
Hermes: a Wireless Communication Interface for

Edge Computing

Davide Carnemolla1, Fabrizio Messina1, Corrado Santoro1 and
Federico Fausto Santoro1

1Department of Mathematics and Computer Science, University of Catania

Abstract

Using wireless communication technologies and protocols in embedded systems is not a trivial under-
taking, since it frequently requires an exhaustive understanding of protocols and APIs. The goal of
this work is to address the issue by providing a unified interface (API) for developers to utilise various
communication protocols in a black-box manner. This interface is provided by Hermes, the library we
developed. Hermes uses the object-oriented programming paradigm and it is written entirely in C++
using the Arduino libraries. The library supports ESP-NOW for short-range wireless communications, as
well as WiFi Mesh and LoRa Mesh for mesh network construction, with the first one supporting point-to-
point communications over small distances and the second one supporting long-range communications.
Although this library is useful in any context, it has been specifically designed to enable distributed
communication between the agents of Democle, a declarative multi-agent platform for agent-based
edge computing, which we will briefly describe. This paper presents an overview of Hermes, including
its architecture, capabilities, and utility inside the Democle platform.

Keywords

multi-agents, edge computing, internet of things, networks

1. Introduction

The Internet of Things (IoT) has transformed the digital world, introducing novel concepts and
technologies into our daily lives. Such innovations have become an integral part of our everyday
lives, both at home and at work, and have contributed to the improvement of the quality of
life for many people. One of the most fascinating aspects of such technologies is network
communication since these devices are primarily used to gather data using suitable sensors
or to give services through novel modes of engagement. Given the nature of the applications,
research in the field focuses on reducing energy consumption for transmissions, as well as
developing self-managed networks and attaining long-range communication.

In light of these considerations, several network technologies and protocols have been
developed to address these issues to the specific requirements of the intended usage scenario.
Unfortunately, developers are often required to possess a comprehensive understanding of such
protocols to utilise them effectively. Furthermore, if it is determined through empirical testing
that the technology is unsuitable for a particular purpose, it is necessary to rewrite the code.

WOA 2024: 25th Workshop "From Objects to Agents", July 8-10, 2024, Forte di Bard (AO), Italy
$ davide.carnemolla@unict.it (D. Carnemolla); fabrizio.messina@unict.it (F. Messina); corrado.santoro@unict.it
(C. Santoro); federico.santoro@unict.it (F. F. Santoro)
� 0009-0001-2575-0874 (D. Carnemolla); 0000-0002-3685-3879 (F. Messina); 0000-0003-1430-5676 (F. F. Santoro)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:davide.carnemolla@unict.it
mailto:fabrizio.messina@unict.it
mailto:corrado.santoro@unict.it
mailto:federico.santoro@unict.it
https://orcid.org/0009-0001-2575-0874
https://orcid.org/0000-0002-3685-3879
https://orcid.org/0000-0003-1430-5676
https://creativecommons.org/licenses/by/4.0


In this paper, we put forth the concept of a library, called Hermes, which is designed to
provide a unified application programming interface (API), thereby resolving the problem in
question. The protocols supported by Hermes include ESP NOW, WiFi Mesh and LoRa Mesh,
which collectively permit the library to address the majority of potential usage scenarios. Later,
in Section 4, we will give a summary of the features of these protocols and their operational
context.

Another outcome that we will briefly discuss is the integration of Hermes into software
agents and multi-agent systems (MAS) to develop autonomous distributed systems. In particular,
we integrated our library within the Democle [1] platform, a multi-agent system for embedded
systems written in C++ that employs a logic/declarative programming approach.

2. Related work

In [2] authors discuss the development of an open-source gateway that supports multiple proto-
cols for the IoT. The gateway is designed to facilitate seamless communication between devices
and applications in IoT systems, which often involve heterogeneous devices and protocols. The
article highlights the challenges of integrating devices with different communication proto-
cols in IoT systems. It emphasizes the need for a gateway that can convert between different
protocols, ensuring interoperability and facilitating the exchange of data between devices and
applications. The authors of the article propose an open-source framework for the development
of such a gateway. The framework is designed to be highly customisable, allowing developers
to adapt it to specific IoT applications and use cases. The framework includes a set of APIs
and tools that enable developers to integrate different protocols and devices into the gateway.
The article also discusses the benefits of using an open-source gateway in IoT systems. These
benefits include increased flexibility, reduced costs, and improved scalability. The authors argue
that an open-source gateway can be easily modified and extended to meet the specific needs of
different IoT applications, making it a valuable tool for developers and researchers working in
the field.

