
S-2-1

Patterns and their impact on system concerns

Michael Weiss
Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada
weiss@sce.carleton.ca

Abstract

Making the link between architectural decisions and system concerns explicit is a major
contribution that patterns can make. Over the past decade, there have been several efforts
to close the gap between requirements and architecture by using patterns. In this paper,
our goal is to take a step back and survey these different contributions, as well as related
efforts in other communities (such as the work on aspect-oriented requirements
engineering). From these, we identify common elements and present a perspective on
how to move forward. This thematic track on Pragmatic and Systematic Approaches in
Applying Patterns should provide a good conduit for this discussion.

1 Introduction

There has been much recent interest in understanding the link between patterns and
system concerns, also known as non-functional requirements. There is a well-recognized
gap between requirements and architecture. We also know that system concerns may be
satisfied to a differing extent by alternative architectures, and that we need to explore and
evaluate architectural alternatives (Grau and Franch 2007). The system architect is faced
with designing a system that meets both functional and non-functional requirements.

Harrison and Avgeriou (2007) suggest that patterns are a good way to understand the
impact of architectural decisions, because they contain information about consequences
and context of the pattern usage. However, they also go on to state that this information
has been of limited use, because it is not presented consistently or systematically at
present. They propose to integrate the information about the impact of patterns on system
concerns in order to increase the usefulness of architectural patterns.

Over the past decade, a number of research groups have made contributions to our
understanding of the link between patterns and system concerns. However, their work has
been dispersed and we have not leveraged the results as well as we could have. As a step
towards advancing these efforts, our goal is to summarize the existing research on the
problem and to identify lessons learned and questions for future research.

S-2-2

We have divided the surveyed contributions into three streams. The first stream is on
work that explicitly aims to link patterns and system concerns. Much of this work has
been carried out with the goal of supporting the selection of patterns, our second stream.
The third stream is concerned with work on documenting the rationale for architectural
decisions and trade-offs. Here, we will only review some representative examples.

2 Patterns and system concerns

Several papers are concerned with making an explicit link between patterns and system
concerns.1 There are three perspectives within this stream: non-functional requirements
modeling (Gross and Yu 2001; Araujo and Weiss 2002; Chung et al. 2002; Mussbacher,
Amyot and Weiss 2006), layered system architecture and non-functional patterns
(Fernandez 2003), and effective information organization (Harrison and Avgeriou 2007).

Gross and Yu (2001) examine the applicability of the well-established Non-Functional
Requirements (NFR) framework by Chung et al. (2000) to the representation and
application of patterns. The NFR framework makes the relationship between non-
functional requirements and design decisions explicit. Gross and Yu extract the
contributions of a pattern on non-functional requirements from a textual analysis of the
problem statement. They then model the impact of a pattern in terms of “softgoals”.
Softgoal is the term used by Chung et al. (2000) to indicate that, unlike functional
requirements, non-functional requirements cannot be achieved in an absolute sense, but
only to some degree. Gross and Yu (2001) use softgoals to represent the forces that a
pattern helps achieve or prevents from achieving. Solutions of patterns are represented as
operationalizing goals. They are said to “operationalize” goals, as they turn those goals
into solutions that help achieve those goals in a specific manner. Side effects of a solution
are also made explicit as part of their analysis. This approach allows the comparison and
consequent selection of patterns in terms of their impact on system concerns.

Araujo and Weiss (2002) improve on the work by Gross and Yu (2001) in an effort to
create a catalog of the impact of patterns on system concerns using a consistent
vocabulary of forces for a given domain (their domain is distributed system design). They
show how patterns can be mapped to architectural issues and decisions, resources,
constraints, and system concerns. Like Gross and Yu (2001), they model patterns using
softgoal graphs. A link between a pattern and a force in the goal graph (which the authors
call a “force hierarchy”) indicates that the pattern contributes to its achievement. Each
pattern is the result of a trade-off or balance between forces. Representing the
contributions of a pattern as a softgoal graph makes the contributions of the pattern
toward achieving the domain forces explicit. It highlights the trade-offs made by a

1 I thank my shepherd for pointing out that these patterns are also, in some sense, about the selection of
patterns. Representing the impact on system concerns is a precondition for selecting patterns. For example,
when a security pattern mitigates a particular security threat, this pattern becomes a candidate to be selected
when this threat is faced. However, none of the papers in this section directly discusses the application to
selection. Yet, clearly pattern selection builds on pattern representations such as those developed here.

