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Abstract
Real-time elastodynamic simulations in Extended Reality (XR) environments show promise for supporting remote emergency
medical procedures during disasters. However, determining the optimal combination of energy models and computational
frameworks for real-time 3D elastodynamic simulations is complex due to the multitude of existing methods and their
potential combinations. This paper introduces a 2D energy-based Finite Element Method (FEM) prototyping framework
designed to facilitate comparative analysis of various energy models across different computational frameworks. To enable
the reproduction of disaster scenarios in 2D space, we propose an algorithm for semi-automatic conversion of arbitrary
geometries into 2D FEM-compatible meshes. Using this framework, we simulated a leg trapped under collapsed building debris,
computing and visualizing stress distributions to aid medical decision-making. Our framework facilitates the implementation
of common energy models and enables efficient comparison of their combinations with various real-time computation
frameworks, aiding the selection of optimal approaches for XR-oriented medical elastodynamics simulations.
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1. Introduction
In recent years, multiple applications of XR technologies
in medical practices have led to notable advancements
in remote disaster healthcare [1, 2]. During major dis-
asters, physical barriers may substantially impact the
provision of professional medical treatment for victims.
One solution is combining elastodynamic simulations
with XR technology, which has multiple benefits for med-
ical treatment and medical education training [1]. One
challenge is that there are several existing energy models
and solvers, each of which has its own strengths and lim-
itations. Determining the optimal combination of these
elements for a specific medical scenario is a non-trivial
task, requiring thorough comparative analysis and perfor-
mance evaluation. To address this challenge, we propose
a 2D energy-based FEM prototyping framework. This
framework is designed to compare various energy mod-
els (e.g., Saint Venant-Kirchhoff (StVK), Co-rotational,
and Neo-Hookean) across different computational frame-
works (e.g., Explicit FEM, Position-Based Dynamics (PBD)
[3], and Extended Position-Based Dynamics (XPBD) [4]).
It serves as a stepping stone towards more complex 3D
simulations. By focusing on 2D representations, we can
reduce computational complexity while still capturing es-
sential physical behaviors, allowing for rapid prototyping
and evaluation of different approaches.
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To demonstrate the practical applicability of our frame-
work, we modeled a case study of a leg trapped under
collapsed building debris. This simulation computed and
visualized Von Mises stress distributions, providing crit-
ical data that could inform medical decision-making in
real-world disaster response situations. The contribu-
tions of this paper are:

• A versatile 2D energy-based FEM prototyping
framework

• An algorithm for semi-automatic conversion of
arbitrary geometries into 2D FEM-compatible
meshes

• A comparative analysis of common energy mod-
els and their combinations with various real-time
computation frameworks

• A case study demonstrating the application of the
framework in simulating a disaster scenario with
potential medical implications

This paper is organized as follows: Section 2 reviews
related work in the fields of medical elastodynamics. Sec-
tion 3 describes the methodology behind our 2D energy-
based FEM framework and the semi-automatic mesh con-
version algorithm. Section 4 presents the results of our
case study and comparative analysis. Finally, Section 5
discusses the limitations of our framework and summa-
rizes future works.
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Figure 1: Workflow for converting a 3D human body geometry to 2D FEM-compatible meshes.

2. Related Works

2.1. Finite Element Based Method
The finite element method has a broad range of applica-
tions across various fields, including but not limited to
engineering, physics, and biomedical sciences [5, 6]. Due
to its ability to accurately simulate the characteristics
of deformable objects and represent multiple complex
materials and structures, it has been widely used in 3D
elastodynamics to simulate brittle and ductile fracture of
materials [7, 8, 9].

In the field of medical elastodynamics, FEM has found
numerous applications. For example, Sase et al. [10]
proposed a GPU-accelerated FEM-based approach for
simulating brain fissure opening in surgical procedures.
They also introduced a volume embedding method [11]
to preserve complex topological structures during sur-
gical simulations, and a penalty based method for rigid-
deformable objects coupling [12]. In these cases, all of
their methods employed the Corotational FEM [13] for
rapid computation of organ deformation simulations.
Our study extends this line of research by comparing
the performance of the Corotational energy model with
St. Venant-Kirchhoff (StVK) and Neo-Hookean energy
models. Unlike previous studies, we utilize explicit FEM
rather than implicit solvers. This approach allows us
to simply evaluate the efficacy of different energy mod-
els in the context of real-time medical elastodynamics
simulations.