The authors of [3] present MINOS, a multi-protocol SDN platform designed to address the
challenges of IoT networks such as elasticity, heterogeneity, and mobility. MINOS is introduced
as an SDN platform that integrates multiple protocols for IoT environments, enabling service
awareness and logically centralized network control. It provides a programmable interface
for configuring protocols on demand and a GUI for real-time visualization. MINOS supports
experimentation with network control features and protocols, optimizing routing and adapting
to dynamic network conditions. MINOS implements an SDN-based architecture that decouples
the data and control planes, thus simplifying network management and enhancing performance.
Experimental results show that MINOS improves packet delivery ratios with minimal control
overhead compared to standard IoT protocols, demonstrating its effectiveness in diverse and
dynamic IoT environments.

In [4], authors introduce a system designed to optimize data transmission for IoT healthcare
devices by balancing data rate, transmission range, and power consumption. he system integrates
WiFi, Bluetooth, and LoRaWAN protocols, offering configurable connectivity for personal and
wearable healthcare devices. It includes an optimized protocol (E-LoRaWAN) to extend network



range through multi-hop communication. This system aims to provide continuous operation
for devices that track users indoors and outdoors, significantly outperforming similar systems
in energy efficiency and communication range.

A similar approach is proposed in [5], where the proposed system addresses the conflict of
wireless signals in environments with multiple medical IoT devices. It prioritizes communication
based on device necessity and separates processes to enhance the efficiency of ISM band usage.
The system operates without altering the PHY layer, focusing on the MAC and upper layers.

3. Overview of Democle

This section reports a short overview of the Democle framework.
Democle is a C++ multi-agent framework that allows a developer to write multi-agent

systems using a declarative approach. Democle is based on the BDI paradigm and lets developer
to write agent’s behaviour by means of plans triggered by events and subject to a condition
based on the agent’s knowledge. An agent in Democle is an instance of a subclass of the basic
Agent class whose run() method is overridden to implement the specific agent’s behaviour.
Moreover, the agent has a knowledge-based (KB) which stores agent’s knowledge in terms of
beliefs, which are defined using atomic formulas with zero or more ground terms. Plans in
Democle are expressed using a specific syntax and are made of the following parts:

• triggering event: it is the assertion or retraction of a belief with a given pattern, or a
definition of a procedure that can be explicitly called;

• condition: it is a predicate checking the presence in the KB of one or more beliefs with
given parameters; here variable unification is also possible;

• action: it is the code that is executed when the triggering event occurs and the condition
is met.

Figure 1 reports the code of an agent running on an embedded device that samples data from
an analog to digital converter and applies a low-pass filter according to a parameter (i.e. alpha);
data is then processed by another piece of code (not shown in the example).

The main reason tied to the development of Democle is that, since it uses C++, it can run
not only standard PCs but also in boards equippend with MCUs (in particular it has been tested
in ESP32 and STM32 environments), making it perfect for IoT agent-based application; its
memory footprint is small and, when it runs in an MCUs, additional features are enabled such
as the interface with the peripherals (GPIO, timers, etc.) thus making it possible to trigger plans
following the occurrence of events in a specific peripheral.

The only feature missing in the original design of Democle is the possibility of exchanging
messages among agents running in different devices, a feature that is now added by Hermes
that is described in the paper.

For a comprehensive description of the features and the architecture of Democle, we refer
the reader to the original paper[1].



