
Patterns 2.0: a Service for Searching Patterns∗

Aliaksandr Birukou†

DISI - University of Trento, Italy
Michael Weiss

SCE - Carleton University, Canada

January 22, 2010

Abstract

With ever-increasing number of patterns in the literature and online repositories, it can
be hard for non-experts to know about new patterns and select patterns appropriate to their
needs. We argue that a systematic way for searching patterns is required and we present
the Patterns 2.0 service, a composite software service for facilitating pattern search and
selection. The service combines several pattern-related services with a recommendation
service that allows users to share their experiences in using patterns. The contributions of
the paper are: the overview of existing services related to the problem of pattern selection,
the definition of Patterns 2.0 service, and description of its possible uses.

1 Introduction

Given the steadily growing number of patterns in the literature and online repositories, it can
be hard for non-experts to select patterns appropriate to their needs, or even to be aware of the
patterns that exist. In this paper, we present an overview of existing software services related
to pattern selection and propose a composite software service that facilitates pattern selection.
The service can combine existing pattern retrieval services with a recommendation service
that allows users to share their experiences in using patterns. We also provide different usage
scenarios of that composite service.

Almost fifteen years ago, the GoF stated the problem of selecting patterns: “With more than
20 design patterns in the catalog to choose from, it might be hard to find the one that addresses
a particular design problem, especially if the catalog is new and unfamiliar to you” [8]. As time
passed, patterns have become an integral part of many development approaches. However, the
problem of selecting patterns still exists. If anything, it has become more critical, as the number
of documented patterns has continually increased: for instance, Rising’s Pattern Almanac [17]

∗Copyright retain by authors. Permission granted to Hillside Europe for inclusion in the CEUR archive of
proceedings and for Hillside Europe website

†This research is partly supported by the EU FP7 projects COMPAS and LiquidPub

B2 – 1



lists more than 1200 patterns. In the past nine years since the publication of the almanac, many
new patterns and books on patterns have been published. The domains containing more than
ten patterns, the problem of choosing the appropriate pattern is particularly hard to solve for
inexperienced programmers [18]:

Only experienced software engineers who have a deep knowledge of patterns can
use them effectively. These developers can recognize generic situations where a
pattern can be applied. Inexperienced programmers, even if they have read the
pattern books, will always find it hard to decide whether they can reuse a pattern
or need to develop a special-purpose solution.

This quote also suggests that experienced software engineers rely on their knowledge to
select patterns to apply in a given context. Over time, they build up a good understanding of
which patterns apply to their domain. However, they also tend to be less aware of more recently
documented patterns. (This becomes very clear when we consider that for many developers the
notion of patterns still stops at the GoF book.) Developers with less experience may also ask
for advice from friends or colleagues. However, such interactions are highly personalized and
rarely documented, that is, this knowledge remains tacit. May [14] observes that patterns have
made design knowledge explicit, the process of applying patterns has become itself new tacit
knowledge. Several tools for assisting in the process of pattern selection have been developed
to make the knowledge underlying the application of patterns explicit.

Although the problem of pattern selection can be considered a particular instance of the
general problem of retrieval of relevant information from large document collections [5], it re-
quires specialized tools for a number of reasons: (i) patterns are structured documents where
different parts express very different types of information; (ii) they are often linked to each
other in a pattern language; and (iii) design patterns accumulate the experience of developers
in dealing with design problems. Therefore, besides search engines for patterns such as Pat-
ternSeer1, tools for managing pattern catalogs (see Deng [4] for an overview) and wikis such
as PatternForge2 and Planet3, existing approaches for supporting pattern selection include case
tools [9], expert systems [13], recommendation systems [3], and formal frameworks that help
reuse knowledge about patterns (see Weiss [19] for an overview of several such systems).

