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Abstract
Services using omnidirectional images have become increasingly popular. For example, Google Street View enables users
to view the scenery of a location online without physically visiting it. However, the use of still images limits the sense
of presence. This study proposes a method that focuses on natural elements such as water, sky, and trees within a single
omnidirectional image and utilizes deep learning to reproduce their motion in 3D space, generating omnidirectional videos.
Experiments demonstrate the effectiveness of the proposed method by comparing results with conventional methods.
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1. Introduction
Virtual sightseeing services using omnidirectional images
have been increasing. For example, TOWNWARP [1] and
AirPano [2] enable users to enjoy the scenery of famous
tourist spots and cities as videos online without physi-
cally visiting them. Additionally, there are studies that
combine virtual tourism with education by synthesizing
virtual objects into omnidirectional images. For example,
CoSpaces [3] provides functions to place virtual objects
such as information boards, explanatory text, and human
avatars in virtual environments created with omnidirec-
tional images, which can support various types of learn-
ing. For ruins tourism, an application has been developed
that allows users to learn and enjoy the scenery of the
past of a historical site not only as VR at arbitrary loca-
tions but also as Indirect AR at the site by synthesizing
virtual buildings that existed in the past into omnidirec-
tional images and presenting them to the user [4]. While
such services allow users to virtually experience and
learn various places around the world, users cannot view
locations other than famous tourist spots chosen by the
content creators.

In contrast, Google Street View [5] is an example of
services that allow users to explore any location world-
wide. However, since this service presents still images,
it lacks the sense of presence. One solution to this is-
sue is to record videos from fixed points while traveling
around the world. However, this method would require
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a significant amount of time for collecting video data.
To solve this problem, we propose a method that fo-

cuses on natural objects such as water, sky, and trees
within a single omnidirectional image and reproduces
their motion to generate omnidirectional videos for
highly realistic virtual sightseeing at arbitrary locations.
In the proposed method, for water surface and sky re-
gions, a part of the target omnidirectional image is con-
verted into a perspective projection image, and the optical
flow of the water surface and sky is estimated by a deep
learning-based approach. The optical flow is then trans-
formed into the motion in 3D space and projected back
onto the omnidirectional image, reproducing the motion
of the water and sky in the omnidirectional image. For
trees, the optical flow is obtained from a reference video
in the perspective projection, converted into the motion
on vertical 3D planes, and then applied to the omnidirec-
tional image. Semantic segmentation [6] is also used to
clearly separate the sky, water surface, and tree regions.
This process generates an omnidirectional video where
motion is reproduced only in the regions of water, sky,
and trees.

2. Related Work
Various studies have been conducted on converting still
images into videos by moving objects in them. Among
these, there are studies [7, 8, 9, 10] that focuses on the
movement of natural objects. For instance, Creating Fluid
Animation from a Single Image using Video Database [9]
generates high-quality animations by efficiently assign-
ing target images using a Markov Random Field (MRF)
and leveraging a fluid video database. Another example
is Animating Landscape [10], which generates videos
that reproduce the motion of the sky and water surfaces
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using machine learning with neural networks. However,
these methods deal with images in perspective projection.
Therefore, for example, if the method [10] is applied to
omnidirectional images in equirectangular projection,
the generated motion appears unnatural because the
model is trained on perspective projection images. It also
suffers from parameter dependency, causing motion in
regions where no motion should occur. In addition, even
though the left and right edges of the omnidirectional
image are connected, the conventinal methods do not
take this into account. Therefore, when looking around
the omnidirectional image as a perspective projection
image, we can observe a misaligned border in the texture
at the edges.

For these problems, in our previous study [11], we
reproduced the motion of the sky and water surface in
omnidirectional images by assuming that the sky and
water surface could be expressed by straight-line motion
on a plane. The proposed method in this study is the
extended version, and reproduces more natural motion
by using optical flow estimated by deep learning, and
also reproduces the motion of trees.

3. Proposed Method

3.1. Overview
The flow of the proposed method is as follows. First,
(1) we input an omnidirectional landscape image con-
taining either sky, water or trees, as shown in figure
1(a). This study assumes that omnidirectional images
are generated by equirectangular projection so that the
bottom pixel is in the direction of gravity obtained from
the accelerometer in the camera. Next, (2) we apply the
semantic segmentation [6] to the image to divide it into
regions such as water surface, sky, trees, and others as
shown in Figure 1(b). From the segmented image, we
generate a mask image that mask all objects above the
horizon except the sky area, as shown in Figure 1(c). Here,
due to inaccuracies near the boundaries of the semantic
segmentation, the mask regions are expanded to fully
include objects except the sky area. Next, (3) using the
generated mask image, we generate an image in which all
areas above the horizon have sky textures by inpainting
[12], as shown in Figure 1(d).