S-2-3

pattern. For example, it may achieve certain forces, but hinders the achievement of other
forces. It also makes visible forces that remain unresolved after applying a pattern.

Chung et al. (2002) document the rationale for selecting design patterns that are used
together (something they call a “pattern set”) using softgoal graphs. Their approach
marries goal-oriented modeling with design reuse in the form of patterns. The approach is
also based on the NFR framework. It proposes to model the functional and non-functional
requirements of a system using the NFR framework, refine and prioritize them, and
establish architectural alternatives that meet these requirements. Next, a system designer
should consider patterns that satisfy these architectural alternatives, and analyze the
trade-offs among the architectural alternatives and their associated patterns. The approach
ends with the selection of architectures and patterns that best satisfy the non-functional
requirements identified, and instantiating the patterns in the design. For example, indirect
and direct invocation are two architectural alternatives to notify subscribers, and the
Observer pattern is a way of implementing the indirect invocation style. Indirect
invocation leads to a loosely coupled system, which improves maintainability. This link
is modeled through contributions. Pattern dependencies are also accounted for in this
approach, so selecting an Observer pattern would imply using a Factory pattern.

System concerns are impacted at all levels of a system, as pointed out by Fernandez
(2006). His particular focus is on security: access control and authorization constraints
defined at the application level need to be enforced by lower levels, such as database,
distribution, and hardware levels. Patterns provide a systematic way of reusing design
knowledge to build systems that meet specific non-functional requirements. Extending
the proposal of Araujo and Weiss (2002), Fernandez’ approach also incorporates the
notion of mapping between patterns at different levels of abstraction:

We can define patterns at all levels. This allows a designer to make sure that all levels are
secured, and also makes easier propagating down the high-level constraints.

For example, the implementation of the Authorization pattern at the application level
requires the use of the Single Access Point and Check Point patterns at the system level,
as well as patterns for file access and process creation at the operating system level.

Later, Mussbacher, Amyot and Weiss (2006) more clearly distinguish between a force
and a non-functional requirement than earlier work. They formalize architectural patterns
with the Goal-oriented Requirements Language (GRL). Forces and contributions of
individual patterns are captured using GRL. Combinations and side effects (correlations)
are described with AND graphs, and alternative combinations for a given (functional)
goal are represented with an OR graph. With the help of strategies (that is, initial
selections of candidate patterns) and propagation rules, designers can assess the impact of
their selection on the forces and find a suitable solution in their context. This context can
itself be modeled with GRL, first at the actor/dependency level and then at the level of
intentional elements (goals, softgoals, tasks, etc.) for the system. This enables global and
rigorous assessments to be made, even when many functional subgoals are considered.

S-2-4

Harrison and Avgeriou (2007) analyze the impact of patterns on system concerns and
propose a way of organizing this information so that it is more accessible and
informative. They selected well-known architectural patterns and documented the
consequences of applying these patterns in terms of their strengths and liabilities in the
form of tables that allow for easy comparison. Commenting on their analysis, they
remark that using patterns makes it less likely that architects overlook important
consequences of architectural decisions. In their words, this “relieves the architect of the
burden of being expert in all the quality attributes”. In comparison to other methods that
center around system concerns such as QASAR (Bosch 2000), patterns focus more on the
interaction among patterns and quality attributes than on specific system concerns.

Table 1 compares these approaches in terms of their features.

3 Selection of patterns

Other approaches also target the selection of patterns, and are, thus, presented in this
section, although they all include a representation of the system concerns impacted by a
pattern. This stream includes work on pattern-based design (Weiss 2003), design space
visualization (Zdun 2006), architectural decision trees (Fernandez et al. 2006), decision-
theoretic approaches to automate pattern selection (MacPhail and Deugo 2001), and
pattern search engines (Weiss and Mouratidis, 2008). Note that we limited our attention
to approaches that use system concerns as part of their decision process. There are other
approaches to pattern selection that do not consider system concerns.

Weiss (2003) describes a pattern-based approach to system design that is both goal-
driven (top-down) and pattern-driven (bottom-up) as in Error! Reference source not
found.. Their approach involves five steps: identify domain forces, document roles
(patterns are documented as role diagrams in this approach), document patterns and their
dependencies, identify the overall design goals (expressed in terms of the forces implied
by the requirements), and select patterns that help achieve them. The last step is
concerned with selecting patterns. The first three steps are steps that only pattern writers
go through, whereas the last two steps are performed by designers, who want to apply the
patterns.