However, existing approaches that support pattern users in the selection of patterns have
several shortcomings: (i) they usually require additional effort during the authoring and selec-
tion process (e.g. authors need specify metadata about their patterns); (ii) pattern repositories
require effort in maintaining and updating information; (iii) they often targeted at develop-
ers, helping them to select architectural or design patterns, while there are also patterns on
organizing conferences or meetings, computer-mediated interaction patterns, which are used
by non-developers4; (iv) they rarely support collaboration and personalized recommendations.

1http://doc-it.fe.up.pt/aaguiar/space/Projects/ PatternSeer
2http://www.patternforge.net/wiki
3http:// patternlanguagenetwork.org
4Therefore in the following we use a more general term “pattern user”

B2 – 2



Thus, as May [14] says, much of the information how patterns are selected by users remains
tacit despite the existence of these tools.

In this paper we present an overview of existing services for pattern search and selection
and propose the Patterns 2.0 5 service, a composite service for facilitating pattern selection.
The service combines existing pattern retrieval, tagging, and recommendation services. The
core contribution is improving pattern search and providing assistance for pattern selection by
combining the services and integrating the recommendation service for tracking pattern usage
history. The latter provides support for social factors (tacit knowledge about how patterns are
used within an organization), collaboration (potential for linking users) and personalization
(who prefers which patterns or domains).

The proposed service address the outlined shortcomings in existing solutions for pattern
selection in the following ways: (i) it improves searching by using tagging, usage history; (ii)
using community-generated content allows for minimizing the effort in maintaining and updat-
ing information in pattern repositories; (iii) the service is orthogonal to the format and domain
of patterns, and can be used by different communities either collaboratively (sharing usage data
between different communities), or in isolation (each community consumes recommendations
based on its own usage data).

The primary audience for this paper are developers of pattern repositories and pattern re-
trieval systems, as well as researchers on the application of patterns.

The paper has the following structure: in Section 2 we review existing approaches for
pattern search and selection. In Section 3 we describe the proposed service and requirements
on the services it invokes, while in Section 4 we discuss limitations and possible extensions of
our approach. We conclude the paper in Section 5.

2 Approaches to pattern selection

Recently, there have been several efforts in making patterns available in online pattern reposi-
tories, where they can be browsed and searched by various criteria. An early example was the
Pattern Almanac [17], which is also available in electronic form6. More recent examples are
the PatternShare7 site hosted by Microsoft between 2006-2007, Yahoo Design Pattern Library8,
Sun collection of J2EE patterns9, and computer-mediated interaction patterns10. In this section,
we review existing approaches for selecting patterns stored in such repositories.

In order to store patterns in a repository, a structured pattern representation must be adopted.
There have been several proposals for structural pattern representation, most notably the Pattern
Language Markup Language (PLML) [6] and Entity Meta-Specification Language (EML) [20].

52.0 in the name is from Web 2.0, because the service uses tagging and other community-generated content
6www.smallmemory.com/almanac
7patternshare.org
8http://developer.yahoo.com/ypatterns/
9http://java.sun.com/blueprints/patterns/

10http://www.cmi-patterns.org/

B2 – 3



Existing online repositories rarely contain personalized features, although they can provide cus-
tomizable pattern properties for enhancing search [10]. To the best of our knowledge, most of
them remain oblivious to the advent of Web 2.0 and list content defined by the repository cre-
ator and provide no tagging, bookmarking and other social features. The sad thing about this
is no matter how heavily the repository is used for searching patterns, it does not change and
improve over time, if not maintained. However, several wiki-based repositories such as Pat-
ternForge were created recently trying to overcome such shortcomings and to use the power of
the community in order to enrich repositories with tags, links and other user-generated content.

There are several search engines for patterns. PatternSeer is an ongoing project that aims
at delivering a system that crawls and indexes pattern descriptions on the Internet and makes
them accessible to users via keyword-based search. The problem with current solutions is their
limited coverage of patterns. This reminds one of the problems early Internet had – just eleven
years ago it was better to use several search engines to get more different results for a query.

