An Expectation Maximization-Like Algorithm
for Multi-Atlas Multi-Label Segmentation

Torsten Rohlfing, Daniel B. Russakoff and Calvin R. Maurer, Jr.

Image Guidance Laboratories, Department of Neurosurgery, Stanford University,

Stanford, CA, USA

Abstract. We present in this paper a novel interpretation of the concept
of an “expert” in image segmentation as the pairing of an atlas image
and a non-rigid registration algorithm. We introduce an extension to a
recently presented expectation maximization (EM) algorithm for ground
truth recovery, which allows us to integrate the segmentations obtained
from multiple experts (i.e., from multiple atlases and/or using multiple
image registration algorithms) and combine them into a final segmen-
tation. In a validation study with randomly deformed segmentations we
demonstrate the superiority of our method over simple label voting.

1 Introduction

Segmentation by non-rigid registration to an atlas image is an established method
for labeling of biomedical images [1]. We have recently demonstrated [3] that the
choice of the atlas image has a big influence on the quality of the segmentation.
Moreover, we demonstrated that by using multiple atlases the segmentation ac-
curacy can be improved over approaches that use a single individual or even an
average atlas.

As Warfield et al. [5] were able to show for binary segmentations (foreground
vs. background), combining multiple expert segmentations by majority-based
consensus methods does not in general produce the best results. Instead, they
describe an expectation maximization (EM) algorithm that iteratively estimates
each expert’s quality parameters, i.e., sensitivity and specificity. The final seg-
mentation is then computed with these parameters taken into account by weight-
ing the decisions made by a reliable expert higher than ones made by a less
reliable one.

We present in this paper an extension of the Warfield method to an arbitrary
number of labels. Also, we propose a new interpretation of the term “expert”
as the pairing of a non-rigid registration method with an individual atlas. Just
as different human experts generate different segmentations, so do different reg-
istration methods using the same atlas, or the same registration method using
different atlases. Regardless of whether one or the other applies, we can utilize
our method to automatically distinguish good from bad, that is accurate from
inaccurate, segmentations and incorporate this knowledge into the segmentation
outcome.
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2 Notation and Algorithm

Let £ = {0,..., L} be the set of (numerical) labels in the segmentation. Each
element in £ represents a different anatomical structure. Every voxel in a seg-
mented image is assigned exactly one of the elements of £ (i.e., we disregard
partial volume effects), which defines the anatomical structure that this voxel
is part of. For every voxel i, let T(i) € £ be the unknown ground truth, i.e.,
the a priori correct labeling. We assume that the prior probability ¢(7'(¢) = )
of the ground truth segmentation of voxel ¢ being £ is uniform (independent of
i). During the course of the EM algorithm, we estimate weights W (¢, ) as the
current estimate of the probability that the ground truth for voxel 7 is £, i.e.,
W (i, €)= P(T(i) ={).

Given segmentations by K experts, we denote by Dy (¢) the decision of “ex-
pert”! k for voxel i, i.e., the anatomical structure that, according to this expert,
voxel ¢ is part of. Each expert’s segmentation quality, separated by anatomical
structures, is represented by a L + 1 x L 4+ 1 matrix of coefficients A. For expert
k, we define

Ak(m, 0) := P(T(i) = (| Dy (i) = m), (1)

i.e. the conditional probability that if the expert classifies voxel ¢ as part of
structure m, it is in fact part of structure ¢. The diagonal entries (£ = m)
represent the sensitivity of the respective expert when segmenting structures of
label ¢, i.e.,
k

Pl = e(t.0). (2)
The off-diagonal elements quantify the crosstalk between the structures, i.e.,
the likelihoods that the respective expert will misclassify one voxel of a given

structure as belonging to a certain different structure. The specificity of expert
k for structure £ is easily computed as

ot =37 A(m, 0). (3)

m#L

Estimation Step. In the “E” step of our EM-like algorithm, the (usually un-
known) ground truth segmentation is estimated. Given the current estimate for
A, and given the known expert decisions D, the probability of voxel i having

label ¢ is
() = OTL MW(Dli). )
WO = S T = DL ADr (07

(4)

Mazimization Step. The “M” step of our algorithm estimates the expert param-
eters A to maximize the likelihood of the current ground truth estimate deter-
mined in the preceding “E” step. Given that previous ground truth estimate g,