Next, (4) we generate the motion of the water surface,
sky and trees by copying pixel values using calculated
optical flows. The motion of the water surface and sky are
calculated by estimating the motion in 3D space based on
the deep learning-based optical flow estimation [10]. The
tree motion is calculated by acquiring the motion from a
perspective projection video of the trees and reproducing
the motion in 3D space.

Finally (5) We combine the video of each region gen-

(a) Example of input image

(b) Semantic segmentation

(c) Mask image

(d) Inpainting result

Figure 1: Example of input image and intermediate results.

erated in (4) with the input image using the segmented
image as shown in Figure 1(b) to generate a video in
which only the water surface, sky, and trees move. Here,
alpha blending is performed at the boundary of the mask
to reduce the unnaturalness at the boundary between
the moving and static regions. The following sections
describe the details of motion generation in Step (4).



Figure 2: Relationship between sphere and 3D position on
water surface.

3.2. Generation of Water Motion
For the motion of water, we assume that the water is
moving along a planar surface in 3D space. This 3D
motion on a plane is represented as a 2D optical flow on
the omnidirectional image.

Specifically, we first define the coordinate system for
the omnidirectional image and the plane. As shown in
Figure 2, position (𝑋,𝑌, 𝑍) on the water surface corre-
sponding to pixel (𝑝1, 𝑞1) of the omnidirectional image
is determined in a coordinate system where the center of
the sphere corresponding to the omnidirectional image
is at the origin, as follows:⎡⎣𝑋𝑌

𝑍

⎤⎦ =

⎡⎣𝑇 tan 𝜋𝑞1
ℎ

cos 2𝜋𝑝1
𝑤

𝑇 tan 𝜋𝑞1
ℎ

sin 2𝜋𝑝1
𝑤

𝑇

⎤⎦ , (1)

where 𝑤 and ℎ are the width and height of the omnidirec-
tional image, and 𝑇 is a negative constant representing
the height of the water surface.

In this coordinate system, we compute the flow (𝑢, 𝑣)
at the water surface. First, as shown in Figure 3, a part of
the omnidirectional image is extracted as a perspective
projection image so that its horizon is at the center of
the image height. The optical flow is then estimated by
the deep learning-based method in [10]. As illustrated
in Figure 3, both the original pixel and the pixel after
moving based on the flow are projected onto the plane
at height 𝑇 using the focal lengths 𝑓𝑥, 𝑓𝑦 and the image
center 𝑐𝑥, 𝑐𝑦 of the perspective projection image. The
3D coordinates after projecting the pixel (𝑥, 𝑦) onto the
plane are calculated as follows:⎡⎣𝑋𝑌

𝑍

⎤⎦ =

⎡⎢⎣
𝑇𝑓𝑦(𝑥−𝑐𝑥)

𝑓𝑥(𝑦−𝑐𝑦)
𝑇𝑓𝑥

(𝑦−𝑐𝑦)

𝑇

⎤⎥⎦ . (2)

Next, the flow map on the plane is determined from
the differences between the respective projected 3D co-
ordinates. This process is performed on the pixels in the
lower half of the perspective projection image. However,

Figure 3: Relationship between 2D and 3D coordinates of
flows.

Figure 4: Alignment of flow maps.

the motion calculated on the plane here only corresponds
to a part of the lower part of the omnidirectional image.
To handle the entire water area in the omnidirectional
image, this study assumes that the motion of the water
at any given location is similar. Here, since the projected
region from the perspective projection image is a trape-
zoidal shape, as shown by the red outline in Figure 3, the
flow map of the region is extracted, scaled, interpolated,
and shifted to align with the square region projected from
the lower half of the omnidirectional image, as shown in
Figure 4.