Several approaches exploit past user experience in order to suggest suitable patterns. The
ReBuilder [9] framework adopts a case-based reasoning approach, where cases represent sit-
uations in which a pattern was applied in the past to a software design. ReBuilder supports
the retrieval and adaptation of patterns. Cases are described in terms of class diagrams. Cases
are retrieved based on a combination of structural similarity between the current design and a
pattern, as well as the semantic distance between class names and role names in the pattern.

The authors developed a recommendation system for pattern selection [3] which is com-
plementary to systems like ReBuilder: in this system, patterns are selected on the basis of
previous actions by other users. Also, while the use of the relations in a class diagram provides
additional information about the desired pattern, such diagrams are not always available. How-
ever, since our system uses textual descriptions, and does not require an object model, it has
a wider range of potential applications. However, it probably cannot compete with ReBuilder
in domains where class diagrams are available. Finally, our system implements a collaborative
approach to pattern selection, facilitating experience sharing among users.

Several approaches propose adding formal semantics to pattern descriptions (see Weiss [19]
for an overview). As most patterns are organized in pattern languages, some approaches target
the selection of pattern(s) from such languages, thus handling relations between patterns, not
only individual pattern descriptions. Zdun [21] proposes an approach for pattern selection
based on desired quality attributes and pattern relations. The approach requires formalizing the
pattern relationships in a pattern language grammar and annotation of the patterns with their
effects on quality goals. As a result, the search space is narrowed down and the time spent
evaluating alternatives is decreased. Mussbacher et al. [15] present a goal-oriented requirement
language that formalizes the forces of patterns and relations between patterns.

Most of the existing approaches require additional efforts, such as specifying additional
information about patterns or their relations, creating a knowledge base, or organizing the col-
lection in a specific way. On the contrary, our system can handle different repositories and
pattern engines and provide recommendations and other social features. As we show in the

B2 – 4



sections below, our pattern recommendation service addresses some of the shortcomings of
existing approaches for pattern selection by combining several pattern-related services and en-
hancing them with social features such as recommendations and tagging. The only additional
(and optional) effort required is that of providing feedback, but, as we show, in some cases this
can be automated.

3 Patterns 2.0: a composite service for pattern selection

The Patterns 2.0 service composes other existing services for delivering pattern-related content
to the user. It is intended to be used by pattern users (including developers) and pattern writers.
In the following subsections, we present the architecture and use cases of the Patterns 2.0
service.

3.1 Architecture

The Patterns 2.0 service is essentially a combination of existing services related to pattern
selection. It takes as input user queries, forwards them to the appropriate services and integrates
the results. The aim of the service is to improve search of patterns and to provide assistance
for pattern selection. The nature and the purpose of the services composing the Patterns 2.0 is
explained in this section.

The Patterns 2.0 service combines the following services as shown in Figure 1:

• Pattern retrieval service. A service that provides such functionalities as searching and
retrieving patterns from a pattern repository that stores pattern descriptions. Planet is an
example of such a service. It is wiki that allows authors to contribute patterns.

• Pattern engine service. A service with functionalities similar to those of a pattern re-
trieval service, but with the key difference that the system only maintains a meta-index to
patterns described in full elsewhere. PatternSeer is an example of such a service.

• Pattern recommendation service. A service that provides recommendations11 about pat-
terns using a database of pattern usage history collected from past user interactions with
the service. An example of such service is IC-Service, a general-purpose recommenda-
tion service [2], whose application to the problem of pattern selection is described in [3].
Other examples are described in [9, 13].

• Pattern tagging service. A service with functionalities similar to those existing on many
pattern wikis: users can annotate patterns via tags, and patterns can be retrieved by an
external service based on tags. Examples include PatternForge and Planet.

11By recommendations we mean hints on patterns that may be on interest to the user, considering the submitted
query, something the user may (as opposed to must) find relevant

B2 – 5



Figure 1: Architecture of the Patterns 2.0 service. The arrows denote the invocation flow and
the labels denote information passed

Note, that we do not restrict pattern repository to GoF patterns. Instead, we assume that
several repositories that use different pattern representation formats (PLML, etc.) and
domains (patterns about security, organizing meetings, architectural patterns [12]).