! Note that in the context of the present paper, we use the term “expert” for the
combination of a non-rigid registration algorithm with an atlas image.
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the new estimates for the expert parameters are computed as follows:

5 (6, m) = Zi:Dk(i):Z W (i, m) (5)
T S Wi
Obviously, since there is some label assigned to each voxel by each expert, the
sum over all possible decisions is unity for each expert, i.e.,

. D 2ip, iy= Wi, m) ; Wi, m
S deltom) = e oy (R

Incremental Computation. We note that for the computation of the next itera-
tion’s expert parameters A, we only need to know the sums of all weights W for
all voxels as well as for the subsets of voxels for each expert that are labeled the
same by that expert. In other words, only the values W (¢, j) for one fixed ¢ and
all j are needed at any given time. The whole field Wi, j) need not be present
at any time, thus relieving the algorithm from having to store an array of NV - L
floating point values. The weights W from Eq. (4) can instead be recursively
substituted into Eq. (5), resulting in the incremental formula

: . Zi:Dk(i):Z [Ter Akr (Dgr (i), m)
Ml = e T e D (o) @

Domain Restriction. Mostly in order to speed up computation, but also as a
means of eliminating image background, we restrict the algorithm to those voxels
in the combined atlas for which at least one expert segmentation disagrees with
the others. In other words, where all experts agree on the labeling of a voxel,
that voxel is assigned the respected label and will not be considered during the
algorithm.

3 Validation Study

We quantify the improvements of our algorithm over label averaging in a vali-
dation study. Three-dimensional biomedical atlases from 20 individuals [2] pro-
vide known ground truths. Simulated segmentations are generated by applying
random deformations of varying magnitudes to the original atlases. For each
ground truth, random B-spline-based free-form deformations [4] were generated
by adding independent Gaussian-distributed random numbers to the coordinates
of all control points. The variances of the Gaussian distributions corresponded
to 2, 4, and 8 voxels. A total of 20 random deformations were generated for each
individual and each o.

The randomly deformed atlases were combined into a final atlas once by label
voting, and once using our novel EM-like algorithm. Label voting simply counts
for each voxel the number of atlases that assign a given label to that voxel. The
label with most votes is assigned to the voxel in the final atlas.
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Fig.1. Mean correctness of combined segmentation over 20 individuals vs. num-
ber of random segmentations used. Results are shown for label voting (AVG) and
EM algorithm, each applied to atlases after random deformations of magnitudes
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4 Results

As a measure of segmentation quality, we compared the generated segmentation
to the original atlas and computed the percentage of correctly labeled foreground
voxels. Figure 1 shows a plot of the mean correctness over all 20 individuals
versus the number of segmentations. The EM algorithm performed consistently
better, i.e., produced more accurate combined segmentations, than simple label
voting. The improvement achieved using the EM algorithm is larger for greater
magnitudes of the random atlas deformations.

5 Discussion

This paper has introduced a novel method for combining multiple segmentations
into one final segmentation. It can be used for example to combine segmentations
generated using non-rigid registration with a population of atlas images. Our
method is an extension of an algorithm described by Warfield et al. [5]. The
equivalence of both techniques for binary segmentation (£ = {0,1}) is easily
proved by induction over the iterations of the algorithm.

Using a validation study with random segmentations and known ground truth
we were able to demonstrate the superiority of our algorithm over simple label
voting. Our algorithm particularly outperforms label voting for large variations
in the input segmentations, in our case corresponding to large magnitudes of the
random atlas deformations.
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It is worth noting that, while seemingly similar, the situation we address with
the validation study in this paper is fundamentally different from validation of
non-rigid registration. A promising approach to validating non-rigid image reg-
istration is by simulating a known deformation using a biomechanical model.
The simulated deformation is taken as the ground truth against which transfor-
mations computed using non-rigid registration can be validated. In that context
it is vitally important that the simulated deformation be based on a different
transformation model than the registration, e.g., a B-spline-based registration
must not be validated using simulated B-spline deformations.

In our context, however, the opposite is true: in this paper, we have vali-
dated methods for combining different automatic segmentations generated by
non-rigid registration. In this framework it makes sense (and is in fact necessary
to correctly model the problem at hand) that the randomly deformed segmen-
tations are generated by applying transformations from the class used by the
registration algorithm. Only in this way can we expect to look at variations in
the segmentations comparable to the ones resulting from imperfect non-rigid
registration.
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