
An Equivalent-Transformation-Based
XML Rule Language

Chutiporn Anutariya1, Vilas Wuwongse2, and Vichit Wattanapailin2

1 Department of Telematics, Norwegian University of Science and Technology,
N-7491 Trondheim, Norway

Chutiporn.Anutariya@item.ntnu.no
2 Computer Science & Information Management Program,
Asian Institute of Technology, Pathumtani 12120, Thailand

vw@cs.ait.ac.th

Abstract. This paper proposes XML Equivalent Transformation (XET)
as an XML-based rule langauge for the Web, which seamlessly inte-
grates human-readable documents and computer-interpretable programs
by considering XML documents and XML expressions—an extension of
ordinary XML elements with variables—as its first class programming
entities. With XET, arbitrary XML documents, representing application
data, information or knowledge on the Web possibly encoded in certain
XML applications, become immediately a program’s input data. Manip-
ulation and computation of such an input document (data) is performed
by semantically-equivalently transforming the document successively un-
til a desirable one is obtained. The input document could be, for example,
an XML database query, and thus the output or the desirable document
is a set of XML elements yielding the answer to the query. The paper
presents the syntax and the computation mechanism of XET and also
demonstrates its application to e-business systems.

1 Introduction

Due to their expressive power, flexibility, simplicity and ease of understanding,
rules are an important information representation in computer science. They
appear as execution statements in programming languages, as constraint de-
scriptions in databases and as knowledge representations in knowledge-based
systems. They have dual interpretations: procedural and declarative ones. More-
over, a rule is normally complete within itself and does not depend on other
rules which lead to an incremental and modular manner for development of
a rule-based system. These desirable properties of rules have recently yielded
increasingly active attempts to apply rules to represent and manipulate data,
information and knowledge on the Web. Since Web data will be exchanged and
probably also stored by means of XML, most of the attempts have been focusing
on the design and development of XML-based rule languages.

There exist several XML-based rule languages which have been developed for
various purposes and applications, e.g., XSLT [7] for XML document transforma-
tion, XQuery [4] for XML query formulation and XRML [12] for knowledge-based

2 Chutiporn Anutariya et al.

systems. The Web site [5] provides a source of and link to these languages. In
order to cope with these different languages and to enable their interchange, a
shared Rule Markup Language (RuleML) is being designed [5]. Apart from XSLT,
most if not all of these rule languages are mere XML encoding of their related
original language formalisms. For example, the following rule [5] in RuleML:

<imp>
< head>

<atom>
< opr>

<rel>own </rel>
</ opr>
<var>person </var>
<var>object </var>

</atom>
</ head>
< body>

<!– explicit ’and’ –>
<and>

<atom>
< opr>

<rel>buy </rel>
</ opr>
<var>person </var>
<var>merchant </var>
<var>object </var>

</atom>
<atom>

< opr>
<rel>keep </rel>

</ opr>
<var>person </var>
<var>object </var>

</atom>
</and>

</ body>
</imp>

could be viewed as an XML encoding of the following Horn (Prolog) clause

own(Person,Object)
← buy(Person, Merchant, Object), keep(Person, Object).

(Recall that Prolog denotes variables by words starting with an upper case let-
ter.) This kind of encoding is quite different from that used by normal XML
documents. It is rare to see any business document containing tag names such
as atom, rel, and var unless its schema is specially designed to work with RuleML.
Hence, there arises a mismatch in encoding between the rules and the documents

An Equivalent-Transformation-Based XML Rule Language 3

to be processed. Extra tasks of schema as well as data conversions have to be
performed to eliminate mismatches. Moreover, these rule languages lack theoret-
ical or semantic foundations, unless they are translated back into their original
language formalisms aggravating formulation of a mechanism to validate the
correctness of any of their rule statements.

