
Aspect-Oriented Patterns for the Realization of
Flexible Feature Binding

Kwanwoo Lee
Department of Information Systems Engineering

Hansung University
Seoul, Korea

kwlee@hansung.ac.kr

Abstract—Feature selection is the process of determining
features that should be included in a product to satisfy the
requirements for the various stakeholders. Feature binding time
refers to the time at which variable features are selected for a
product and their implementations are bound into the product.
A feature may have different binding times for different prod-
ucts. In this paper, we present an aspect-oriented approach to
supporting flexible feature binding time.

Index Terms—component; formatting; style; styling;

I. INTRODUCTION

In software product line engineering, a product is derived
by selecting some of product line features that satisfies the
product requirements. Feature selection is the process of
determining features that should be included in a product to
satisfy the requirements for the various stakeholders.

The time at which features are selected for a product may
vary depending on marketing strategies. For instance, one
marketing strategy may be to deliver products to customers
by prepackaging product specific features, as customer needs
in this market rarely change. In this case, product specific
features may be selected for a product during product build
time. On the other hand, another marketing strategy may be
to allow customers to start with a product with core features
and then grow to a bigger one by adding new features at load
time or run time. In this case, product specific features may
be selected for products at product load time or run time.

Feature binding time refers to the time at which variable
features are selected for a product and their implementations
are bound into the product. Feature binding time has signif-
icant influences on the way a feature is implemented. There
are many variability mechanisms for realizing feature binding
times. Some of those include conditional compilation, macro
processing, virtual dispatch tables, reflection, dynamic class
loading, etc.

These mechanisms, however, are strongly tied to a particular
choice of binding time [1]. The problem may occur when a
feature may have different binding times for different products.
That is, the variability of feature binding time affects the way
a feature is implemented. To support multiple feature binding
times effectively, code for feature binding times needs to be
separated from feature implementations.

Aspect-oriented programming (AOP) provides effective
mechanisms for separating crosscutting concerns from mod-

ular components. Since the code for multiple feature binding
times may affect multiple feature implementation components,
this paper uses AOP mechanisms to achieve flexible feature
binding time. That is. The approach makes it possible to
choose among compile-time, load-time and run-time binding
for selected features.

For better understanding of this paper, the next section
presents the concept of feature binding. Based on this un-
derstanding, aspect-oriented patterns for supporting flexible
feature binding time are presented in section 3. Section 4
discusses areas requiring further research and concludes this
paper.

II. FEATURE BINDING

A feature has to be bound into a product to provide its
capability to users. As shown in Fig. 1, an unbound feature
must be first included into a product to provide its capability.
However, it is considered that a feature is not bound into a
product, if it is not available to users although included in
the product. Therefore, feature binding means that a feature
is included into a product and become available to users. It is
important to note that available features that are bound into a
product can provide their capabilities to users only when they
are active.

Unavailable Inactive Active

Available to users

activated

deactivated

made available

made unavailable

selected

deselected

Included in a product

Unbound

Fig. 1. Feature Binding Context.

For feature binding to occur, the inclusion and availability of
a feature may be decided simultaneously at compile time, load
time, or run time. Or, the inclusion of a feature is decided at
compile time, but its availability may be postponed until load
time or run time.

Feature binding at compile time: In this case, the code
related to the selected features is included into a product and
becomes available to customers at compile time, while the
code for deselected features is excluded from the product. This
results in different packaging of the product.

Feature binding at load time: There are two cases for load
time feature binding to occur. The first case is that features
are included into a product at compile time and become
available at load time. The second case is that the inclusion
and availability of features are decided at load time. The main
difference between the compile feature binding and the load
time feature binding is that the software derived from the
compile time feature binding must be compiled, whereas that
from the load time feature binding needs not.

Feature binding at run time: Feature binding in this class is
similar to the load time feature binding. That is, features are
included into a product at compile time and become available
at run time or included at product load time and available at
run time. Alternatively, both the inclusion and availability of
features are decided at run time.

Depending on the inclusion and availability decisions of a
feature, it may have to be implemented in different ways. In
the next section, we present an aspect-oriented approach to
supporting flexible feature binding times.