2.2. Position Based Method
Position-Based Dynamics (PBD) is a real-time physics-
oriented simulation framework initially proposed by
Müller et al. in the computer graphics community [3].
Unlike other physics-based simulation methods, PBD
primarily focuses on converting physics models into con-
straint forms and solving them. Although this framework
has proven capable of achieving accuracy comparable to
physics-based models through multiple iterations of com-

putation, developers primarily use in real-time physical
simulations with fewer iterations to achieve satisfactory
visual effects. Macklin et al. [4] identified limitations
in the PBD framework when simulating elastic objects,
as the stiffness of materials depends on the timestep. In
response, they introduced an approximate implicit Euler
method called extended PBD (XPBD).

Given the stability and ease of parallelization of the
PBD framework, numerous applications have emerged
for medical elastodynamics simulations. For instance, Tai
et al. [14] developed a virtual surgical training system
in Augmented Reality (AR), using XPBD for soft tissue
elastodynamic simulations. Camara et al. [15] utilized the
PBD-based library NVIDIA FleX to develop a simulation
platform for exploring optimal material properties and
other parameters. Moreover, Yu et al. [16] employed
PBD methods in a Virtual Reality (VR) environment to
develop a real-time medical education training system.
While these studies demonstrate the direct application
of PBD/XPBD in medical simulations, our framework
develops energy model-based PBD and XPBD approaches,
building upon the FEM-PBD method proposed by Bender
et al. [17].

3. Energy-based FEM Prototyping
Framework

This section will describe the implementation of our de-
veloped 2D energy-based FEM prototyping framework.
First, we will describe the computation of various energy
models when employing explicit FEM methods. Subse-
quently, we will detail the calculation of different energy
models within the position-based approach. Finally, we
will introduce the semi-automatic mesh conversion algo-
rithm for 2D scenarios.



Figure 2: Comparison of three energy models (StVK, Corotational, and Neo-Hookean) in an explicit FEM framework for case
A.

3.1. Energy Model in Explicit FEM
Deformation Map In continuum mechanics, the de-
formation of a material can be conceptualized as an affine
mapping 𝜑(·) from the material space to the deformed
world space [5]. This mapping allows us to describe
the position of any point in the deformed world space.
Specifically, for a material point �̄� in the material space,
its position 𝑥 in the world space is given by:

𝑥 =𝜑(�̄�) = 𝐹 �̄�+𝑈

𝐹 =
𝜕𝜑(�̄�)

𝜕�̄�

=
𝜕

𝜕�̄�
(𝐹 �̄�+𝑈)

(1)

where 𝐹 is the deformation gradient and 𝑈 is a transla-
tion matrix.

This formulation provides a fundamental basis for an-
alyzing material deformation in our 2D energy-based
FEM framework. It enables us to track the movement
and deformation of each point in the material over time,
which is crucial for computing various energy models
and simulating elastodynamic behavior.

Elastic Energy The energy models Ψ used in elasto-
dynamics calculations can be viewed as evaluation func-
tions that measure the degree of material deformation.

These can be expressed as [13, 18, 19, 20, 21]:

ΨStVK =𝜇‖𝐸‖2F +
𝜆

2
(tr(𝐸))2

ΨCo-rotational =𝜇‖𝐹 −𝑅‖2F +
𝜆

2
(tr(𝑅𝑇𝐹 − 𝐼))2

ΨNeo-Hookean =
𝜇

2
(tr(𝐹 𝑇𝐹 )−3)−𝜇 log(det(𝐹 𝑇𝐹 ))

+
𝜆

2
log2(det(𝐹 𝑇𝐹 ))

𝐸 =
1

2
(𝐹 𝑇𝐹 − 𝐼)

𝜇 =
𝑘

2(1 + 𝜈)

𝜆 =
𝑘𝜈

(1 + 𝜈)(1− 2𝜈)

(2)

where 𝑅 is a matrix representing the pure rotational part
of 𝐹 , which must satisfy 𝑅𝑇𝑅 = 𝐼 . 𝐸 denotes Green’s
strain tensor. tr(·) represents the trace of a matrix. The
Lamé parameters, denoted as 𝜇 and 𝜆, characterize the
elastic properties of the material. These coefficients are
directly related to two fundamental material constants:
Young’s modulus 𝑘 and Poisson’s ratio 𝜈. det(·) denotes
the determinant of a matrix. ‖·‖2F represents the squared
Frobenius norm.