An XML rule language—XML Equivalent Transformation (XET) [3]—is pre-
sented which is founded on the Equivalent Transformation (ET) paradigm [2]—a
new, flexible and efficient computational framework. Similar to XSLT, an XET
program—a set of XET rules—is an XML document. It receives as an input a
description, e.g., a business report, a process description or an instruction docu-
ment, possibly encoded in a standard XML application such as XBRL [9]. It then
processes—semantically-equivalently transforms—the input until a desirable re-
port, process description or action instruction is obtained. In other words, an
XET program can directly manipulate an XML document without any need of
schema or data conversion. Semantically-equivalent transformation is a trans-
formation of an XML document while its meaning is preserved. The meaning or
semantics of an XML document is a set of XML elements each of which denotes
a real domain object or relationship. Each rule in an XET program must possess
this semantics-preservation property, whence its correctness can be verified while
its development and application are self-dependent.

Section 2 recalls the ET paradigm as well as XML Declarative Description
(XDD) [19, 20]—a language for the Semantic Web possibly employed to describe
XET’s target Web data, Section 3 presents XET, Section 4 demonstrates an
e-business application of XET, and Section 5 concludes the paper.

2 ET and XDD

2.1 ET

The ET paradigm is a new computational model which solves a given problem,
described in an appropriate language, by simplifying it through repetitive appli-
cation of (semantically-)equivalent transformation rules. Let P1 be a description
of the original problem and M(P1) its meaning. The meaning of a description
is a set of concrete statements each of which is a surrogate of a real, tangible or
intangible object or relationship in the domain of interest. The paradigm applies
ET rules in order to successively transform P1 into P2, P3, etc., while maintain-
ing the conditions M(P1) = M(P2) = M(P3) = . . ., until the description Pn,
the meaning of which contains desirable statements or solutions, is obtained.
An example of ET rules is the unfolding transformation which is a fundamental
computational mechanism in logic programming. Prolog, the most well-known
logic programming language, employs Horn logic to describe problems, defines
the meaning of a description as a set of ground unit clauses, and materializes
the unfolding transformation in terms of SLD resolution—its only single com-
putational mechanism.

The general form of ET rules is

4 Chutiporn Anutariya et al.

Head → Body1; Body2; . . . ; Bodyn.

where the Head consists of Object, {Condition} and each Bodyi comprises
{Executioni}, ObjectListi. In other words, an ET rule is of the form:

Object, {Condition} → {Execution1}, ObjectList1;
→ {Execution2}, ObjectList2;

...
→ {Executionn}, ObjectListn.

and reads: if the object of the head matches with the target object and the
condition is satisfied, then the n bodies fire simultaneously, i.e., each execution
is carried out and each object list replaces the target object.

An object in ET rules models a real object or relationship in an application
domain. Depending on the complexity and characteristics of the structure of
real objects and relationships, an appropriate representation language should be
employed to model them. As Web data encoded in XML are going to be dealt
with, a flexible and expressive language for the representation of XML data is
desirable. Next subsection presents such a language.

2.2 XDD

XML Declarative Description (XDD) [19, 20] is an XML-based modeling lan-
guage, which extends ordinary, well-formed XML elements by incorporation of
variables for an enhancement of expressive power and representation of implicit
information into so called XML expressions. Ordinary XML elements—variable-
free XML expressions—are called ground XML expressions. Every component of
an XML expression can contain variables, e.g., its expression or a sequence of sub-
expressions (E-variables), tag names or attribute names (N-variables), strings or
literal contents (S-variables), pairs of attributes and values (P-variables) and
some partial structures (I-variables). Every variable is prefixed by ‘$T :’, where
T denotes its type; for example, $S:value and $E:expression are S- and E-variables,
which can be specialized into a string or a sequence of XML expressions, respec-
tively.

Basically, objects and their simple relationships are explicitly represented as
ground XML expressions, while a more complex and possibly implicit one is
modeled by an XML clause C, which is an expression of the form:

H ← B1, . . . , Bn,

where n ≥ 0, H is an XML expression and Bi an XML expression or an XML
constraint, the satisfaction of which is predetermined and independent of any
XML clauses. H is called the head and {B1, . . . , Bn} the body of C. When its
body is the empty set, C will be referred to as an XML unit clause and the symbol
← is often omitted; hence, an XML element or document can be mapped directly
onto a ground XML unit clause.