�
1 #include "democle.h"
2
3 belief(data);
4 singleton(alpha);
5 reactor(adc);
6
7 class ADCSampler : public Agent {
8 public:
9 ADCSampler() : Agent("adc_sampler") {};

10 void run() {
11 var(T); var(H); var(A);
12 AnalogInputSampler * as = new AnalogInputSampler("A0", A0, -55.0, 150.0, 3600);
13 attach(as);
14 +adc("A0", T) / (data(X) & alpha(A)) >> [T,X,A](Context & c) {
15 float current = c[T];
16 float prev = c[X];
17 float alph = c[A];
18 current = prev * alph + current * (1. - alph);
19 c - data(X);
20 c + data(current);
21 };
22 +adc("A0", T) >> [T](Context & c) {
23 float current = c[T];
24 c + data(current);
25 };
26 +data(X) >> [X](Context & c) {
27 // process data
28 ...
29 };
30 };
31 };
� �

Figure 1: Example of an Agent in Democle

4. Architecture and Features of Hermes

Hermes is a library for embedded systems whose purpose is to provide a single interface for
network communication supporting different transmission protocols. The main objective of our
project is to provide a straightforward interface for wireless network protocols, allowing the
developers to utilise them in a black-box mode. Hermes supports ESP NOW[6], WiFI Mesh[7, 8]
and LoRa Mesh protocols[9, 10], which allow us to cover the most common scenarios of use.

Furthermore, to facilitate the communication between the nodes in the network, we have
included a name management service in Hermes. During the initialization phase, a name is
associated with each node of the network. As we discuss later in this paper, this service simply
allows each node to send data to another node without knowing its network address.

In the following subsection, we will first describe the software architecture of Hermes and
then its integration with the Democle platform.



4.1. Hermes Architecture

The Hermes library is written in an object-oriented way using the C++ language[11] and the
Arduino libraries1. The design of Hermes is made by a few classes which, in fact, represent its
object-based architecture, which is shown in Figure 2.

The main class of the project is called Hermes. This class models a generic network protocol
and, for this reason, it is implemented as an abstract class. This class defines the attributes and
methods to be implemented by the subclasses. Each instance of Hermes has a name, which
represents the name of the running node, a NameService, which is used to store and retrieve
the network addresses associated with a node name, and a MessageQueue, which is used to
store the messages that cannot be sent at that time. Finally, there is a hermes_recv_cb_t within
the class that allows us to define the desired behaviour of our device in response to a received
message.

Each subclass of Hermes represents the implementation of a specific network protocol.
At present, as shown in Figure 2, we have implemented three subclasses: HermesEspNow,
HermesWiFiMesh and HermesLora, which are the supported protocols by Hermes. In the
following paragraphs, we explain the main features of the protocols and other details on Hermes
architecture.

ESP NOW It is a connectionless wireless communication protocol designed by Espressif[6].
The maximum payload size is 250 bytes and the default bit-rate is 1Mbps. ESP-NOW has been
designed for point-to-point and point-to-multipoint communication; however, it cannot be
used to build complex network topologies. Due to the characteristics described above and its
simplicity, this protocol is mainly used in smart lights, remote controls and sensors. We used
the official library in the Espressif IoT Development Framework (ESP-IDF) [12] to implement
this protocol.

WiFi Mesh [8] It is a WiFi networking protocol designed to support the construction of a
Wireless Local-Area Network (WLAN) having a large number of nodes across a wide physical
area. A WiFi mesh network holds a few important properties, such as self-organization and
self-healing, in other words, it is capable of tuning up its configuration over time. Furthermore,
this protocol allows nodes in the network to communicate with the Wide Area Network (WAN)
through a router node. Since we intend to implement a library for internal communication
between nodes we have chosen to use a straightforward topology with a fixed root node and
without a router. Here too, we used the Espressif IoT Development Framework (ESP-IDF) [12]
to implement this protocol. The reader may refer to the official Espressif documentation for
further details.

LoRa Mesh [9, 10] It is a widely used technology for low-power and long-range communica-
tions. LoRa’s communication range can be up to 5 km in urban areas and 15 km in rural areas.
In our work, we used this technology to allow mesh network realization through the usage of
the LoRa Mesher library [9] which, in turn, makes use of the well-known RadioLib library [13]

1https://www.arduino.cc/reference/en/libraries/



to interact with the LoRa radio chip. The list of supported radio modules is available on github2.
This library uses a proactive distance-vector routing protocol as proposed in [14].

