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Abstract. Automatic brain segmentation is an issue of specific clini-
cal relevance in both diagnosis and therapy control of patients with
demyelinating diseases such as Multiple Sclerosis (MS). We present a
complete system for high-precision computer-assisted image analysis of
multispectral MRI data based on a flexible machine learning approach.
Careful quality evaluation shows that the system outperforms conven-
tional threshold-based techniques w.r.t. inter-observer agreement levels
for the quantification of relevant clinical parameters, such as white mat-
ter lesion load and brain parenchyma volume.

1 Introduction

In the light of current scientific discussions on the clinical role of MRI for the
evaluation of white-matter disease [1], the development of flexible innovative
strategies for computer-assisted high-precision segmentation methods is a sub-
ject of topical interest in human brain imaging. Flexibility here refers to (i) the
input, (ii) the output, and (iii) the level of human intervention required in such
systems. As far as the input is concerned, the user should have the opportu-
nity of freely choosing among different MRI sequences and various combinations
thereof. As for the output, the system should not be restricted to lesion quantifi-
cation alone, but should offer the potential to provide high-precision whole-brain
or tissue-specific segmentation as well, in order to account for global brain atro-
phy measures, e.g. Percentage of Brain parenchyma Volume (PBV), which have
recently moved into the focus of current basic and clinical research interest [2].
Finally, the system should offer different levels of human intervention: On one
hand, the development and evaluation of computer-assisted segmentation sys-
tems can benefit from the superior image analysis capabilities of human beings
which implies a higher degree of operator interaction. On the other hand, for
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Fig. 1. The segmentation system.
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large-scale clinical (e.g. multi-center) studies, however, a reduction of human in-
tervention may sometimes be helpful in situations where user interaction could
reduce reproducibility, i.e. could impose subjective bias on segmentation results.
Thus, the development, test, and evaluation of a segmentation system aiming at
the analysis of specific pathological changes in MS is a challenge that requires
considerable effort w.r.t. integrating substantial human expertise in order to op-
timize computer-assisted decision support. In this paper, we present a neural
network-based segmentation system for multispectral MRI data sets of the hu-
man brain that has been specifically designed in order to provide a high degree
of flexibility with regard to all three aspects mentioned above.

2 Methods

Data: Six patients with relapsing-remitting MS and EDSS [3] scores between
1.0 and 3.5 were included in the study. Image data were obtained on a 1.5T
MRI scanner General Electric, Signa™ employing a standardized MRI sequence
protocol including 71 and T2 weighted, Proton Density (PD) weighted, Fluid-
attenuated Inversion-Recovery (FLAIR), and Magnetization Transfer (MT) se-
quences in axial slice orientation. The T1 and MT sequences were repeated after
intravenous contrast agent administration. Total scanning time was 27.4 min.

Image Analysis: The conceptual basis of single components of our system
has been described in [4]. Here, we want to put special emphasis on the func-
tional interplay between the various components in so far as it is relevant to
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Fig.2. (a) Axial FLAIR slice of a brain containing WML; (b) WML classification
based on interactive cluster assignment using the CASCADE system; (c) supervised
automatic WML classification using a GRBF neural network; (d) CSF segmentation
by GRBF neural network classification. For explanation, see text.

brain segmentation in MS. An overview of the segmentation system is shown in
fig. 1. Thick-lined boxes indicate interactive steps. Boxes with rounded corners
refer to segmentation results. After co-registration and gray level rescaling (1)
of the input data, the intracranial cavity (ICC) is pre-segmented interactively.
For the data presented here, this step was performed manually by human expert
readers, however, (semi-)automatic techniques may be used as well, such as the
methods developed by our group [5]. In a second step, a training data set is
obtained manually comprising small reference regions labeled as “Gray Matter
(GM)”, “White Matter (WM)”, “Cerebrospinal Fluid (CSF)”, “White Matter
Lesion (WML)”, and a “Residual Class (RC)”, representing other tissues such
as meninges or larger vessels (2). Subsequently, gray level shift effects induced
by magnetic field inhomogeneities and cross-talk effects can be corrected using
the training data and the ICC masks (3, 4). For this purpose, we have developed
a specific bootstrap algorithm based on iterative improvement of a preliminary
neural network tissue classification, which will be published elsewhere. After
these preprocessing steps, each voxel within the ICC mask is assigned to a fea-
ture vector @ representing its MRI signal intensity spectrum. This set of feature
vectors is partitioned into N clusters by unsupervised learning (5) based on min-
imal free vector quantization [4]. The resulting codebook can either be used for
interactive visual tissue type classification based on cluster assignment maps (6),
or automatic supervised segmentation can be obtained by subsequent training
of a Generalized Radial-Basis Functions- (GRBF-) neural network (10), see [4].