Having identified the overall prioritized design goals, the architect should now select the
patterns that help achieve them. As in Araujo and Weiss (2002), the approach relies on a
softgoal representation of the patterns. The selection is performed manually with the help
of a reverse index that lists the patterns achieving a particular force. This index can be
derived from the individual softgoal graph model of each pattern. Weiss (2003) also
remarks that if we want to evaluate the effect of applying several patterns, we can
combine the softgoal graphs for the individual patterns, and obtain a softgoal graph in
which the patterns are operationalizations (designs or implementations that achieve the
softgoals). We can also compare the results of applying alternative solutions to the same
problem suggested by different patterns. The choice of the pattern depends on the
prioritization of the forces by the designer (that is, there is no single best solution).

S-2-5

H

ar
ris

on
 a

nd

A
vg

er
io

u
(2

00
7)

C
ol

um
ns

 R
ow

s

Zd
un

 (2
00

7)

C
rit

er
ia

(Q
ue

st
io

ns
?)

O
pt

io
ns

Fo
llo

w
-u

p
qu

es
tio

ns

M
us

sb
ac

he
r e

t
al

. (
20

06
)

So
ftg

oa
ls

G
oa

ls

Ta
sk

s

Ta
sk

de

co
m

po
si

tio
n,

ac

to
r

de
pe

nd
en

ci
es

G
oa

l g
ra

ph
 w

ith

st
ak

eh
ol

de
rs

A
ct

or

de
pe

nd
en

ci
es

C
hu

ng
 e

t a
l.

(2
00

3)

So
ftg

oa
ls

 O
pe

ra
tio

na
li-

za
tio

ns

C
on

tri
bu

tio
ns

C
on

tri
bu

tio
ns

Pr
io

rit
ie

s

A
ra

uj
o

an
d

W
ei

ss
 (2

00
2)

So
ftg

oa
ls

 O
pe

ra
tio

na
li-

za
tio

ns

 C
on

tri
bu

tio
ns

G
oa

l g
ra

ph

G
ro

ss
 a

nd
 Y

u
(2

00
1)

So
ftg

oa
ls

G
oa

ls

O
pe

ra
tio

na
li-

za
tio

ns

 C
on

tri
bu

tio
ns

 Fo
rc

es

Fu
nc

tio
na

l
go

al
s

Pa
tte

rn
s

Pa
tte

rn

de
pe

nd
en

ci
es

Fo
rc

e
re

la
tio

ns
hi

ps

C
on

te
xt

Table 1. Features of the different pattern representations

S-2-6

Fernandez et al. (2006) propose the use of architectural decision trees to record selected
patterns as well as alternatives that were considered but discarded. A decision tree allows
architects to make decisions about system concerns vs. functional decisions. Architects
can also later backtrack in the tree and make different decisions as the outcome of a
decision was not the expected one or the requirements change.

Zdun (2007) describes an approach to reduce the complexity of pattern selection by
employing pattern language grammars and design spaces. The approach considers quality
goals (which the author equates with forces) and pattern variants. The design space
approach extends the question-option-criteria (QOC) notation from HCI, which is related
to the goal-question-metric approach from software engineering. Instead of using QOC
analysis to visualize alternative design decisions, Zdun (2007) applies it to document the
impact of alternative patterns to the quality attributes in forces and consequences. As in
the work of Gross and Yu (2001) and Araujo and Weiss (2001), the level of abstraction
is, therefore, that of patterns, not that of concrete design decisions. The design space
approach is recursively applied, if related patterns raise new design questions.

Some proposals have been made to automate the selection of patterns. For example,
McPhail and Deugo (2001) use a weighted distance metric (where each force is weighted
by its priority) to search for matching patterns among a large number of patterns. An
interesting aspect of their proposal is to decompose forces (such as performance and
maintainability) into object-oriented quality metrics. The level of satisfaction of a force
can thus be automatically computed from the object model of the pattern solution. Their
approach is particularly suitable to compare variants of a pattern, that is, to determine
which of various versions of, say, the Visitor pattern is best for a particular design.

Schumacher (2003) describes an expert system for the retrieval of security patterns. He
proposes a representation of meta-information for security patterns, which includes the
standard context, problem, solution elements as well as pattern dependencies, but also
security-specific elements such as information about the threats a pattern protects against.
Through a set of inference rules that encode knowledge about the pattern elements and
pattern relationships, the expert system supports navigation of patterns based on pattern
relationships, and detection of conflicts and comparison of alternatives. There is also
some support for the qualitative comparison of patterns in terms of non-security forces.