An XML declarative description or simply an XDD description is a set of
XML clauses. Intuitively, given an XDD description D, its meaning is the set of

An Equivalent-Transformation-Based XML Rule Language 5

C1:� ���������		�
����
������������

C2:� ���������		�
����
��
���	������������
� � �
��	�	�����		���
���
�	��
��������������
� ����������		��

C3:� ���������		�
����
������
�����������������
� � �
��	�	�����		���
���
�	��
��������������
� ����������		��

C4:� �
���	����������
������������ !!���
� � �������"���� !!��������"���
� � ���#�
�����
����
� � � �$�
#�
��
����������%����&�&����
� � ����#�
�����
����
� � ��

�'�������
� � � �$�
#�
��
����������%������(�������
� � ���

�'�������
� ��
���	����������

C5:� �����������	�
����������������
����

����
� � ����������
���
��
� ������������	��

� � ���� �������������
����������������
����

����

� � � � � ����������
���
��
� � ���������������
� � ���������		�
����
����������������
� � � �
��	�	�����		���
���
�	��
��������������	����
� � � ����������
���
��
� � ����������		�� �

�

Application-specific ontology
definition expressed in terms of
DAML+OIL language, defin-
ing that classes
���	���������
and ����
�������������� are 	��)
���		�� class ������.

Ontology instances (applica-
tion data)

An XML clause de-
fining axiomatic se-
mantics of
��	�	��)
���		�� construct. It
specifies that if a

�	��
��* is an in-
stance of ���		+ and
���		+ is a 	�����		��
���		$, then the
�)
	��
��* is also an
instance of ���		$.

Fig. 1. An example of an XDD description D, comprising ontology definitions, in-
stances and a non-unit clause defining the axiomatic semantics of rdfs:subClassOf con-
struct.

all XML elements which are directly described by and are derivable from the unit
and non-unit clauses in D, respectively. Papers [19, 20] give theoretical details
of the theory including XML specialization system—a mathematical abstraction
which reflects the data structure and specialization/instantiation behavior of
XML expressions—and the formal semantics of XDD descriptions.

Due to its generality and expressiveness, XDD can be employed to model var-
ious types of applications such as constrained XML databases and their queries
[19], the Semantic Web [20], UML diagrams [14] and e-government knowledge
management [17]. Fig. 1 gives a sample XDD description which models a simple
ontology application. It comprises four unit clauses C1−C4, representing ontol-
ogy definitions and instances and encoded in RDF [11], RDF Schema (RDFS) [6]
and DAML+OIL [10] languages, and a non-unit clause C5, representing the ax-
iomatic semantics of the ontology modeling primitive rdfs:subClassOf. The mean-
ing of the description yields not only those elements explicitly described by the
four unit clauses, but also a derived one based on the defined non-unit clause.

6 Chutiporn Anutariya et al.

3 XET

XET (XML Equivalent Transformation) [3] is an XML-based, declarative, higher-
order programming language which seamlessly integrates XML syntax and the
ET computational paradigm. Founded on the XDD theory, XET can directly
and succinctly manipulate XML documents without a necessity for data con-
version. An XET program comprises a set of XET rules and XML elements/
documents—regarded as the program’s data or facts. Each XET rule has a sim-
ilar structure to an ET rule given in Section 2.1 except that every component of
an XET rule could be an arbitrary XML expression—a modeling of a real-world
object in a domain of interest.

Fig. 2 depicts the structure and syntax of an XET program. For the complete
grammar of XET language including all available built-in operations, expressed
in terms of an XML Schema, the reader is referred to [15].

xet:Fact is used for specification of an application’s data, which could be, for
example, a product catalog, a business report (financial statement), a process de-
scription or an instruction document, possibly encoded in a standard XML appli-
cation, e.g., XBRL. Moreover, ontologies—modeling of application-specific con-
cepts, their properties and hierarchies—expressed by ontology markup languages
such as RDF(S) and DAML+OIL, can be immediately represented in xet:Fact.
Fig. 3 gives a simple XET program which directly encodes an application-specific
ontology and its instances expressed in DAML+OIL as part of the program’s
data.