Explicit FEM In the explicit FEM framework, we can
derive the nodal forces 𝑓 for each independent element
based on various energy models Ψ (i.e., elastic potential



Figure 3: Comparison of three energy models (StVK, Corotational, and Neo-Hookean) in an explicit FEM framework for case
B.

energy) as follows:

𝑓 =− 𝑎
𝜕Ψ

𝜕𝑥
= −𝑎 𝜕Ψ

𝜕𝐹

𝜕𝐹

𝜕𝑥

=− 𝑎𝑃 (𝐹 )
𝜕𝐹

𝜕𝑥

(3)

Where 𝑎 represents the area of the element in its un-
deformed configuration. 𝜕𝐹

𝜕𝑥
is an energy-independent

matrix that can be derived directly from the defined el-
ement. 𝑃 (𝐹 ) denotes the first Piola-Kirchhoff stress
tensor, which can be derived from Equation 2.

Based on the derivation of the aforementioned energy
models, we can efficiently decompose the calculation of
nodal forces for each element in the explicit FEM method
into energy-independent and energy-dependent compo-
nents. This decomposition facilitates the seamless sub-
stitution of various energy models within the explicit
FEM framework, enabling straightforward validation of
their performance and behavior. The algorithm for the
2D explicit FEM is presented in Algorithm I.

3.2. Energy Model in PBD
To integrate the FEM method into the PBD frame-
work, we primarily developed our framework using the
position-based energy reduction method proposed by
Bender et al. [17] Additionally, we attempted to imple-
ment the energy constraints within the XPBD method
[4] and conducted comparative experiments.

The position-based energy reduction method aims to
determine position adjustments ∆𝑥 such that the energy

function 𝐸(𝑥+∆𝑥) is minimized to zero. For an indi-
vidual constraint, the position adjustment ∆𝑥 is derived
by resolving the linearized equation. This process can be
represented as follows:

𝐸(𝑥+∆𝑥) ≈ 𝐸(𝑥) +∇𝑥 𝐸𝑇 (𝑥)∆𝑥 = 0

∇𝑥𝐸 =

∫︁
𝜕Ψ

𝜕𝑥
d�̄� =

∫︁
𝜕Ψ

𝜕𝐹

𝜕𝐹

𝜕𝑥
d�̄�

=

∫︁
𝑃 (𝐹 )

𝜕𝐹

𝜕𝑥
d�̄�

(4)

To constrain ∆𝑥 to align with the direction of∇𝑥𝐸,
a Lagrange multiplier 𝜆 is introduced, which is defined
such that:

𝜆 = − 𝐸(𝑥)∑︀
𝑤𝑗 |∇𝑥𝑗𝐸(𝑥)|2 (5)

Algorithm I 2D Explicit FEM Algorithm
1: for each finite element 𝐷 do
2: compute 𝜕𝐹

𝜕𝑥

3: compute 𝑃 (𝐹 )
4: compute 𝑓 (Equation (3))
5: accumulate forces 𝑓 for each vertex in 𝐷
6: end for
7: 𝑎𝑛 ←𝑀−1(𝑓 + 𝑓 ext)
8: 𝑣𝑛+1 ← 𝑣𝑛 +∆𝑡𝑎𝑛

9: 𝑥𝑛+1 ← 𝑥𝑛 +∆𝑡𝑣𝑛

10: damp velocities 𝑣𝑛+1



Figure 4: Comparison of StVK energy model performance under simulation scenario case A, implemented in explicit FEM,
PBD, and XPBD frameworks.

where 𝑤𝑖 = 1
𝑚𝑖

represents the inverse of the particle
mass, and the position correction for each particle is
determined by:

∆𝑥𝑖 = 𝑤𝑖𝜆∇𝐸(𝑥) (6)

In contrast to the energy-based FEM framework, the
energy-based PBD framework requires a priori conver-
sion of all vertices of each element into a particle-based
data structure, ensuring that each vertex possesses in-
dependent mass, velocity, and position information. As
for XPBD method can be conceptualized as a solver that
approximates an implicit Euler solution. It differs from
the PBD framework in its computation of position cor-
rections, as illustrated below:

∆𝑥𝑖 =𝑀−1∇𝐸(𝑥)𝑇∆𝜆

∆𝜆 =
−𝐸(𝑥)− 𝛼𝜆

∇𝐸𝑀−1∇𝐸𝑇 + 𝛼

(7)

where 𝛼 is a compliance coefficient. The algorithm for
the energy-based XPBD is presented in Algorithm II.

3.3. Mesh Conversion
To facilitate the simulation of complex and irregular geo-
metric shapes in elastodynamics within our developed
framework, we propose a computational pipeline capa-
ble of transforming arbitrary geometries into 2D FEM-
compatible meshes. The following sections elucidate the
step-by-step implementation process of this computa-
tional pipeline.

