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Abstract. Cortex segmentation is a prerequisite for 3D neurosurgical
intervention planning. The visualization of the cortical surface along with
target and risk structures enables conservative access planning and gives
context information about the patient-specific anatomy. We present a
pipeline for the segmentation of the cortical surface in T1-weighted MR
images. To segment the cortex, we combine watershed and level set seg-
mentation. The cortex segmentation pipeline (CSP) is semiautomatic
and designed to let the surgeon influence the intermediate data at any
stage of the segmentation process. To evaluate the CSP we used the Seg-
mentation Validation Engine (SVE) by Shattuck et al. [1] and compared
the results to three different popular methods (BET, BSE and HWA).

1 Introduction

Along with risk and target structures, 3D neurosurgical intervention planning
requires a visualization of the cortex. The sulci and gyri of the cortical surface
provide anatomical landmarks which give the surgeon a better overview of the
patient-specific anatomy. The course of the sulci and their relation to the target
structure facilitates access planning along the sulci and therefore minimizes the
destruction of healthy cortical tissue. Prerequisite for the visualization is a
segmentation of the cortex. A variety of automated segmentation methods exist.
Most popular are the brain surface extractor (BSE, [2]), brain extraction tool
(BET, [3]) and the hybrid watershed algorithm (HWA, [4]). These methods let
the user specify one to three parameters, perform all calculations, and show only
the final result. In contrast, our multi-step pipeline allows the inspection (and
correction) of all intermediate results. Therefore, the need for a time consuming
trial and error process of finding the right parameters is reduced.

2 Materials and Methods

2.1 Pipeline

We integrated the cortical segmentation pipeline (CSP) into our volume data
processing and visualization platform VolV [5]. The segmentation algorithms
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are based on the Insight Segmentation and Registration Toolkit (www.itk.org).
CSP consists of three main steps: Preprocessing, watershed, and threshold level
set segmentation (Fig. 1). In the preprocessing step, we use anisotropic diffusion
filtering [6] to reduce image noise while retaining edges. The next step utilizes
the approach of Hahn et al. [7] to coarsely identify brain tissue in the volume
datasets. Here, isovalues of the denoised dataset are inverted and serve as input
for a watershed transform, leading to a set of basins. In most cases the cortex is
included in one basin, which forms the initial brain mask. To close holes in the
mask and reduce leaking, morphological operations are applied. Morphological
closing is performed with a spherical kernel with radius r = 2 and erosion with
a spherical kernel with radius r = 4.

In the last step, a refined brain mask is computed with threshold level set
segmentation. Input data are given by the original volume dataset and the
postprocessed initial brain mask from the watershed segmentation. The level
set function deforms the initial brain mask according to the propagation term

P (x, y, z) =

{
g(x, y, z)− l, if g(x, y, z) < (u− l)/2 + l

u− g(x, y, z), otherwise
(1)

with g(x, y, z) being the isovalue of an arbitrary voxel and l and u being the lower
and upper threshold. A careful selection of the level set thresholds (2.2), leads to
a brain mask without liquor and blood vessels. Postprocessing the brain mask,
leaking is reduced using morphological opening (largest connected component).

2.2 Parameter specification

To let the user influence all intermediate results and simultaneously minimize
unnecessary user interaction, we give reference values for the segmentation pa-
rameters. The first parameters are required for the selection of the watershed
preflood height and the flood level. The preflooding parameter p serves to set
all isovalues below v = gmin + p(gmax− gmin) to v, with gmin and gmax being the
minimal and maximal isovalue in the respective volume dataset. The flood level
f controls the number of basins in the segmentation result. In the evaluated
volume datasets, p = 0.1 and f = 0.35 lead to one basin enclosing the brain.

Fig. 1. Workflow of the segmentation pipeline.
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Level set thresholds l and u are directly derived from the histogram of the
volume dataset. For all cases, three specific points can be identified in the
histogram: The local minimum (min), local maximum (max), and the steep
slope (slp). In Fig. 2, three histograms with a manually fitted curve and the
three points are being showcased. Level set thresholds are chosen, so that l =
min + (max−min)/2 and u = slp.

2.3 Evaluation Methodology

To evaluate the CSP, we applied it to 40 datasets provided in the SVE [1]. SVE
compares the segmentation results (S) to a manual cortex segmentation (T )
and computes four different quality measures: Sensitivity, Specificity, Jaccard
similarity (|S ∩ T |/|S ∪ T |), and the Dice coefficient (2|S ∩ T |/(|T |+ |S|)). Ad-
ditionally SVE provides error maps of average false positives and negatives and
a table of the true positive rates for a variety of different cortical structures.

3 Results

Table 1 shows the results for the CSP compared to three of the most popular
cortex segmentation methods. With default parameters, our pipeline achieved
an accuracy in the range of the default parameters of BET, BSE and HWA. Mean
values with standard deviation are: Jaccard = 0.9239 (±0.014), Dice = 0.9604

(a) (b) (c)

Fig. 2. Example histograms with the min, max and slp marked: (a) with contrast
agent, (b) without contrast agent, (c) with signal inhomogeneities. The dashed line
marks the course of manually fitted curves.
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Table 1. Error metrics for CSP, BET, BSE, and HWA. Reference values from [1] are
shown for the default parameters and the best parameters set run.

Method Parameters Jaccard Dice Sensitivity Specificity

CSP default 0.9239 0.9604 0.9543 0.9941

BET default 0.8919 0.9420 0.9858 0.9804

-B 0.9400 0.9691 0.9627 0.9957

BSE default 0.5956 0.7272 0.9804 0.8538

-n5 -d18 -s0.7 -p 0.9394 0.9684 0.9725 0.9937

HWA default 0.8531 0.9207 0.9992 0.9693

-less 0.8537 0.9210 0.9992 0.9695

(±0.008), Sensitivity = 0.9543 (±0.018), and Specificity = 0.9941 (±0.003). The
standard deviations indicate that CSP provides satisfactory results throughout
all tested volume datasets.

4 Discussion

While Jaccard similarity and Dice coefficient fits in the range of the results of
BET, BSE and HWA and specificity is pretty high, sensitivity of the CSP is
comparatively low (Tab. 1). This especially occurs for datasets with signal inho-
mogeneities. As CSP is mainly isovalue based, we cannot deal with large signal

Fig. 3. Error maps for CSP show the average false positives (top) and negatives
(bottom). False positives occur at the venous sinus and the eye sockets, false negatives
mainly at the temporal lobe.
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inhomogeneities. For those datasets and with no inhomogeneity correction our
method has to trade leaking for undersegmentation - specificity for sensitivity.

A look at the error maps (Fig. 3) gives a more specific understanding where
undersegmentation and leaking occurs. The separation of the venous sinus from
the cortex was incomplete and in some cases the segmentation leaks into the eye
sockets. Areas with brain tissue missing in the segmentation are located in the
temporal lobe.

In the future we aim to reduce the problems of leaking and undersegmen-
tation with an inhomogeneity correction and morphological operations. Also
our threshold selection process could be automatized by fitting a curve to the
histogram and deriving the min, max, and slp from the fitted curve.
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