For the interactive visual classification of cluster assignment maps, we devel-
oped a software system named CASCADE (Computer-Assisted Cluster Assign-
ment Decision Environment) which enables quick and efficient screening of clus-
ter assignment maps and underlying MRI data. Here, each feature vector « is
uniquely attributed to its closest codebook vector w; (@) according to a minimal
distance criterion in the gray level feature space, and corresponding cluster as-
signment maps (6) are constructed for visual inspection. In a second step, each
cluster j belonging to codebook vector w; is interactively assigned to a specific
tissue class A € {0,...,m} by a human expert reader. Finally, all the clusters as-
signed to each specific tissue class A are collected and merged yielding a compos-
ite cluster assignment map (7) representing the final segmentation result. Based
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Table 1. Statistical analysis of WML and PBV quantification methods w.r.t. inter-
observer agreement (univariate F-test, N = 6). The method yielding better results,
i.e. higher inter-observer agreement is printed in bold face for each pairwise comparison.

Method A Method B p-value
WML segmentation
Region Growing GRBF 0.075
Region Growing CASCADE 0.029
GRBF CASCADE 0.027
PBV calculation
GRBF Angle Image 0.003

on this tissue assignment, the isolated or merged codebook vectors representing
prototypical gray level spectra may be plotted for further visual analysis and in-
terpretation (9, 14). Finally, segmentation results may be used for tissue-specific
volume measurements (15), where spatial smoothing techniques or geometric
contingency thresholding (8) can be employed as optional post-processing steps.
An example for WML segmentation results is presented in fig. 2b.
Alternatively, for automatic supervised classification by a GRBF neural net-
work (10) the training data from step (2) and the resulting codebook from step
(5) can be re-cycled [4]. Based on the respective tissue segmentation, the WML
volume can be quantified as well (11, 13 - see fig. 2¢). Furthermore, the GRBF
segmentation approach can be used for PBV calculation based on automatic

CSFT identification (12 — see fig. 2d).

3 Evaluation and Results

In order to perform a thorough quantitative evaluation of the described prepro-
cessing and segmentation procedures w.r.t. all data processing steps involving
human interaction, WML quantification and PBV computation were performed
based on (i) interactive definition of training data sets by two different observers
independently for supervised GRBF classification of WML and PBV computa-
tion, respectively, (ii) interactive reference region contour tracing for threshold
definition of an observer-guided region growing technique [7] serving as a refer-
ence method, by two different observers independently, (iii) interactive cluster
assignment using the CASCADE system by two different observers indepen-
dently, and (iv) interactive threshold definition for the angle image method [2]
serving as a reference method for PBV computation, by two different observers
independently. The computation of inter-observer agreement levels was per-
formed according to the statistical guidelines of the British Standards Insti-
tution [6]. In order to rank the methods w.r.t. their segmentation quality, the
inter-observer agreements of CASCADE and GRBF neural network segmenta-
tion were compared to region growing, based on a univariate F-test. From the
results presented in tab. 1, it can be concluded that (i) the mean inter-observer
agreement in cluster assignment using the CASCADE segmentation procedure
is higher than in both region growing (p = 0.029) and GRBF neural network
classification (p = 0.027), i.e. there is a significant method effect; (ii) the mean
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inter-observer agreement in GRBF neural network classification is higher than
in threshold-based region growing. However, statistical analysis reveals only a
method effect of reduced significance for the comparison of GRBF neural net-
work segmentation and region growing (p = 0.075). In conclusion, interactive
cluster assignment using the CASCADE segmentation system performs signif-
icantly best in a comparison of the three methods, whereas supervised GRBF
neural network classification is slightly better than conventional region growing
serving as a reference method for WML quantification. For PBV computation,
our GRBF neural netowrk method outperforms the reference angle image tech-
nique w.r.t. inter-observer agreement at a significance level of p = 0.003.

4 Discussion

For WML quantification in MS we obtain the best segmentation results using
the CASCADE approach, where human expert knowledge is incorporated at
a “cluster level” instead of a “pixel level”, i.e. at an advanced, abstract level
of knowledge representation within the pattern recognition process. We conjec-
ture that this observation could be of particular interest in the light of ongoing
discussions on “domain knowledge data fusion for decision support” in the ma-
chine learning community. Qur study shows that computer-assisted image analy-
sis using semi-automatic neural network segmentation outperforms conventional
threshold-based techniques w.r.t. inter-observer agreement levels for both WML
quantification and PBV calculation in MRI data of MS patients. At the same
time, our segmentation system allows the radiologist and neuroscientist to choose
freely among different input MRI sequences and various combinations thereof in
order to systematically explore their contribution to brain imaging in MS.
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