Current work by Weiss and Mouratidis (2008) proposes a search engine for patterns that
employs the pattern representation by Mussbacher, Amyot and Weiss (2006). Patterns are
represented in terms of their impact on system concerns. A rules engine is used to reason
about the effect of combining patterns on system concerns, and to identify trade-offs
between system concerns. Its input is a set of system concerns that need to be satisfied,
and its output a set of patterns that meets all requirements, if they can be satisfied, or
most of them. The search engine can produce multiple pattern sets, ranked on how they
satisfy the input requirements. The reasoning process also considers pattern
dependencies: one important implication is that each pattern may add new requirements
of its own, which then drive the selection of further patterns.

S-2-7

4 Rationale for architectural decisions

This stream is concerned with related work on documenting the rationale for making
architectural decisions. It also looks at efforts undertaken under the umbrella of
separation of concerns. There are two groups of papers reviewed here: the work by
Akerman et al. (2006), Zimmermann et al. (2007) and Brito et al. (2007), which models
architectural decision making in terms of reasoning about system concerns, but does not
make explicit use of patterns, and work that treats patterns as reusable architectural
knowledge (Zimmermann et al. 2008; Harrison and Avgeriou 2007). The former work is
included here, because it has direct bearing on how we can reason about the impact of
patterns on system concerns, if we treat patterns as architecture knowledge.

Akerman et al. (2006) propose an approach to software development that focuses on
architectural decisions and uses an ontology to capture the architecture. The ontology has
major components for capturing stakeholder concerns, architectural assets, architectural
decisions, and a transformation roadmap. They present detailed models of these
components, which could provide the basis for a common vocabulary for reasoning about
architectural decisions. According to the authors, a pattern catalog of the type described
in (Araujo and Weiss 2002) may be a start to populate an enterprise architecture
ontology. Recent work by Zimmermann et al. (2007) on an Architectural Decision
Knowledge Wiki applies the theoretical framework Akerman et al. (2006) and
implements it in a tool. This work considers three levels of architectural decisions:
concept, technology, and asset. Concepts are patterns or abstract principles.

Zimmermann et al. (2008) combines pattern languages and architectural decision models.
The proposed ArchPad method facilitates the selection of patterns and provides
traceability from generic patterns to project-specific adaptations of those patterns.
Patterns are treated as a source of reusable architectural knowledge, whereas architectural
decision models document specific design decisions and the alternatives considered.
Applying a pattern means to make an architectural decision; to address the consequences
of a pattern, further architectural decisions need to be made.

The impact of architectural decisions on system concerns is also heavily researched in the
aspect-oriented requirements engineering community. A recent example is Brito et al.
(2007), who propose to use the Analytic Hierarchy Process to resolve conflicts between
system concerns. Given a set of alternatives and a set of decision criteria, the method will
determine the best alternative in a rigorous manner.

Quality attributes often interact. Changes to a system that improve one set of quality
attributes usually have unforeseen side effects on quality attributes elsewhere, as noted by
Harrison and Avgeriou (2007). An example of the complexity of the interaction of non-
functional requirements has been documented in Dyson and Longshaw (2004).

The Non-Functional Requirements (NFR) framework in Chung et al. (2000) is a goal-
oriented approach for modeling interactions between NFRs, and deriving a “good” or
(with respect to the user’s priorities) optimal software architecture. It introduces the

S-2-8

notion of a softgoal. The prefix “soft” indicates that softgoals are often subjective in
nature, unlike functional (or “hard”) goals. The NFR framework is used for documenting
design rationale, and it helps represent the relationships between design decisions and
non-functional requirements. Its extension within the Goal-oriented Requirements
Language (GRL) can also model the viewpoints of multiple stakeholders (GRL 2007).

5 Lessons Learned

Our first set of lessons learned from our survey of the literature indicates that the
literature on patterns and system concerns is still fragmented:

• There are several dispersed research efforts on enhancing our understanding of
how to link patterns and system concerns

• These efforts lack a common vocabulary and do not agree on notation2
• There is also a lack of large case studies to validate the proposed approaches,

specifically ones with industrial involvement

On the other hand, as this paper hopes to show, there are many common ideas underlying
these approaches, and their synergy should be better exploited:

• Patterns make the communication of architectural decisions easier
• Architectural decisions are made in terms of system concerns: solutions to the

same functional requirements differ in their impact on NFRs
• Patterns capture reusable architectural knowledge, so use of patterns can reduce

the effort on documenting architectural decisions and help capture rationale
• There are several related notions to represent the concept of force in patterns, and

there is an important distinction between force and non-functional requirement
• Pattern selection must take pattern dependencies into account (different

approaches use goal decomposition and pattern language grammars)
• While forces are often treated as one-dimensional (as in “performance” is a

force), they often interact in rich and complex ways
• Not all notations make the context in which a pattern is applied explicit

Acknowledgement
My thanks go to my shepherd Ed Fernandez whose probing questions and insights have
helped me clarify my initial ideas.