XET rules are of two types: derivation and reaction. The former are used to
specify relationships/axioms among elements in the program or used to define a
transformation behavior of certain XML elements, and the latter are employed
to define rules which will be invoked when predefined events occur. Thus, busi-
ness rules, logic, policies, axioms and queries as well as program transformation
rules are expressed as derivation rules, while event-based computation rules are
materialized by reaction rules.

With reference to Fig. 2, an xet:Rule comprises the following components:

– name;
– priority: for handling rule conflicting problems, i.e., a rule with higher priority

will override the lower ones;
– Head: containing a HeadElement which specifies an XML expression pattern

to be matched and transformed, or defines an event to be monitored for
firing the rule. In the former case, the rule becomes a derivation rule, and in
the latter a reaction rule;

– Condition (optional): encoding a list of CondElements that must be satisfied
for execution of the rule. These CondElements could be built-in or user-
defined predicates;

– Body: consisting of zero or more BodyElements, each of which is one of the
following
• an XML element to be matched with the head of other rule in the pro-

gram,

An Equivalent-Transformation-Based XML Rule Language 7

��������	�
�� ��
���������������������
���
�����������

� �������
��

�� �!��� Priority Levels ��������
��

�� �!����

� �����"
����

 Fact1
 …
 Factk�

� ������"
����

�

� �������
���
���RuleName1��������#�RulePriority1��

� � �����$�
!��

� � � HeadElement�
� � ������$�
!��

� � ��������!�������

� CondElement1
 …
 CondElementk
� � ���������!�������

� � �����%�!#��

� � � BodyElement1_1
 …
 BodyElement1_m1
� � ������%�!#��

� � �����%�!#��

� � BodyElement2_1
 …
 BodyElement2_m2
� � ������%�!#��

� � � ��

� � �����%�!#��

 BodyElementn_1
 …
 BodyElementn_mn

� � ������%�!#��

� ��������
���

�

 �
�

� �������
���
���RuleNamer �������#�RulePriorityr��

 …
� ��������
���

���������	�
���

Program’s data/facts: a set of
XML elements/documents

An XET rule consist-
ing of a Head, an op-
tional Condition and n
Bodies. Each rule has
a name and a priority
level declaration.

HeadElement is an XML element specifying the
pattern to be matched or an event to be moni-
tored for firing the rule.

CondElmenti specifies a built-in or user-defined
operation for checking of a particular rule-
execution condition.

BodyElementi_j is one of the following:

- an XML element to be matched with the
head of other rule in the program,

- a query about XML elements, or
- an XET built-in or user-defined operation.

Fig. 2. XET program structure.

8 Chutiporn Anutariya et al.

��������	�
�� ��
���������������������
���
�����������

� �������
��

�� �!����"�#�$�%��������
��

�� �!����

�����&
����
� �!
�
��

����!'�()��&
�	������
� �!
�
��

����!'�()��)�������&
�	�����
� � ��!'����*�

�� '��!'�����������&
�	������
� ��!
�
��

����
� �!
�
��

����!'�()��(�����
����

&
�	�����
� � ��!'����*�

�� '��!'�����������&
�	������
� ��!
�
��

����
�
� �)�������&
�	����!'�
*������+",,���
� � �'
�	��-���+",,��'
�	��-���
� � �!��
����	&�����
� � � �.��������!'�
�����/
�	�������
� � ��!��
����	&�����
� � �
���0��	����
� � � �.��������!'�
*�����/���
�	1�
�����
� � ��
���0��	����
� ��)�������&
�	���
������&
����

�������
���
����2�*�

�� '���������3��%���
� �����4�
!��
� � ���������		
��!'�
*������������	�
�������
� � � ���������������	�
� � ����������		
��
� ������4�
!��
� �����5�!3��
� � ���������		���!'�
*������������	�
�������
� � � ���������������	�
� � ����������		���
� � �!
�
��

����!'�()����������		����
� � � ��!'����*�

�� '��!'�������������������		
����
� � � ���������������	�
� � ��!
�
��

���� �
� ������5�!3��
��������
���

���������	�
���

Application-specific ontology
definition expressed in terms of
DAML+OIL language, defin-
ing that classes)�������&
�	��
and (�����
����

&
�	�� are ��*6
�

�� ' class &
�	��.