Let us define possible API for the described services, in order to give more details about
what is expected from them. The API are defined using pseudo code.
Patterns 2.0 service:
Pattern[] getPatternsByProblem(problemDescription:String, context:Context)

- this function returns patterns relevant to the specified problemDescription possibly in a given
context.
Pattern[] getPatternsByKeywords(keywords:String, context:Context) - this func-
tion returns patterns relevant to the specific keywords, possibly in a given context.
saveFeedback(pattern:Pattern, keywords:String, accepted:Boolean) - this func-
tion saves feedback: which pattern was accepted/rejected for a set of keywords.
Patterns retrieval service:
Pattern[] getPatterns(keywords:String) - this function returns patterns relevant to the
specified keywords.
Patterns engine service:
URL[] getPatterns(keywords:String) - this function returns URLs to patterns relevant to the
specified keywords.
Patterns recommendation service:
Pattern[] getPattern(keywords:String) - this function returns URLs to patterns relevant to
the specified keywords.
saveFeedback(pattern:Pattern, keywords:String, action:Action) - this function
saves feedback: which pattern was found relevant for a set of keywords. Here action refers to the
feedback action, which depends on the type of user. For instance, in case of a pattern user, such actions can
be applying pattern or marking it as not relevant. In case of writer, an example of feedback action could be
rating the pattern.
Patterns tagging service:
Pattern[] getPatternsByTags(tags:String) - this function returns tagged with all speci-
fied tags.

The goal of the Patterns 2.0 service is to process the query submitted by a pattern user or a pattern writer

B2 – 6



and transform it into several ad-hoc queries that will be forwarded to the appropriate service. For instance,
to get results from the pattern tagging service, the query should be transformed into relevant tags and the
getPatternsByTag function should be invoked. Furthermore, the feedback provided by the user is
propagated to the recommendation service, to be stored in the usage history.

A query user submits to the Patterns 2.0 service includes a description of the problem and an optional
context. The problem is described by a set of keywords, optionally restricted to specific elements of the
pattern description, e.g. context or problem statement. An example of such a description could be “improve
access control”, or, in case of restriction: “improve access control, CONTEXT, SOLUTION”. An example
of the context could be the set of patterns already deployed in the project where the problem is encountered,
e.g. “Authorization, Authenticator, TrustedProxy”. The use of context can be used by the recommendation
service in order to improve recommendations. For instance, to find in the usage history the situation, which
is the most similar to the current search, the IC-Service calculates the similarity between users in terms
of their past actions (queries and feedback). We believe that the personalization and contextualization
of the query should allow for providing more relevant results than when only the simple keyword-based
search already supported by pattern engine and pattern retrieval services is used. However, since the
recommendation service does not host pattern descriptions, but only actions users performed on patterns,
one or several other services (pattern retrieval service, pattern engine service, and pattern tagging service)
are required for answering user queries.

There are three types of recommendations supported by the recommendation service:

– Recommending patterns. Recommending patterns suitable for solving a specific problem. Patterns
matching a specific problem are returned in response to a query.

– Recommending key patterns in a specific area. Suggesting a list of patterns essential to a certain
class of problems, or to the understanding of a particular repository of patterns (i.e. what is the best
order to read the patterns in order to learn to use them).

– Recommending pattern sequences. Similar to recommending patterns, but recommendations con-
sist of sequences of patterns to apply in a given situation. This takes relations between patterns into
account. Sequences can also be mined from pattern usage.

The algorithms used for producing the recommendations are outside the scope of this paper and can be
found elsewhere [3]. The purpose of this paper is to describe an architecture that embeds the recommen-
dation service as part of an integrated system for pattern selection and application.

3.2 Use cases

The Patterns 2.0 service can be used in different ways: as a component of an ad-hoc pattern management
system within an organization, on online pattern sites, as a plug-in into an IDE for developers, and so on.
In the following, we describe general use of Patterns 2.0, classify potential users of the Patterns 2.0 service,
and discuss example scenarios.