2 This is not to say that a variety of notations is bad, but it may be indicative of a
fragmentation of the literature into different “closed” schools

S-2-9

References

Primary references are indicated with a (*). The other references are provided as sources
supporting the argument in the paper, but are not essential reading.3

* Akerman, A., and Tyree, J., Using Ontology to Support Development of Software
Architectures, IBM Systems Journal, 45(4), 813-825, 2006

* Araujo, I., and Weiss, M., Linking Non-Functional Requirements and Patterns,
Conference on Pattern Languages of Programs (PLoP), 2002

Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, Addison
Wesley, 2003

Bosch, J., Design and Use of Software Architecture- Adopting and Evolving a Product-
Line Approach, Addison Wesley, 2000

Brito, I., Viera, F., Moreira, A., and Ribiero, R., Handling Conflicts in Aspectual
Requirements Compositions, Transactions on Aspect-Oriented Software Design III,
LNCS 4620, 144–166, 2007

Chung, L., Nixon, B., Yu, E., and Mylopoulos, J., Non-Functional Requirements in
Software Engineering, Kluwer, 2000

* Chung, L., Supakkul, S., and Yu, A., Good Software Architecting: Goals, Objects,
and Patterns, Information, Computing & Communication Technology Symposium, 2002

Davidsson, P., Johansson, S., and Svahnberg, M., Using the Analytic Hierarchy Process
for Evaluating MAS Architecture Candidates, International Workshop on Agent Oriented
Software Engineering, 2005

Dyson, P., and Longshaw, A., Architecting Enterprise Solutions, Wiley, 2004, pp. 18-22
discuss balancing non-functional requirements

* Fernandez, E., Security Patterns, International Symposium on System and Information
Security, Keynote, 2006

Fernandez, E., Cholmondeley, P., and Zimmermann, O., Extending a Secure System
Development Methodology to SOA, 2006

3 In this way, I hope to balance the trade-off between the expectation that a pattern paper
should only include a small number of references, and acknowledging the large number
of sources that have inspired and shaped this paper.

S-2-10

Grau, G., and Franch, X., A Goal-Oriented Approach for the Generation and Evaluation
of Alternative Architectures, European Conference on Software Architecture, LNCS
4758, Springer, 139-155, 2007

* Gross, D., and Yu, E., From Non-Functional Requirements to Design through Patterns,
Requirements Engineering, 6(1), 18–36, 2001

GRL, http://www.cs.toronto.edu/km/GRL, last accessed in March 2007

* Harrison, N., and Avgeriou, P., Leveraging Architecture Patterns to Satisfy Quality
Attributes, European Conference on Software Architecture, LNCS 4758, Springer, 263-
270, 2007

McPhail, J.C., and Deugo, D., Deciding on a Pattern, International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
LNCS 2070, 901–910. Springer, 2001

* Mussbacher, G., Amyot, D., and Weiss, M., Formalizing Architectural Patterns with the
Goal-Oriented Requirement Language, Nordic Pattern Languages of Programs
Conference (VikingPLoP), 2006

* Schumacher, M., Security Engineering with Patterns, LNCS 2754, Springer, 2003

Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., and Schuster, N., Reusable
Architectural Decision Models for Enterprise Application Development, International
Conference on Software Architecture, LNCS 4880, 15-32, Springer, 2007

* Weiss, M., Pattern-Driven Design of Agent Systems: Approach and Case Study,
International Conference on Advanced Information Systems Engineering, LNCS 2681,
711-723, Springer, 2003

Weiss, M., and Mouratidis, H., Selecting Security Patterns that Fulfill Security
Requirements, International Conference on Requirements Engineering, 2008

* Zdun, U., Systematic Pattern Selection Using Pattern Language Grammars and Design
Space Analysis, Software Practice and Experience, 27, 983-1016, 2007

Zimmermann, O., Zdun, U., Gschwind, T., and Leymann, F., Combining Pattern
Languages and Reusable Architectural Decision Models into a Comprehensive and
Comprehensible Design Method, Working IEEE/IFIP Conference on Software
Architecture, 157-166, 2008