Ontology instances (applica-
tion data)

An XET rule defining
axiomatic semantics
of �!'����*�

�� '
construct. It specifies
that if a ��������� is
an instance of �

��5
and �

��5 is a ��*6
�

�� ' �

��., then
the ��������� is also
an instance of �

��..

Fig. 3. An example of an XET program, corresponding to the XDD description D
of Fig. 1 and denoted by P.xml, comprising ontology definitions, instances and a rule
defining the axiomatic semantics of rdfs:subClassOf construct.

An Equivalent-Transformation-Based XML Rule Language 9

�

�������	�
�
��
�����������������������	�
� ����
����	������	�
��
������
����	�
� ���������

���	�
� � ������������������������
�����	�
� ����������

���	�
� ��������
 �	�
� � ������������
���
� ���������
 �	�
��
��
��	�

��������	�

������ ��
��
�����������������������	�
� �����
����	������	�
��
������
����	�
� ����������

���	�
� � �������������������������
�����	�
� �����������

���	�
� ���������
 �	�
� � �������������
���
� ����������
 �	�
��
��
��	�

�������	�
�
��
��������������������	�

����
����	����������
����	�
���������

���	�

� � ������������������������
�����	�
����������

���	�
��������
 �	�

� � ���������������������!����
"�����	�
���������
 �	�

��
��
��	�
��������	�

Query

Query Result

���������	
���

��

�����
���������������

input

output

XET program execution

Query

XDD Description

Semantics-preserving
transformation

…

Query Result

XDD Description

Fig. 4. An example of a query and its execution by an XET program.

• a query about XML elements in the program, or
• an XET built-in or user-defined function.

The sample XET rule of Fig. 3 shows how to construct rules for defining the
axiomatic semantics of rdfs:subClassof construct. Other ontology modeling con-
structs, such as rdfs:subPropertyOf, daml:inverseOf and daml:TransitiveProperty,
can also be defined as corresponding XET rules in the same manner; this is part
of the work accomplished by [16]. Note that all variables in XET rules are pre-
fixed with their variable-type specifications; for instance, an S-variable named
uri is represented in a program as Svar-uri.

Based on the defined facts and rules of the given program P.xml of Fig. 3, a
query about all flights originating from Bangkok airport will also return those
domestic and international flights flying from Bangkok, although they are not
explicitly defined as instances of the class Flight (cf. Fig. 4).

Fig. 4 also depicts computation/execution of an XET program. A given
problem—e.g., a database query, a business transaction request or a process
execution command—is executed by successively applying semantics-preserving

10 Chutiporn Anutariya et al.

transformation rules to an XDD description, describing such a problem, until
a desirable XDD description yielding its answer is obtained. In general, given
an XDD description describing a particular problem, a set of XET rules for im-
plementing such a problem can be easily derived; thus, XDD descriptions can
be viewed as XET program specifications. Additional XET rules for improve-
ment of computational efficiency can also be devised based on certain specific
characteristics and properties of application data. Besides manually implement-
ing XET rules, their automatic generation based on a given XDD description
is envisaged. Note also that if only semantic-preserving transformation is ap-
plied in each transformation step, the correctness of the computation is always
guaranteed.

It is readily seen that other XML-based rule languages can be considered to
be special cases of XET language with strict rule syntax and rigid computation
mechanism. In addition, since XET programs are also XML documents, any off-
the-shelf tools can readily be used to edit, parse and validate the grammatical
correctness of the programs.

4 E-business Application

An XET approach to e-business application development will be presented and
a simple application of B2C and B2B travel businesses demonstrated.

4.1 E-business Application Components

This subsection discusses the key components of an e-business application and
shows how each component can be programmed in XET.

1. E-business service descriptions
In order to enable an e-business application to automatically locate and
utilize a service offered by another application, a mechanism for machine-
comprehensible description of available services in terms of their properties,
functionalities, constraints and interfaces such as inputs and outputs must
be established. Recent efforts on development of such a mechanism include
Universal Discovery Description and Integration (UDDI) [18], Web Services
Description Language (WSDL) [8] and DAML-family markup language for
service description (DAML-S) [13]. Since they are XML-based languages,
descriptions of services expressed in these language become immediately data
or facts of an XET program.

