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Abstract. We investigate the reconstruction of vessels from a small
number of Digital Subtraction Angiography (DSA) projections acquired
over a limited range of angles. Regularization of this strongly ill-posed
problem is achieved by (i) confining the reconstruction to binary ves-
sel / non-vessel decisions, and (ii) by minimizing a global functional
involving a smoothness prior. A suitable extension of the standard lin-
ear programming relaxation to this difficult combinatorial optimization
problem is exploited. Our approach successfully reconstructs a volume of
100 x 100 x 100 voxels including a vascular phantom which was imaged
from three projections only.

1 Introduction

Coronary heart diseases and strokes caused by aneurysms and stenosis are world
wide the number one killers. For that reason medical imaging that visualizes vas-
cular systems and their 3D structure is of highest importance for many medical
applications.

The process of computing the 3D density distribution within the human
body from multiple X-ray projections is well understood. Today filtered back-
projection is the fundamental algorithm for Computerized Tomography. This
algorithm, however, has its limitations. A necessary condition for its success is
the rotation of the X-ray tube of at least 180 degrees plus fan angle and the acqui-
sition of a large number of projections. There are prospective applications of 3D
where the technical setup does not allow for 180 degree rotations and therefore
filtered back-projection cannot be applied. For instance, the reconstruction of
the coronary vessels of the moving heart using the Feldkamp algorithm requires
so many data, impossible to capture by C-arm systems used during interven-
tions. The conclusion is that new algorithms are required to compute 3D data
sets out of a limited range of angles and a small number of X-ray images to push
the application of 3D imaging.

In this contribution we investigate the reconstruction of vessels from a small
number of DSA projections acquired over a limited range of angles. We use DSA
images, i.e. vessels are filled with contrast agent. The background is supposed to
be homogeneous. Therefore, we make use of the knowledge that the reconstructed
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function will contain only two values: either vessel or background. This is the
basic prerequisite for Discrete Tomography studied in this work. The restriction
to a binary function to be reconstructed compensates for the lack of projections
that are usually required for density reconstruction.

2 State of the Art

One way to describe the reconstruction problem is a system of linear equations,
Ax = b. Thereby each column of the matrix A corresponds to a voxel and each
row to a projection ray. With other words the matrix entry a; ; represents the
contribution of the j-th voxel to the i-th ray. This matrix is usually sparse since
each ray traverses only a small subset of voxels.

Considering only the linear equations it is not possible to force the voxels
to be either zero or one. Therefore the linear system is embedded into a linear
program where the voxels are kept at least within the interval [0, 1].

In the literature on discrete tomography two linear programming approaches
are known. The first one (equation 1) suggested by Fishburn, Schwander, Shepp,
and Vanderbei [2] optimizes the dummy functional ”zero”subject to the linear
projection constraints. Thus, any interior point method for solving large scale
linear programs can be used for computing some feasible point in the constraint
set.

(FSSV) min 07z, Az=b, 0<z;<1,Vj (1)
zelR™

The second approach (equation 2) suggested by Gritzmann, de Vries, and
Wiegelmann [3] replaces the dummy functional by the inner product of the one-
vector with the vector indexing the unknown voxel samples. Furthermore, the
linear projection equations are changed to linear inequalities. This ”best inner
fit” criterion thus aims at computing a maximal volume among all solutions not

violating the projection constraints.

(BIF) xnelle%{)%e—rx, Ac <b, 0<z;<1,Vj (2)

3 Main Contribution

Presuming a homogeneous dispersion of the contrast agent within the vessels
coherent solutions are more realistic. Both approaches mentioned above do not
exploit any spatial context. As a result, spatially incoherent and thus less plau-
sible solutions may be favored by the optimization process.

A common remedy is to include smoothness priors into the optimization
criterion. As we deal with integer solutions however, this further complicates
the combinatorial optimization problem. Furthermore, smoothness priors lead
to quadratic functionals which cannot be tackled by linear programming relax-
ations.



43

Inspired by recent progress of J.M. Kleinberg and E. Tardos [4] concerning
metric labeling problems, we introduce auxiliary variables to represent the abso-
lute deviation of adjacent entities. By this, spatial smoothness can be measured
by a linear combination of auxiliary variables, leading to an extended linear pro-
gramming approach. As we have already shown in [1], this method leads to much
better results in case of 2 dimensional data. In this work we extend [1] to the
3D case and study its medical applicability.

4 Approach

4.1 Discretization

The 3D-function to be reconstructed is currently represented by Haar basis func-
tions with 1-voxel support. A discrete representation of the imaging geometry is
achieved by non-uniformly sampling the function along the projection direction.
For each projection ray, this yields a linear combination of contributions from
basis functions intersecting with the ray. Each contribution is given by the line
integral over the intersection. Assembling all contributions into a linear system
finally represents the imaging process. For more details we refer the reader to

[1,5].

4.2 Preprocessing

For the reconstruction of a 100 x 100 x 100 volume a linear system of one million
unknowns has to be solved. All voxels touched by rays with zero projection value
must necessarily be zero and can therefore be removed. In case of a vascular
system it is possible to reduce the amount of unknowns significantly since the
vessels (non-zero voxels) take only a small partition of the whole volume. The
remaining voxels constituting the so called “peel volume” are determined in the
subsequent reconstruction process.

4.3 Reconstruction

The main idea is to rewrite the linear programs, shown in equation 1 and 2, as
follows:

. «Q .
(FSSV2) xrélllf{ln()—rx—i—izuj—xﬂ, Ar=b, 0<z <1, Vi (3)
{3:k)
. «Q .
(BIF2) xrélﬁln—e—rx—i—izuj—xﬂ, Ar <b, 0<z; <1, Vi (4
{3:k)
The last term in the objective functions (equations 3 and 4) measures the
difference between adjacent voxels (6-neighborhood), denoted by (-, -}. For details

on how to cast the equations 3 and 4 in linear programming relaxations of the
underlying combinatorial 0/1-optimization problems we refer to [1,4].
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4.4 Postprocessing

The linear programming step results in a solution vector  with each component
0 < z; < 1. In order to obtain a binary solution we simply used a threshold at
0.2 which led to reasonable results in our experiments, but more sophisticated
rounding techniques can be used as well (see [4,6]).

5 Results and Discussion

For evaluation purposes we constructed a vascular phantom which was scanned
from several directions by a C-arm system. However, only a few projections are
actually used for reconstruction. Each image contained 1024 x 1024 greyvalue
pixels.

Figure 1 shows the reconstruction of the phantom from three projections
with (BIF) and (BIF2). The result of (BIF2) is smoother than (BIF) which
can better be seen in the closeup, shown in figure 2.

Comparing the (BIF) approach of Gritzmann et al. to (BIF2), the latter
yields reconstructions that are less spread out over the entire volume. As can
be seen, the smoothness prior leads to significant improvement of reconstruction
quality. This clearly shows that the linear programming formulation based on
auxiliary variables yields a convex relaxation of the combinatorial optimization
problem which is tight enough to compute a good local minimum with standard
interior point solvers.

The reconstruction with (FSSV) and (FSSV2) was not possible for real
data since the problem becomes infeasible due to the strong equality constraints
on the matrix A and noisy projection data.
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(BIF) (BIF2)

Fig. 1. Reconstruction of a 100 x 100 x 100 volume from the vascular phantom using
only three projections (0, 50, and 100 degree) with (BIF) and (BIF2).

(BIF) (BIF2)

Fig. 2. Closeup of the phantom which was reconstructed with (BIF) and (BIF?2).