Message It is the class that represents messages in Hermes. The attributes of the class are
the following:

• type: the type of message which is set to DEFAULT_MESSAGE in the case of ordinary
messages, WHO_IS_REQUEST for node name resolution requests;

• buffer: a buffer of bytes containing the message data;
• size: the buffer size in bytes.

In addition, there is a simple data serialisation function, which is necessary for sending and
receiving methods.

MessageQueue This class is used to store messages that cannot be sent at a particular time
because the NameService does not know the address of the receiving node. These messages are
placed in a queue associated with the recipient’s name and are processed by the NameServer
when it receives the address associated with that node.

NameService It is the class which manages node names in the Hermes network, regardless
of the chosen protocol. This class has a name-address map, which records the known address by
the node. This map is updated whenever we send a message to an unknown node. In particular,
when we execute the send function to an unknown node (i.e., not existing in the map), Hermes
broadcasts a WHOIS_REQUEST_MESSAGE containing the node’s name and waits asynchronously,
with an ad hoc task, to receive a WHOIS_REPLY_MESSAGE from the target node. This message
is sent in response to the WHOIS_REQUEST_MESSAGE directly from the node with that name.
Furthermore, once the node address has been saved, the NameService takes care of sending the
messages in the message queue for that node, emptying it as it goes.

Obviously, this approach works in a legitimate context, i.e. one that has no malicious
nodes. Without this assumption, we would have to consider the usage of some authentication
mechanism.

Tests Hermes has been tested on several devices including ESP32-S3, ESP32-C6 and TTGO-
LoRa32-V2.1 (with a SX1276 LoRa module) using the PlatformIO tool.

4.2. Democle Integration

As mentioned in Section 1, Hermes has been implemented as a stand-alone library, but this
was primarily designed to provide a communication module for the Democle platform intro-
duced in Section 3. In the same section, we discussed how the platform implements the agent
communication feature and stated that communication is constrained to the agents present on
the running device. We solved this limitation by integrating Hermes into Democle and, as a

2https://github.com/jgromes/RadioLib.



Hermes

- name: String
- name_service: NameService
- message_queue: MessageQueue
- recv_cb: hermes_recv_cb_t

+ init(): bool
+ start(): bool
+ stop(): bool
+ send(): bool
+ send_to_addr(): bool
+ broadcast_send(): bool

HermesEspNow

- instance: HermesEspNow
- channel: uint8_t

HermesWiFiMesh

- instance: HermesWiFiMesh
- mesh_cfg: mesh_cfg_t

HermesLora

- instance: HermesLora

MessageQueue

+ queue: std::map

+ push(): void

+ get_messages(): std::queue

NameService

+ address_table: std::map

+ add(): void

+ exists(): bool

+ get(): [uint8_t]

+ remove(): void

Message

+ type: MessageType

+ buffer: [uint8_t]

+ size: uint8_t

+ serialize(): [uint8_t]

Figure 2: Hermes Architecture

result, expanded the platform’s usage scenarios. We can imagine a large number of nodes with
multiple running agents cooperating over short or long distances to achieve a shared goal.

To accomplish this, we had to slightly modify the Democle syntax for sending messages.
Specifically, it is now required to indicate the protocol to be utilized, the name of the node on
which the agent is running and the agent’s name in the destination variable using the following
conventions:

• local@agent_name when the destination agent is running on the same node;
• espnow:node_name@agent_name to send a message to an agent running on another

node, using EspNow;
• wifimesh:node_name@agent_name to send a message to an agent running on another

node, using WiFi Mesh;
• loramesh:node_name@agent_name to send a message to an agent running on another

node, using LoRa Mesh.



It is important to note that Hermes must be properly initialized before being used on the
Democle platform by calling the init function for the chosen communication protocol.

5. Conclusions

This work has introduced Hermes, a C++ library which allows developers to send and receive
messages using different wireless network protocols through a single library interface.

The project is currently still under development and the introduction of some new features is
planned, e.g. encryption, authentication and compression of the messages.