III. ASPECT-ORIENTED DESIGN PATTERNS

The current AspectJ weaver provides explicit support for
compile-time and load time weaving. This implies that if we
implement variable features with aspects, we do not need to
change the aspects to support for either compile-time or load-
time feature binding. However, when we want to implement a
load-time binding feature that has to be included at compile-
time and becomes available at load-time, we have to change
the feature implementation to support the required feature
binding decisions. Moreover, if we consider run-time feature
binding, we may have to change the feature implementation
as well. This implies a feature with multiple binding times
may have to be implemented differently depending on which
binding time decisions are decided for a product.

In this section, we present aspect-oriented design patterns
for supporting flexible feature binding times.

A. Variable Inclusion Decisions

For feature binding to occur, the code implementing a
feature must be included in a product and integrated with the
other code for the product. Since the time at which a feature
is included in a product may vary for different products in a
product line, the variable inclusion times may require variable
feature implementations.

To support flexible binding times effectively, the code
implementing the decision on feature inclusion needs to be
separated from the code implementing the core functionality
of a feature. As shown in Fig. 2, CompileTimeBinding
is an aspectual implementation for integrating the module
(VFModule) implementing a variable feature with the module
(CFModule) in the scope of a product at compile time.

The pointcut variationPoint defines the join points in
CFModule at which VFModule is bound into a product.
The advice body in CompileTimeBinding defines actual
binding between CFModule and VFModule. If VFModule
and CompileTimeBinding are given to a AspectJ compiler
at compile time, the compiler produce a weaved product.

<<module>>

CFModule

method1()

pointcut variationPoint()
advice(): variationPoint() {

featureModule.method2();
}

<<module>>

VFModule

method2()

advices

CompileTimeBinding

<<aspect>>

VFModule featureModule =
new VFModule();

Fig. 2. Compile-Time Inclusion Pattern.

Note that AspectJ provides explicit support for load
time weaving. Therefore, we can integrate VFModule and
CompileTimeBinding with an existing product at load
time, simply by including them before program execution.

<<module>>

CFModule

method1()

pointcut variationPoint()
advice(): variationPoint() {

if (featureModule!= null)
featureModule.method2();

}

<<module>>

VFModule

method2()

advices RunTimeBinding

<<aspect>>

void include(VFModule a) {
featureModule = a;

}
void exclude(VFModule a) {..}

VFModule featureModule;

Fig. 3. Run-Time Inclusion Pattern.

Although AspectJ does not provide support for run time
weaving, we can implement the run time feature binding which
includes the implementation of a variable feature in a product

at run-time. As shown in Fig. 3, RunTimeBinding allow
VFModule implementing a variable feature to be included in
a product scope and integrated with CFModule, which is an
implementation module in the product scope.
RunTimeBinding is similar to CompileTime-

Binding in that it specifies the join points used to integrate
CFModule and VFModule using pointcut definitions.
However, their integration is deferred until the actual instance
of VFModule is included in the product at run-time. A
external configurator has the responsibility for including the
instance using the include method based on the user’s
decision at run-time.

B. Deferring Availability Decisions

Although AspectJ weaver does not provide explicit support
for run-time weaving, we can support runtime feature binding
using AOP, in case inclusion is determined at compile-time
but availability is decided at load-time or run-time. That is,
availability of included aspects is decided by enabling or
disabling advices in the aspects.

<<module>>

CFModule

method1()

pointcut variationPoint()
advice(): variationPoint() && if(isAvailable){

featureModule.method2();
}

<<module>>

VFModule

method2()

advices CompileTimeInclusion

<<aspect>>

VFModule featureModule = new VFModule();
boolean isAvailable = false

<<aspect>>

LoadTimeAvailablity

LoadTimeAvailability() {
isAvailable =
Configurator.isSelected(“vFeature”);

}

<<aspect>>

RunTimeAvailablity

void setAvailable(boolean on} {
isAvailable = on;

}

Fig. 4. Variable Availability Pattern.

Fig. 4 shows how to support the load-time or run-
time binding of a variable feature, which is included
at compile time but becomes available during load-time
or run-time. CompileTimeInclusionNotAvailable
is similar to CompileTimeBinding shown in Fig. 2
except that the boolean type variable isAvailable
is used to allow the availability decision to be de-
cided in its child aspects (LoadTimeAvailability and
RunTimeAvailability).
LoadTimeAvailability determines the value of

isAvailable when the aspect is created by consulting
with an external configuration, which has responsibility for

configuring a product after compilation. On the other hand,
RunTimeAvailability sets the variable isAvailable
to true using the method setAvailable. But the decision
is made by an external configurator at run-time.