Project 3D Geometries to 2D Points To project 3D
geometries onto a 2D plane, we first establish a camera
coordinate system using three vectors: camera position 𝑐,
focal point 𝑓 , and up vector 𝑢. From these, we derive the
orthonormal basis: 𝑓 = 𝑓−𝑐

|𝑓−𝑐| , �̂� = 𝑓×𝑢
|𝑓×𝑢| , �̂� = �̂� × 𝑓

We then construct the camera-to-world transformation
matrix 𝑇 :

𝑇 =

⎡⎢⎢⎣
𝑟x 𝑢x −𝑓x 𝐶x

𝑟y 𝑢y −𝑓y 𝐶y

𝑟z 𝑢z −𝑓z 𝐶z

0 0 0 1

⎤⎥⎥⎦ (8)

For a point 𝑝 = [𝑥 𝑦 𝑧] in world coordinates, we convert
it to camera coordinates 𝑝′ using:

𝑝′ = [x 𝑦 𝑧 1] · 𝑇−1 (9)

Finally, we project 𝑝′ = (𝑥′, 𝑦′, 𝑧′, 𝑤′) onto the 2D plane
as 𝑝proj = (𝑥′, 𝑦′).

Polygon Reconstruction from 2D Point Clouds Af-
ter projecting the 3D geometry to 2D, we obtain a large
set of 2D point data that needs to be processed. Our next
task is to reconstruct the polygon shape information
based on these 2D point data. While the most straight-
forward approach typically involves using a convex hull
algorithm to obtain the contour information of these
points, this method struggles to handle concave poly-
gon shapes. Therefore, we opted to employ the alpha
shapes algorithm [22] for 2D polygon shape reconstruc-
tion. An experimental result of applying the alpha shape
algorithm can be found in Figure 1.



Table 1
Vertical Displacement of Cantilever Beam Tip Node (mm)

Energy Model Frame 10 Frame 50 Frame 120 Frame200

StVK 49 1269 1948 246
Co-rotational 49 1270 1880 272
Neo-Hookean 49 1271 1865 279

Generation of FEM-Compatible Meshes from 2D
Polygon Directly converting the polygons into FEM-
compatible meshes is challenging due to the massive
number of vertices in polygons. This is because numer-
ous vertices allow for accurate representation of the orig-
inal geometric object shape, while they complicate the
Delaunay triangulation process, which is essential for
producing FEM-computable meshes. As an example of
complex polygon shapes, Delaunay triangulation often
generates numerous small-area triangles. These small
triangles can impact both the stability and computational
efficiency of FEM solvers. To overcome this challenge,
we implement a polygon simplification step before ap-
plying Delaunay triangulation. The Douglas-Peucker
algorithm primarily forms the basis of the polygon sim-
plification process; we choose it for its efficiency in re-
ducing the number of vertices while preserving essential
shape characteristics. For Delaunay triangulation, we
additionally incorporate maximum area and minimum
angle constraints to produce FEM-compatible meshes.
The complete mesh conversion process is illustrated in
Figure 1.

4. Experimental Results
Case A In this case study, we simulate a cantilever
beam (5 m long, 1 m high), which is fixed at its left end,
and utilize explicit FEM frameworks with different en-
ergy models to test its deformation under gravity and

Algorithm II 2D Energy Based XPBD Algorithm

1: 𝑣𝑛+1 ← 𝑣𝑛 +∆𝑡𝑀−1𝑓 ext
2: 𝑥𝑛+1 ← 𝑥𝑛 +∆𝑡𝑣𝑛+1

3: 𝜆← 0
4: for iter := 1 to maxIterations do
5: for each energy constraint 𝐸(𝑥) do
6: compute ∆𝜆
7: compute ∆𝑥𝑖

8: 𝑥← 𝑥+∆𝑥
9: 𝜆← 𝜆+∆𝜆

10: end for
11: end for
12: 𝑣𝑛+1 ← 1

Δ𝑡
(𝑥𝑛+1 − 𝑥𝑛)

13: damp velocities 𝑣𝑛+1

evaluate computational performance. The following ex-
perimental parameters were used: a Young’s modulus of
1000Pa, a Poisson’s ratio of 0.3, a mass of 1 kg, and a time
step of 0.001 s. As illustrated in Figure 2, the simulation
results show that there are no significant differences in vi-
sual effects across the different models for the cantilever
beam deformation. Furthermore, to precisely capture the
similarities and differences among these energy models,
we recorded the variations in the vertical displacement
of the cantilever beam tip node, as presented in Table
1. The statistical results indicate that the displacement
amounts generated through deformation are relatively
similar for the Co-rotational and Neo-Hookean models.

As for the computational performance, the StVK model
and the Neo-Hookean model require approximately 14
seconds to compute 2000 steps, whereas the corotational
method necessitates nearly 20 seconds. Additionally, we
conducted an experiment to test the stability of different
energy models by increasing the Young’s modulus and
reducing the time step. The results of this experiment
demonstrated that all of the energy models can achieve
stable simulation for the cantilever beam.