2. Ontology definitions and ontology instances
Ontologies play an important role in providing an ability to model, represent
and exchange formal conceptualization as well as information of particular
application domains in a precise, machine-understandable form. Hence, they
can provide a means for semantic interoperability among independently-
developed e-business applications. Ontology definitions—description of con-
cept- and property-hierarchies, some particular axioms and constraints (e.g.,

An Equivalent-Transformation-Based XML Rule Language 11

Table 1. Components of an e-business application.

E-business Application Components Programmed by

• E-business service descriptions XET facts encoding DAML-S,
UDDI or WSDL instances

• Ontology definitions and ontology instances XET facts encoding RDF(S)
and DAML+OIL elements

• Ontology axiomatic semantics XET rules

• Application rules and axioms XET rules

inverseOf, domain and range)—of an application domain as well as ontology
instances (application data), encoded in recently developed ontology markup
languages, such as RDF(S) and DAML+OIL, can also be mapped directly
onto elements of xet:Fact as demonstrated by Fig. 3.

3. Ontology axiomatic semantics
A definition of the axiomatic semantics of each ontology modeling primitive
can be implemented by an appropriate XET rule. Since these modeling prim-
itives often include certain notions of implication, defining their axiomatic
semantics in terms of XET rules will allow derivation of and reasoning with
XML elements in the application. Fig. 3 shows an example of such a rule
which corresponds to the meaning of rdfs:subClassOf.

4. Application rules and axioms
Apart from the ability to directly encode application-specific ontologies and
instances, XET also yields facilities for implementation of business rules, pro-
cesses, axioms and constraints, such as discounting rules and return policies,
by means of XET rules. Although these business rules are essential elements
in e-business applications, they are inexpressible by those available ontol-
ogy modeling languages. Thus, sole employment of ontology programming
languages is insufficient to e-business application materialization.

Table 1 summarizes these basic components of an e-business application and
discusses how they can be programmed in XET.

4.2 A Framework for E-business Applications

In order to provide a framework for development of e-business applications, the
following facilities have been incorporated into XET program execution engine:

1. Ontology execution engine: a predefined/precompiled XET program defining
axiomatic semantics of each RDF(S)’s and DAML+OIL’s ontology modeling
primitives;

2. Communication support and Web service execution engine: a predefined/pre-
compiled XET program which can generate an appropriate XML-based re-
quest/response message encoded in a SOAP envelope and send it to other
e-business applications according to their defined service descriptions and
service operation interfaces expressed in DAML-S;

12 Chutiporn Anutariya et al.

��������������	
����
������������

����������������

� ����������	��
����	
���
������
� ��������	
����������
� ��������	���������

� ��������	
����	��
	�
�������

� ��������	���������	������
� �������������	�����
�	��
	��
����
���������	������

� �����	���
��

�����

�����

����������
�����������	�

������	�

����������	�����������	�����������	�����������	�

��	 !"�����
	��"	�������	���

#���	�
������	��
	��������	��
�����������	
���$	����������$	%��
���$
%��
�	
������$	 �&	
����$	 �&
�
��
���$	���'

#�
����	��%����

#�
����	��������

�

Fig. 5. A framework for e-business applications.

3. Event handler: an integrated set of DOM and SAX Java API.

Based on the developed XET engine for e-business applications, an oper-
ational e-business system can be implemented as an XET program consisting
of facts and rules describing business service descriptions, ontologies and busi-
ness rules as outlined in the previous subsection. Fig. 5 illustrates the proposed
framework.