Hermes is an open-source project released under the GNU-GPLv3 licence and available on
Github at https://github.com/Herbrant/Hermes/.

Acknowledgments

(i)This work is supported by the MIUR project "T-LADIES" under grant PRIN 2020TL3X8X.
(ii) The contribution of Federico Fausto Santoro was supported by MUR under Mission 4,
Component 2, Investment 1.4 under the project HPC. (iii) “PIACERI”, funded by the University
of Catania;

References

[1] F. Messina, C. Santoro, F. F. Santoro, A declarative C++ agent platform for agent-based
edge computing, in: WOA, volume 3579 of CEUR Workshop Proceedings, CEUR-WS.org,
2023, pp. 206–215.

[2] B. Oniga, A. Munteanu, V. Dadarlat, Open-source multi-protocol gateway for internet
of things, in: 2018 17th RoEduNet Conference: Networking in Education and Research
(RoEduNet), 2018, pp. 1–6. doi:10.1109/ROEDUNET.2018.8514136.

[3] T. Theodorou, G. Violettas, P. Valsamas, S. Petridou, L. Mamatas, A multi-protocol software-
defined networking solution for the internet of things, IEEE Communications Magazine
57 (2019) 42–48. doi:10.1109/MCOM.001.1900056.

[4] T. Polonelli, D. Brunelli, A. Girolami, G. N. Demmi, L. Benini, A multi-protocol system
for configurable data streaming on iot healthcare devices, in: 2019 IEEE 8th International
Workshop on Advances in Sensors and Interfaces (IWASI), 2019, pp. 112–117. doi:10.
1109/IWASI.2019.8791381.

[5] X. Wang, J. T. Wang, X. Zhang, J. Song, A multiple communication standards compatible
iot system for medical usage, in: 2013 IEEE Faible Tension Faible Consommation, 2013, pp.
1–4. doi:10.1109/FTFC.2013.6577775.

[6] R. Pasic, I. Kuzmanov, K. Atanasovski, Esp-now communication protocol with esp32,
Journal of Universal Excellence 6 (2021) 53–60.

[7] M. Buffa, F. Messina, C. Santoro, F. F. Santoro, Design of self-organizing protocol for lowpan
networks, in: Internet and Distributed Computing Systems, Cham, 2019, pp. 424–433.

[8] C. K. Toh, Ad hoc mobile wireless networks: protocols and systems, Pearson Education,
2001.

https://github.com/Herbrant/Hermes/
http://dx.doi.org/10.1109/ROEDUNET.2018.8514136
http://dx.doi.org/10.1109/MCOM.001.1900056
http://dx.doi.org/10.1109/IWASI.2019.8791381
http://dx.doi.org/10.1109/IWASI.2019.8791381
http://dx.doi.org/10.1109/FTFC.2013.6577775


[9] J. M. Solé, R. P. Centelles, F. Freitag, R. Meseguer, Implementation of a lora mesh library,
IEEE Access 10 (2022) 113158–113171. doi:10.1109/ACCESS.2022.3217215.

[10] S. Devalal, A. Karthikeyan, Lora technology-an overview, in: 2018 second international
conference on electronics, communication and aerospace technology (ICECA), IEEE, 2018,
pp. 284–290.

[11] B. Stroustrup, The C++ programming language, Pearson Education, 2013.
[12] espressif, esp-idf: Espressif IoT Development Framework. Official development framework

for Espressif SoCs., https://github.com/espressif/esp-idf, 2016.
[13] jgromes, RadioLib: Universal wireless communication library for embedded devices, https:

//github.com/jgromes/RadioLib, 2018.
[14] R. Pueyo Centelles, Towards LoRa mesh networks for the IoT, Ph.D. thesis, Universitat

Politècnica de Catalunya, 2021.

http://dx.doi.org/10.1109/ACCESS.2022.3217215
https://github.com/espressif/esp-idf
https://github.com/jgromes/RadioLib
https://github.com/jgromes/RadioLib

	1 Introduction
	2 Related work
	3 Overview of Democle
	4 Architecture and Features of Hermes
	4.1 Hermes Architecture
	4.2 Democle Integration

	5 Conclusions