Next, as shown in Figure 2, the 𝑋,𝑌 coordinates on
the plane obtained by equation (1) are shifted by flow
(𝑢, 𝑣), and projected onto the surface of the sphere. Pixel
(𝑝2, 𝑞2) in the omnidirectional image corresponding to
the shifted coordinate (𝑋+𝑢, 𝑌+𝑣, 𝑍) on the horizontal
plane is determined as follows:[︂

𝑝2
𝑞2

]︂
=

[︃
𝑤
2𝜋

tan−1 𝑌 +𝑣
𝑋+𝑢

ℎ
𝜋
cos−1 𝑧√

(𝑋+𝑢)2+(𝑌 +𝑣)2+𝑍2

]︃
. (3)

Finally, the difference between the transformed pixel
(𝑝2, 𝑞2) and the original pixel (𝑝1, 𝑞1) is calculated as the



optical flow (𝑚𝑥,𝑚𝑦) on the omnidirectional image. By
performing this process for all pixels, the optical flows
for the entire water surface on the omnidirectional image
are obtained. Based on the optical flows, pixel values are
copied to generate an image where the water surface has
moved. This process is repeated for each frame, and a
video is generated by combining all the frames.

3.3. Generation of sky Motion
For the motion of the sky, assuming that clouds in the sky
move on a plane in 3D space above the scene, the motion
is estimated in the same manner as for the water. The op-
tical flows in the upper part of the perspective projection
image in Figure 3 is estimated by the deep learning-based
method [10], and the motion is projected on the plane,
and the motion on of the upper part of the omnidirec-
tional image is finally determined by re-projecting the
motion on the plane onto the sphere representing the
omnidirectional image.

Note that, as described in section 3.1, by removing all
areas other than the sky using inpainting, the plausible
sky texture is generated in the areas. Even when the flow
is from behind buildings, the generated texture is copied,
and the motion of the sky can be reproduced.

3.4. Generation of tree Motion
For the motion of trees, rather than assuming a single
plane like water and sky, we assume that, as shown in
Figure 5, they move on a vertical plane perpendicular to
the radial line from the center of the sphere to the sphere
surface at height 0, for each column. Similar to the sky
and water, this 3D motion is expressed as a 2D optical
flow on the omnidirectional image.

Specifically, a reference video is first input and the
optical flows are estimated by Farneback method [13].
The flow map is resized to match the tree region. Next,
the 2D coordinates of the input image in the mask region
for trees are converted into 3D coordinates as follows:⎡⎣𝑥𝑦

𝑧

⎤⎦ =

⎡⎢⎣cos
2𝜋𝑝1
𝑤

sin 2𝜋𝑝1
𝑤

1

tan
𝜋𝑞1
ℎ

⎤⎥⎦ . (4)

The 3D coordinate shifted on the vertical plane based
on the flow map, and the shifted 3D coordinate is re-
projected onto the shpere. The flow on the omnidirectinal
image is determined by the original and the re-projected
pixels. By repeating this process for the number of frames
in the reference video, a video with the tree motion is
generated.

Figure 5: Relationship between sphere and vertical plane for
tree motion.

Figure 6: Reference video for tree flow extraction.

4. Experiments and Discussions

4.1. Experimental Settings
We conducted experiments to generate a video from a
single omnidirectional image. As input, we used an im-
age captured with the 360° camera RICOH THETA Z1
and an image obtained from Google Street View, which
were resized to a resolution of 1600 × 800. We used the
image captured with the 360° camera as Case 1, and the
image obtained from Google Street View as Case 2. In the
experiments, we set the height of the planes representing
the sky and water along the Z-axis to 2 and -2, respec-
tively. We set the focal lengths 𝑓𝑥, 𝑓𝑦 and image center
𝑐𝑥, 𝑐𝑦 of the perspective projection image with a resolu-
tion of 384 × 384 to 192. We obtained the motion of the
trees from the reference video as shown in Figure 6. The
generated video consisted of 199 frames. Additionally,
in Case 2, we compared the results with those obtained
by directly applying the conventional method [10] to the
equirectangular omnidirectional image. The following
sections describe the experiments for Cases 1 and 2 in
turn.

4.2. Experimental Results
4.2.1. Result of Case 1

Figure 7 shows the images of the 1st, 60th, 120th, and
180th frames of the video in equirectangular projection
generated from the input omnidirectional image (1st



Frame 1

Frame 60

Frame 120

Frame 180

Figure 7: Results in equirectangular projection in Case 1.

frame) by the proposed method in Case 1. Figures 8
and 9 show the result of converting these frames into
perspective projection images in a specific direction. In
this experiment, we convereted the omnidirectional im-
age into the perspective projection image as shown in
Figure 10(a). Figure 10(b) shows the the calculated optical
flow at the 30th frame. From this flow map, we generated
the flow maps of the water and sky planes as shown in
Figures 10(c) and (d). In these figures, the angle of mo-
tion is represented by hue, the relative magnitude of the
motion is represented by brightness, and the saturation
is fixed at 1.