4.3 A Prototype System

By means of the proposed framework, this subsection demonstrates a prototype
system for B2C and B2B travel business applications, which comprises a B2C
service provider (a travel agent), B2B service providers (an airline, hotel, and
car rental businesses) and an e-business broker. Each of these applications are

An Equivalent-Transformation-Based XML Rule Language 13

������

��	
�������	
���

��

��

���

���

���
��
����
�������
������
�����
�

��

���

���
������
�������
����

��
����
 �����!���

������
����
"�
����
 �����!���

�
���

"�
����
 �����!���

��

���������
����

#����
 �����!���

#�����
"�
����
 �����!���

��

	
�!�����
����

��
�$�����
 �����!���

�
�!��
"�
����
 �����!���� ���������	
�	��
�	������

� ��
	�	������������

�����������

�
������!���
 �����!���

� ���������������
������
� �����
��������
� ��������
�
����
�
��	��������	��
�����

� �����������		
������
� �	
���	�������������
� �������
�	���������

� �������������������
� 	!�	���������������
����
�������
���
�	�

� ���
����������

����������
�
�����������

�
�!��
�������
������
�����
�

#�����
�������
������
�����
�

������
����
�������
������
�����
�

���

�
���
���
����

Fig. 6. A prototype system.

implemented independently by an XET program. The prototype also presents
possible employment of DAML+OIL for representation of domain-specific on-
tologies and instances and DAML-S for e-business service descriptions; these are
encoded as facts of XET programs. Application constraints, rules and logic, in-
expressible by DAML+OIL and DAML-S, are implemented in the prototype by
appropriate XET rules.

Fig.6 illustrates a possible scenario of service advertisement, discovery, com-
position, and execution, which starts when a user submits a request for service
to a travel agent via a Web browser. In the scenario:

1. A user, who wants to buy a travel package, submit their personal informa-
tion and traveling requirements to the B2C service provider ValueTravel via
HTML form. Based on the user’s requirements, ValueTravel then obtains a
list of required services from its service-composition rules. In this scenario,
assume that airline-ticket, hotel-reservation and car-rental services are de-
manded.

2. From the obtained list of required services, ValueTravel invokes a registry-
lookup service provided by the e-business broker to find a list of potential
B2B service providers.

3. In order to buy an airline ticket, let ValueTravel select ThaiAirways from
the given list of providers, qualifying the specified travel origin/destination

14 Chutiporn Anutariya et al.

constraint. It then obtains a ThaiAirways’s service ontology; thus, it will know
that, in order to acquire an airline ticket, it has to complete two processes:
GetFlightDetails and ConfirmFlightBooking.

4. Based on ThaiAirways’s service ontology specifying declarative interfaces and
conditions, ValueTravel sends a SOAP envelope encoding a request message
with passenger and travel information to ThaiAirways for execution of the
GetFlightDetails process. In response to such a message, ThaiAirways queries
its flight database and calculates ticket prices according to its predefined set
of business rules implemented as XET rules, such as:
– Child fares for children below 12 years of age are at half-price of the

standard adult fare;
– A member passenger and his/her immediate family will get a 5% dis-

count.
These rules are examples of business rules and logic which cannot be ex-
pressed by DAML+OIL and DAML-S.

After completion of its execution, ThaiAirways returns a list of Ticket-
elements with ticket fare and discount information to ValueTravel, which will
then automatically select tickets that best match the users’ constraints and
send a confirmation message back to the ThaiAirways’ ConfirmFlightBooking
process.

In order to complete the user’s request, ValueTravel then repeats Steps
2–4 on other B2B service providers for hotel reservation and car rental.

5. Finally, the service composition result, i.e., a travel itinerary, is returned to
the client browser in a human-readable form.

5 Conclusions

Founded on an expressive XML modeling language—XDD—and a flexible and
efficient computational model—ET—this paper has developed an equivalent-
transformation-based XML rule language, namely XET, which allows direct,
succinct and efficient computation of and reasoning with both explicit and im-
plicit XML elements without a necessity for data conversion. By employment of
XET, a framework for ontology-enabled e-business applications with automated
business-process capabilities has also been proposed, and a prototype system for
B2C and B2B business applications implemented with the capabilities for service
advertisement, discovery, composition, execution and interoperation. The sys-
tem, available at http://kr.cs.ait.ac.th, also helps demonstrate the framework’s
viability and indicate its potential as a solid approach to e-business applications.