3.2.1 General description of use of Patterns 2.0

Figure 1 depict the invocation flow, described in this subsection. A user accesses the service by submitting
a query via the user interface. We assume that the Patterns 2.0 service can be accessed in a number of ways:
from a browser, from a plug-in to an IDE, or similar. After the Patterns 2.0 service receives a query, the
service forwards it to the recommendation service. The problem description part of the query is forwarded

B2 – 7



to the pattern engine and pattern retrieval services. Tags extracted from the query are forwarded to the
pattern tagging service. Each invoked service responds to the Patterns 2.0 service with a list of patterns,
which the Patterns 2.0 service combines in the results sent back to the user. In case of a pattern user, i.e. is
searching for patterns to solve a specific problem, they can also get descriptions of situations where other
users have used the pattern or a list of those users so that it is possible to discuss the problem with them.

At some point after getting the results, the pattern user applies one or several patterns. We provide the
possibility for submitting this information to the Patterns 2.0 service as part of the usage history, i.e.
feedback actions in connection with the previously submitted query. Such feedback is passed to the pattern
recommendation service. In case a writer performs a search, the feedback contains relevance of the results,
i.e. whether returned patterns are indeed related to the queried topic. In case of pattern user, the feedback
contains information about which patterns were applied to which queries. Obviously, the key problem
lies in the “observability” of the users’ feedback actions, i.e. actions of using a pattern for a problem, or
finding it relevant to the topic. In case of the pattern user, they can explicitly indicate that the pattern X
has been selected for the problem A, where the problem corresponds to a search in the history of searches.
The key challenge is providing them with motivation of doing this additional action. However, learning
from Web 2.0 lessons, there should be a way for convincing users to provide feedback if they see value in
recommendations they get as the result of this collaborative effort.

In case of the developer, the following two options can be also considered for observing feedback actions:

1. A pattern detection service (such as [1]) processes project documents and code, but in this case it is
still non-trivial to link the detected patterns back to the query.

2. A case tool which supports (semi-)automatic implementation of patterns (such as [16]) could be
used. The actions of the tool would provide the required trace. However, this case is limited to
widely known patterns, such as GoF patterns.

In case of the writer, implicit relevance feedback (i.e. the feedback not requiring additional actions from
the writer), such as clickthrough rate, time spent reading pattern description, and how the search session
ended (see [7] for an overview) can be used.

3.2.2 Users of Patterns 2.0

Potential users of the Patterns 2.0 service can be classified in several groups:

– Pattern users who lack experience in applying patterns such as students, trainees or interns, people
who are on their first architect/developer job, or have rarely used patterns before.

– People who have experience in using patterns, and, for instance, know how and when to apply the
GoF patterns, but are unfamiliar with a specific pattern collection.

– Pattern writers who would like to find patterns related to patterns they are authoring.

Concerning the first and second group of users, the proposed tool could be very effective for organizations
who maintain a pattern repository and infer which patterns are most useful under which conditions from
the users’ interaction with the repository.

With respect to the general architecture, users can play several roles when interacting with the various
services:

– Admin. Configures services for a specific group of users.

– Repository manager. Defines the collection of patterns in a pattern repository.

B2 – 8



– Pattern user. Interacts with the Patterns 2.0 service to get recommendations.

– Pattern writer. Interacts with the service to find patterns on a specific topic.

3.2.3 Possible uses of Patterns 2.0

To clarify the main uses of the Patterns 2.0 service, we consider the following specific “profiles” of the
proposed architecture:

– Poogle12. In this profile, Patterns 2.0 is used to search patterns using pattern engine and pattern
retrieval services.

– Plickr13. The use of Patterns 2.0 for tagging patterns and searching them using tags.

– PatternLens14. The use of Patterns 2.0 as a recommendation system, where users get recommenda-
tions about patterns to apply for solving a specific problem.