With these patterns, we can clearly separate binding time
decisions from the code implementing the core functionality
of a feature. This enables us to select different choices among
multiple feature binding implementations when a feature has
multiple feature binding times.

IV. RELATED WORK

The concept of feature binding time was first introduced by
Kang et al. [3]. Gurp et al. [5] elaborated it more precisely
and provided a classification of many variability realization
techniques. A broad range of mechanisms exist to implement
different binding times, including the use of compiler direc-
tives, dynamic linking and loading, load tables, reflection,
plug-ins, configuration files, etc. However these solutions are
limited in that each supports only a specific binding time. They
cannot be used effectiely in a situation where the binding
time of a feature may vary depending on different product
requirements.

Dolstra et al. [2] introduced the notion on the variability of
feature binding time as timeline variability. However, they do
not provide concrete mechanisms for realizing flexible feature
binding time. They only suggested some future directions for
the solutions.

There have been several attempts to realize flexible feature
binding time. Hoek [6] proposed architecture-based approach
to support any-time variability. The Koala component model
[7] allows connection between components to be established
either at compile time or at run time through a switch.
Depending on the setting of a switch, the Koala compiler
generates C code for connecting components either at compile
time or at run time. Both of these approaches specify product
line variabilities at design time, but resove them at any time
thereafter. On the other hand, the approach presented in this
paper uses aspect-oriented design patterns using AOP.

Similar to our approach, Edicts [1] uses AOP for flexible
feature binding. However, it only supports run time feature
biding which includes a feature at compile time and makes it
available at run time. But our approach can add more flexibility
of feature binding time from different choices of inclusion and
avaiability decisions.

V. RESEARCH ISSUES AND CONCLUSIONS

In this paper, aspect-oriented patterns are introduced to
support flexible feature binding times. There are many issues
that have to be addressed before this approach becomes useful.
Some of these issues are summarized below:

• Method: We need methods for analyzing feature binding
time, developing a software product line applying the
patterns presented above, deriving a product based on a
feature configuration, which can be determined at either
compile-time, load-time, or run-time.

• Feature model extension: Although there have been many
attempts to extend the original feature model [3], there
has been no attempt to model the variability of feature
binding time. Since the inclusion and availability deci-
sions for feature binding are affected by resources avail-
able during run time or development environments such
as programming languages or operating environments,
when we model variabilities of feature binding time, we
may take into account constraints or dependencies from
various sources (e.g., available resources). Also we may
have to consider finer classification of feature binding
times.

• Implementation mechanism: In this paper, we illustrated
the patterns using AspectJ. However, more advanced
mechanisms such as Prose [4], which supports run-time
weaving, can be used to support flexible feature binding
time. Which one among current available technologies or
mechanisms can be best utilized for achieving this goal?
We need to analyze pros and cons for each technology
or mechanism.

In this section, we have examined some of research issues
that have to be addressed. Although we are at an early stage
of research, most of research topics discussed above are being
addressed.

ACKNOWLEDGMENT

This work was supported by the Korea SW Industry Pro-
motion Agency (KIPA)

REFERENCES

[1] V. Chakravarthy, J. Regehr, E. Eide, Edits: Implementing Features with
Flexible Binding Times, AOSD’08, 2008.

[2] E. Dolstra, G. Florijin, E. Visser, Timeline Variability: The Variability
of Binding Time of Variation Points, Proceedings of the Workshop on
Software Variability Management, 2003, pp. 119-122.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-Oriented
Domain Analysis (FODA) feasibility study, Software Engineering Institute
Technical Report CMU/SEI-90TR-21, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 1990.

[4] A. Popovici, T. Gross, G Alonso, Dynamic Weaving for Aspect-Oriented
Programming, Proceedings of the 1st international conference on Aspect-
oriented software development, Enschede, The Netherlands, 2002, pp.
141-147

[5] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of variability
realization techniques, Software-Practice & Experience, 35(8), pp. 705-
754, 2005.

[6] A. van der Hoek, Design-Time Product Line Architecture for Any-
Time Variability, Science of Computer Programming, Vol. 53, Issue 3,
December 2004, pp. 285-304

[7] R. van Ommering, Building Product Populations with Software Compo-
nents, ICSE’02, May 19-25, 2002, pp.255-264