References

1. Akama, K.: Declarative Semantics of Logic Programs on Parameterized Represen-
tation Systems. Advances in Software Science and Technology, Vol. 5., pp. 45–63
(1993)

An Equivalent-Transformation-Based XML Rule Language 15

2. Akama, K., Shimitsu, T., Miyamoto, E.: Solving Problems by Equivalent Trans-
formation of Declarative Programs. J. Japanese Society of Artificial Intelligence,
Vol. 13 No.6, pp. 944–952 (1998) (in Japanese)

3. Anutariya, C., Wuwongse, V., Akama, K. and Wattanapailin, V.: Semantic Web
Modeling and Programming with XDD. Proc. 1st Semantic Web Working Sympo-
sium 2001 (SWWS’01), CA, pp. 161–180 (2001)

4. Boag, S., Chamberlin, D., Clark, J., Fernandez, M., Florescu, D., Robie, J., Siméon,
J., Stefanescu, M.: XQuery 1.0: An XML Query Language, W3C Working Draft
(April 2002) http://www.w3.org/TR/xquery/

5. Boley, H.: Rule Markup Language (RuleML) (2002)
http://www.dfki.uni-kl.de/ruleml

6. Brickley, D. and Guha, R. V.: Resource Description Framework (RDF)
Schema Specification 1.0, W3C Candidate Recommendation (March 2000)
http://www.w3.org/TR/rdf-schema/

7. Clark, J.: XSL Transformations (XSLT) Version 1.0. W3C Recommendation,
(November 1999) http://www.w3.org/TR/xslt

8. Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S.: Web Services
Description Language (WSDL) 1.1 (March 2001)
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

9. Hampton, L. and vun Kannon, D.: Extensible Business Reporting Language
(XBRL) 2.0 Specification (2001)
http://www.xbrl.org/TR/2001/XBRL-2001-12-14.htm

10. Hendler, J. and McGuinness, D.L.: The DARPA Agent Markup Language. IEEE
Intelligent Systems, Vol. 15, No. 6, pp. 72–73 (2000)

11. Lassila, O. and Swick, R.R.: Resource Description Framework (RDF) Model and
Syntax Specification. W3C Recommendation, (February 1999)
http://www.w3.org/TR/REC-rdf-syntax.

12. Lee, J.K and Sohn, M.M.: Extensible Rule Markup Language – Toward the Intel-
ligent Web Platform. Communications of the ACM (2002) (to appear)

13. McIlraith, S. A. Son, T. C. and Zeng, H.: Semantic Web Services. IEEE Intelligent
Systems, Vol. 16, No. 2, pp. 46–53 (March/April 2001)

14. Nantajeewarawat, E., Wuwongse, V., Anutariya, C., Akama, K. and Thiemjarus,
S.: Towards Reasoning with UML Diagrams Based-on XML Declarative Descrip-
tion Theory. Proc. Intl. Conf. Intelligent Technologies (InTech’2000), Bangkok,
Thailand (2000)

15. Wattanapailin, V.: A Declarative Programming Language with XML. Master’s
Thesis, Computer Science and Information Management Program, Asian Institute
of Technology, Thailand (2000)

16. Suwanapong, S.: Intelligent Web Services. Master’s Thesis, Computer Science and
Information Management Program, Asian Institute of Technology, Thailand (2001)

17. Teswanich, W., Anutariya, C. and Wuwongse, V.: Unified Representation for E-
Government Knowledge Management. Proc. 3rd Workshop on Knowledge Manage-
ment in Electronic Government (KMGov2002), Copenhagen, Denmark (to appear).

18. UDDI: The UDDI Technical White Paper (September 2000)
http://www.uddi.org/pubs/Iru UDDI Technical White Paper.pdf

19. Wuwongse, V., Akama, K., Anutariya, C. and Nantajeewarawat, E.: A Data Model
for XML Databases. Proc. 2001 Intl Conf. Web Intelligence (WI-01), Maebashi,
Japan, LNAI 2198, pp. 237–246 (2001)

20. Wuwongse, W., Anutariya, C., Akama, K., Nantajeewarawat, E.: XML Declarative
Description (XDD): A Language for the Semantic Web. IEEE Intelligent Systems,
Vol. 16, No. 3, pp. 54–65 (May/June 2001)