Frame 1

Frame 60

Frame 120

Frame 180

Figure 8: Results of sky and water in perspective projection
in Case 1.

From these experimental results, we can observe that
the sky moves naturally in the sky region, and we can
also feel perspective because the clouds just above us
moves faster than those in the distance. As for the wa-
ter, we can see that the water surface moves in various
directions, resulting in successfully representing waves.
In the flow map of the water plane in Figure 10(c), we
can observe various hues between green and yellow, and
the brightness also varies, indicating that the complex
motion of the water is well-represented. In contrast, the
flow of the sky shows less variation in hue compared to
the water, confirming that it moves in a mostly consistent
direction. Regarding the trees, although the motion of
the trees in the reference video is reflected in the omni-



Frame 1

Frame 60

Frame 120

Frame 180

Figure 9: Results of trees in perspective Projection in Case 1.

directional video, if we look at the details, the branches
and leaves move in blocks regardless of their positions,
leading to slight unnaturalness. This is likely due to the
mismatch between the positions of branches and leaves
in the reference video for obtaining the optical flow and
those in the target image.

4.2.2. Result of Case2

Figure 11 shows the 1st, 60th, 120th, and 180th frames
of the omnidirectional video in equirectangular projec-
tion generated from the input omnidirectional image (1st
frame) by the proposed method in Case 2. Figure 12
shows the perspective projection image used for generat-
ing optical flow by the deep learning-based method [10].

(a) Perspective projection im-
age

(b) Flow of perspective projec-
tion image

(c) Flow of water plane (d) Flow of sky plane

Figure 10: Flow visualisation results in Case 1.

In this scene, only the sky moves. Figure 13 shows the
result of converting these frames into perspective pro-
jection images in a specific direction. From these results,
we confirmed that all regions other than the sky remain
static, and the clouds in the sky move uniformly in the
same direction, indicating that a video could be success-
fully generated from a single omnidirectional image ob-
tained from Google Street View.

Next, we compare the results with those obtained by
directly applying the conventional method to the omni-
directional image. Figure 14 shows the 120th frame of
the omnidirectional image in equirectangular projection
generated by the conventional method and the result of
converting it into a perspective projection image in a
specific direction. As seen in Figure 14, the conventional
method result has unnatural distortions of the ground
and clouds, whereas the proposed method shows that
both the ground and the clouds move without any unnat-
ural distortion. These results demonstrate that the prob-
lems of moving static regions unnecessarily and forming
unnatural motion have been resolved.

4.2.3. Discussion

In this section, in addition to the issues previously dis-
cussed, we examine other remaining issues in the system
and their potential improvements.

First, there is a limitation in the accuracy of seman-
tic segmentation, making it difficult to achieve perfect



Frame 1

Frame 60
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Figure 11: Results in equirectangular projection in Case 2.

Figure 12: Perspective projection image in Case 2.

Frame 1

Frame 60

Frame 120

Frame 180

Figure 13: results in perspective projection in Case 2.

results. A specific example of this issue is illustrated in
Figure 11, where the sun is also considered as part of the
sky, making it move in the same way as the clouds. One
solution is to extract the sun from the sky by developing
a new semantic segmentation method and then to keep
the sun in its original position.

Furthermore, while this study focuses on animating
natural objects, many tourist spots also have moving
man-made objects such as cars and flags. If these objects
are not properly animated, the realism of the video is
reduced. We should develop a method for animating
man-made objects, further enhancing the realism of the
video.



(a) Omnidirectional image

(b) Perspective projection

Figure 14: Results by directly applying the conventional
method to omnidirectional image (Flame 120).

5. Conclusion
In this study, we proposed a method for generating videos
with motion of natural objects from a single omnidirec-
tional image by the combination of estimating optical
flows using deep learning and considering the motion in
3D space for virtual sightseeing. Through experiments,
we confirmed that the proposed method is effective. How-
ever, while the water and sky regions moved naturally,
the tree regions still show some unnatural motion. In
future work, we introduce deep learning for the motion
of trees as well.
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