to its host hole plus a subscript number. If a
global reference frame is assumed in the domain, the entry boundaries can be
identified by the 3D Cartesian coordinates of their respective centre points; thus,
the local reference provided by the entry boundaries could be associated to a
global reference frame. In this work, however, objects are only located with re-
spect to the near neighbourhoods of hole entry boundaries. An object x is in
the near neighbourhood of a hole EB hi iff x is just outside hi or there is either
another object y connected to x or a hole hx in x connected to y and y is just
outside hi or partially outside hi. More formally: NN(x, hi) iff JOut(x, h, hi) ∨
∃ y hx (H(hx, x)∧(C(x, y)∨C(hx, y))∧(JOut(y, h, hi)∨POut(y, h, hi))). There-
fore, we can say that (in the situation of Figure 1(a)) the left sphere, left disk
and a part of the string are in the NN of Ph−. It is worth noting also that,
for an object x and a hole h, NN(x, h−) and NN(x, h+) are not inconsistent
as there are feasible situations where a hole has two entry boundaries closer to
each other. In effect this is equivalent to describing the position of an object wrt
various distinct local reference frames.



We are now capable of expressing formally that an object is near a tunnel
(e.g., a car is parked outside the Eurotunnel entrance) or that objects are related
to a complex arrangement of objects and holes (which is the case of the puzzle
in question). However, in order to account for the main issues involved in the
Fisherman’s Folly, the theory has to include some basic ideas about object’s
shape so that it is capable of expressing object’s penetrability through holes.
The next section discusses some insights about this issue.

4 The shapes of objects

Representing and reasoning about objects’ shape are, at the same time, the most
elusive and the most important issues in reasoning about the common sense space
[4]. In this paper we cannot escape from taking into account objects’ shape, since
the solution of puzzles such as that shown in Figure 1 involves passing an object
of a particular shape and size, through a hole entry boundary, also of a particular
shape and size. This section presents some primitives to account for the shapes
of rigid objects and strings.

We assume in this work ellipsoids and elliptic cylinders (Figures 5(a) and
5(b), respectively) as the basic primitives to describe the shapes of rigid objects.

A

B

C

D

E
F

(a)

E

F

A

B

C
D

(b)

Fig. 5. Base shape primitive.

An ellipsoid (Figure 5(a)) is a 3D figure which every planar cross section is an
ellipsis. This figure has three symmetry axes: AB, CD and EF (cf. Figure 5(a))
that are called, respectively, major, mean and minor axes. Thus, the spheres
in our puzzle have ellipsoid shapes whose three symmetry axes are of the same
length. The post is ellipsoid shaped, where its major axis is much greater than
both its mean and minor axes.

In an analogous way, we use an elliptic cylinder (Figure 5(b)) to account
for the shapes of the puzzle objects not represented by the ellipsoid. An elliptic
cylinder is a cylinder whose base is an ellipsis. This figure also has a major, mean

and minor axes (respectively axes AB, CD and EF in Figure 5(b)). Thus, the
shape of the puzzle’s disks and ring can be approximated to cylinders whose axis
AB is much smaller than CD and EF , and the last two are of equal length. The
shape of the post base can also be approximated to a cylinder.

The string’s shape has an extra complication which is related to this ob-
ject’s intrinsic flexibility. Consequently, every different shape resulting from non-
destructive deformations of a string is also a shape of the string. In order to cope



with this issue we define the string’s shape as that of an elongated elliptical cylin-
der, where AB is much greater than CD and EF , or the shape resulting from
the application of any sequence of the transformations depicted in Figure 6 on
such elongated elliptical cylinder.

(a) (b) (c) (d)

Fig. 6. The Reidemeister moves and the cross move.

Figure 6 shows the three Reidemeister moves [6] (Figures 6(a), 6(b) and
6(c)) and the cross move [10] (Figure 6(d)), that can be described as follows:
Reidemeister move I (Figure 6(a)) adds or deletes a simple twist in the string;
Reidemeister move II (Figure 6(b)) allows the inclusion (or exclusion) of two
crossings in the string; Reidemeister move III (Figure 6(c)) slides a strand of the
string from one side of a crossing to the other; the cross move (Figure 6(d)) is
defined on simple open curves and adds or removes a string crossing by sliding
an open end of it over a continuous part of the string.

In the next section we use the shape primitives above to propose a sufficient
condition for an object to pass through an entry boundary.

4.1 Passing an object through a hole

We first assume that every object is conducted through a hole in the direction of
the largest semi-line connecting any two points of its boundary, this semi-line we
call conducting line. Thus, the post is always conducted through the ring hole
in the direction of its major axis; similarly, the disks are conducted through the
post hole via their diameters (i.e., via their mean or minor axes).

Let’s define the region of the orthogonal projection of an object o (taken
through the object’s conducting line) as pl(o) and the region defined by the
orthogonal projection of a hole entry boundary hi as p(hi). Now we say that the
object can pass through the hole if it is possible to superimpose pl(o) and p(hi)
so that

TPP (pl(o), p(hi)) ∨ NTPP (pl(o), p(hi)) ∨ (3)

EQ(pl(o), p(hi)).

This condition can be extended for the case of a group of objects passing
through a hole by simply considering, instead of the object o in (3), the convex
hull of the group of objects.

Now that we have a way of checking whether a particular object can pass
through a determined hole, the next section defines a suitable representation for
expressing the various states of the puzzle.



5 Concluding remarks

In this work we investigated knowledge representation issues regarding the spa-
tial aspects of a puzzle. The puzzle chosen is called Fisherman’s Folly and is
constituted by an arrangement of rigid objects and non-trivial elements such
as holes and a string. The goal of this paper is to define the basic elements of
an ontology about rigid, flexible and holed object, therefore we leave for future
work the problem of representing actions and change in this domain as well as
the investigation of the possible consequences of the resulting ontology.
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