3.3 Example

In this section, we use an example to illustrate a possible use of the Patterns 2.0 service.

Let us assume that the Patterns 2.0 service uses a repository of security patterns, as configured by the
Admin. The patterns in the repository defined by Repository Manager and are from the collection of
security patterns previously hosted in patternshare.org [11]. Let us consider a developer who needs to
improve access control in a system that offers multiple services. Suppose that for an experienced developer
it is apparent to use the Single Access Point pattern.

However, our user does not know this, and therefore submits a query with the following problem descrip-
tion: “complex security control”. The Patterns 2.0 service obtains the Single Access Point and Role Based
Access Control patterns as results from the other services, discovers that other users previously used Single
Access Point for similar problems and sends this information to the user. The developer then submits the
feedback on the recommended patterns to the system.

Let us now consider a pattern Writer, who is preparing a pattern language on security in mobile applica-
tions, and would like to find related patterns and pattern languages. The user can submit a query on “secure
mobile applications” to the Patterns 2.0 service and it will search for related patterns in pattern repositories
and pattern search engines. The developer can browse through the list of results to see if there are related
patterns to cite in his language. One can imagine an extension of this scenario, where query consists of
patterns already present in the language, similarly to query-by-example approach.

4 Discussion

Since the Patterns 2.0 service does not store pattern descriptions, there is no copyright issues involved.

12This name combines “patterns” and “Google”, one of the most popular search engines
13This name combines “patterns” and “Flickr”, one of the most popular services for sharing (and tagging)

photos
14One of the first systems for recommending movies was named “MovieLens”, followed by several systems

with similar names in different domains

B2 – 9



Figure 2: Using Patterns 2.0 for applying and detecting patterns in code.

The quality of Patterns 2.0 results obviously depends on the quality of its component services. One of
possible future work directions can be investigation if Patterns 2.0 can perform better than the component
services.

We can consider one additional use case for Patterns 2.0, shown in Figure 2. In this case, ad-hoc tools are
adopted for automation of applying patterns and detecting them in the code. This Figure introduces two
new services:

– Code generation service. A service that can generate code templates implementing the selected
pattern. An example is described by O’Cinneide and Nixon [16].

– Pattern detection service. A service that analyses code to determine instances of patterns that occur
in the code. The PTIDEJ tool [1] provides such functionality.

Such services can be also used by the Patterns 2.0 service for gathering feedback on chosen
patterns and for providing pattern usage history, correspondingly. However, in the architecture
of the Patterns 2.0 service, described in this paper, we leave out the description of tools that
automatically generate code implementing patterns (code generation services) and of tools that
automatically detect patterns in the code. The reasons why we do not include these tools are:
(i) Even though several approaches for automatic detection and code generation have been pro-
posed, the tools remain at the stage of prototypes and were not taken by the mainstream of IDE
tools; (ii) such tools are usually limited to GoF patterns, while our solution is more general
and does not depend on the repository; (iii) we would like to beyond software patterns, rec-
ommending also other types of patterns (e.g., patterns for organizing meetings or conferences),
and such patterns are not related to code.

In this work we do not consider pattern languages that organize patterns in collections. The
use of such languages can provide additional information for improving pattern selection, es-
pecially in the case of recommending sequences of patterns. The inclusion of pattern languages
can be one of future work directions.

B2 – 10



5 Conclusion

We presented the architecture and use cases of a composite service for facilitating the selection
of patterns. A unique aspect of this service is its use of different types of services and shar-
ing experiences among pattern users. The service composes other existing services (such as
existing pattern repositories or pattern tagging services) for delivering pattern-related content
to the user. Future work will include the definition of standard APIs for the services compos-
ing Patterns 2.0 and implementation of the service. This goal requires a collaborative effort
of the creators of pattern management tools, and progress towards this end has been made
over the last year. Information about the further development of this work will be available at
http://disi.unitn.it/˜birukou/pattern_selection.