Given these results, the StVK model emerges as the
optimal choice for this cantilever beam case study. It not
only ensures simulation stability across different param-
eter settings but also demonstrates the highest computa-
tional efficiency.

Case B In this case study, we initially fix both ends
of the bar-shaped elastic body. Subsequently, we apply
a stretching operation to the nodes on the right side of
the elastic body. The fundamental experimental param-
eters remain consistent with those in Case A. The final
experimental results are presented in Figure 3. Exam-
ining the longitudinal contraction of the elastic body
post-stretching, we observe that the StVK model exhibits
more pronounced contraction compared to the corota-
tional and Neo-Hookean models. However, when we
attempted to test the stability of various energy models
by increasing the Young’s modulus and reducing the time
step, the StVK model required a smaller time step than
the corotational and Neo-Hookean models to achieve
stable simulations. From these observations, we can con-
clude that the StVK energy model is the optimal choice
when simulating elastic bodies with lower Young’s mod-
ule in 2D scenarios. However, when simulating objects



Figure 5: 2D simulation of a leg trapped under debris (case D). (a) Simulation scenario. (b) Visualization of von Mises stress
distribution.

with higher Young’s module and prioritizing computa-
tional performance and stability, the corotational and
Neo-Hookean models prove more suitable.

Case C In this case study, we adopt the same exper-
imental setup as in Case A. However, we will evaluate
and compare the performance of the StVK model imple-
mented within three different computational frameworks:
explicit FEM, PBD, and XPBD. The simulation results in
Figure 4 show that even when using the same energy
model, elastic bodies exhibit different behaviors under
PBD and XPBD frameworks. It should be noted here
that the deformation under the PBD framework is not
significant. This is because the material stiffness in the
PBD framework depends on the time step. From this ob-
servation, we should be cautious when using PBD-based
frameworks in medical dynamics simulations, especially
when simulation accuracy is required.

Case D In this case study, we utilized the mesh con-
version method described in Section 3.3 to project a 3D
human body model onto a 2D plane. This projection en-
abled us to conduct an elastodynamic experiment simu-
lating a simplified scenario where a human leg is trapped
under building debris. For this study, we used the follow-
ing parameters: Young’s modulus of 1.85 MPa, Poisson’s
ratio of 0.3, total mass of 70 kg, and time step of 0.0001
s. We employed the Neo-Hookean energy model and
Explicit FEM framework as our solver. Through visual-
ization techniques, we were able to illustrate the stress
distribution on the leg when compressed by the debris.
This approach demonstrates the practical application of
our framework in simulating medical scenarios relevant
to disaster response.

5. Conclusion
In this paper, we develop an energy model-based 2D FEM
framework for XR-oriented medical elastodynamics. The
main goal of developing this framework is to assist in
determining the optimal combination of energy models
and computational frameworks for real-time 3D elasto-
dynamic simulations. Through comparative experiments
conducted in 2D space across 4 case studies, we analyze
the performance of various energy models and elasto-
dynamic frameworks, subsequently identifying their ap-
plicable simulation scenarios. Furthermore, to enable
our proposed framework to simulate elastodynamics of
more complex geometries, we introduce an algorithm for
semi-automatic conversion of arbitrary geometries into
2D FEM-compatible meshes. We successfully employ the
resulting meshes in dynamic simulations. However, it
should be noted that our framework does not include par-
allel versions of the PBD and XPBD approaches, which
limits our ability to demonstrate potential performance
advantages in our comparative experiments. In the fu-
ture, we would like to implement parallel algorithms for
each approach and incorporate an implicit FEM solver
for comparing the stability of existing methods.

Recently, deep learning-based FEM approaches [23, 24,
25, 26] have emerged and demonstrated superior accu-
racy and performance compared to classical FEM meth-
ods, with some implementations achieving real-time per-
formance. However, our literature review reveals that
these approaches have primarily been validated in lower-
dimensional spaces, with most demonstrations limited
to 1D and a few in 2D scenarios. While authors suggest
that their methods can be extended to 3D applications,
the performance and interactive capabilities in such sce-
narios remain unverified. In contrast, all energy-based



methods examined in our comparative study have been
proven effective and stable in 3D implementations, which
is not yet the case for deep learning-based approaches.
This observation partly motivates our choice of methods
for comparison. As future work, we plan to investigate
the stability of deep learning-based FEM methods and
evaluate their effectiveness in 3D scenarios, particularly
for XR-oriented medical dynamics applications.
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