Acknowledgement

We would like to thank our shepherd Klaus Marquardt for his many insightful comments.

References

[1] H. Albin-Amiot, P. Cointe, Y.-G. Gueheneuc, and N. Jussien. Instantiating and detecting
design patterns: Putting bits and pieces together. In International Conference on Auto-
mated Software Engineering, pages 166–173, 2001.

[2] A. Birukou, E. Blanzieri, V. D’Andrea, P. Giorgini, N. Kokash, and A. Modena. IC-
Service: A service-oriented approach to the development of recommendation systems. In
Proceedings of ACM Symposium on Applied Computing. Special Track on Web Technolo-
gies, 2007.

[3] A. Birukou, E. Blanzieri, P. Giorgini, and M. Weiss. A multi-agent system for choosing
software patterns. Technical Report DIT-06-065, University of Trento, 2006.

[4] J. Deng, E. Kemp, and E. G. Todd. Managing UI pattern collections. In ACM SIGCHI New
Zealand Chapter’s International Conference on Computer-Human Interaction, pages 31–
38, New York, NY, USA, 2005. ACM.

[5] W. Fan, M. Gordon, and P. Pathak. On linear mixture of expert approaches to information
retrieval. Decision Support Systems, 42(2):975–987, November 2006.

[6] S. Fincher. PLML: Pattern language markup language. report of workshop held at CHI,
Interfaces, 56 (pp. 26-28). Technical report, 2003.

[7] S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White. Evaluating implicit measures
to improve web search. ACM Trans. Inf. Syst., 23(2):147–168, 2005.

B2 – 11



[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., 1995.

[9] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. L. Ferreira, and C. Bento. Using
CBR for automation of software design patterns. In European Conference on Advances
in Case-Based Reasoning, pages 534–548, London, UK, 2002. Springer-Verlag.

[10] S. L. Greene, P. M. Matchen, L. Jones, J. C. Thomas, and M. Callery. Tool-based deci-
sion support for pattern assisted development. In CHI 2003 workshop on HCI Patterns:
Concepts and Tools, 2003.

[11] M. Hafiz, P. Adamczyk, and R. E. Johnson. Organizing security patterns. Software, IEEE,
24(4):52–60, 2007.

[12] N. Harrison, P. Avgeriou, and U. Zdun. Architecture patterns as mechanisms for capturing
architectural decisions. IEEE Software, July-August 2007.

[13] D. C. Kung, H. Bhambhani, R. Shah, and G. Pancholi. An expert system for suggesting
design patterns: a methodology and a prototype. In T. M. Khoshgoftaar, editor, Soft-
ware Engineering With Computational Intelligence, Series in Engineering and Computer
Science. Kluwer International, 2003.

[14] D. May and P. Taylor. Knowledge management with patterns. Communications of the
ACM, 46:94–99, 2003.

[15] G. Mussbacher, M. Weiss, and D. Amyot. Formalizing architectural patterns with the
Goal-oriented Requirement Language. In Nordic Pattern Languages of Programs Con-
ference, September 2006.

[16] M. O’Cinneide and P. Nixon. Automated software evolution towards design patterns. In
International Workshop on Principles of Software Evolution, pages 162–165. ACM, 2001.

[17] L. Rising. The Pattern Almanac. Addison-Wesley Longman Publishing Co., Inc., 2000.

[18] I. Sommerville. Software engineering. Addison-Wesley, Boston, MA, USA, 7th edition,
2004.

[19] M. Weiss. Patterns and their impact on system concerns. In European Conference on
Pattern Languages of Programs, 2008.

[20] L. Welicki, J. M. C. Lovelle, and L. J. Aguilar. Patterns meta-specification and cataloging:
Towards a more dynamic patterns life cycle. In International Workshop on Software
Patterns: Addressing Challenges at COMPSAC 2007, 2007.

[21] U. Zdun. Systematic pattern selection using pattern language grammars and design space
analysis. Software: Practice and Experience, 37(9):983–1016, 2007.

B2 – 12


