
Visualizing CHC Verification Conditions
for Smart Contracts Auditing
Marco Di Ianni1,2, Fabio Fioravanti1 and Giulia Matricardi1,2

1DEc, University of Chieti-Pescara, Italy
2Dottorato di Interesse Nazionale in Blockchain e DLT, University of Camerino, Italy

Abstract
Smart contracts are programs stored on a blockchain that can be used to automate agreements and
transactions. Their immutable nature carries the risk of financial losses due to vulnerabilities and bugs.
Consequently, verification processes, often supported by formal methods, are indispensable in mitigating
these risks. Constrained Horn Clauses (CHCs) are commonly used for representing verification conditions
(VCs) in smart contract analysis and verification, and several tools have been developed based on CHCs.
Despite their utility in formal verification, CHCs pose a challenge in terms of human readability. In this
paper we present preliminary work in the development of a tool aimed at visualizing CHCs, helping
experts inspect VCs and their correspondence with smart contract code during the auditing process. The
tool combines different translations in order to generate Predicate Dependency Graphs (PDGs), depicting
the relationships among CHC predicates that have been derived from smart contract functions and the
properties under verification. While the current representation of PDGs is static, future developments
aim to render it dynamic and user-friendly. This enhancement would enable auditors to selectively
display sections of the PDGs, interact with nodes and the associated clauses and code, apply CHC
transformations and invoke CHC satisfiability solvers.

Keywords
Smart Contract Verification, Formal Verification, Constrained Horn Clauses, CHC visualization

1. Introduction

Originally introduced as the foundational technology for the Bitcoin [1] cryptocurrency, a
blockchain is a decentralized, distributed ledger that securely records transactions in an im-
mutable manner.

The blockchain is replicated on multiple nodes that use a consensus mechanism to confirm
and add transactions to it. Blocks are cryptographically linked to each other, forming a secure
chain that makes tampering difficult. This ensures the blockchain’s integrity and immutability.

The potential applications of blockchain technology are numerous, ranging from financial
services and supply chain management to healthcare and voting systems. Blockchains can
also be used to store smart contracts [2], programs that automatically perform actions and
transactions required by an agreement, upon the occurrence of certain conditions, without
the need for an intermediary. Once registered on the blockchain, smart contracts become part
of the distributed ledger and can be executed by all nodes in the network, guaranteeing the

CILC 2024: 39th Italian Conference on Computational Logic, June 26-28, 2024, Rome, Italy
$ marco.diianni@phd.unich.it (M. Di Ianni); fabio.fioravanti@unich.it (F. Fioravanti);
giulia.matricardi@phd.unich.it (G. Matricardi)
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:marco.diianni@phd.unich.it
mailto:fabio.fioravanti@unich.it
mailto:giulia.matricardi@phd.unich.it
https://creativecommons.org/licenses/by/4.0

reliability and consistency of transactions. Due to the immutable nature of smart contracts, the
presence of a bug or vulnerabilities can lead to huge economic losses1. For these reasons, the
analysis of the security of smart contracts is a very important topic, and several companies
provide smart contract auditing services. The most popular platform for storing and executing
smart contracts is Ethereum, overall managing billions of dollars. Smart contracts on Ethereum
are typically written in Solidity, the platform’s primary programming language. In order to
execute smart contracts (or transactions) in Ethereum, it is necessary to pay a fee, called gas,
which represents the computational cost of operations on this blockchain.

Many of the formal verification tools that have been developed for smart contract analysis
use Constrained Horn Clauses (CHCs) (e.g. SeaHorn2, RustHorn3, JayHorn4) as an intermediate
language to represent the verification conditions (VCs) for properties. However, for several
reasons, CHCs are difficult to read and interpret (see Section 2). In this paper we present a
prototype tool for CHC visualization that we have developed to aid developers analyse Solidity
smart contracts. The tool takes as input Solidity smart contracts, annotated with properties,
and produces a Predicate Dependency Graph (PDG), whose nodes correspond to predicates and
whose edges represent the predicates dependencies.

The rest of the document is structured as follows: in Section 2 we provide some details of
smart contract verification, with a focus on CHCs and auditing processes. In Section 3 we
describe the CHC visualization tool and in Section 4, we demonstrate the tool’s application
to a basic smart contract, emphasizing the challenges in interpreting Horn clauses and the
outcomes of transformations derived from the tool. In the last section we discuss related work
and possible improvements.

2. Smart Contract Verification

Several tools have been developed over the past years to analyse the security of smart contracts,
see [3] for a systematic survey. Most of these tools apply static analysis to detect common
vulnerabilities and coding errors, such as reentrancy bugs, integer overflows, and unchecked
external calls, and only a few tools apply formal verification in order to check the correctness
of the program with respect to user provided specifications.

Properties for Solidity smart contracts can be specified in the form of Hoare triples using
require() and assert() annotations. If a precondition, specified with require(), is satis-
fied at the beginning of code execution, and the code executes correctly, then a postcondition
specified with assert() will be checked at the end of code execution. So, while the assert()
function is used to test internal errors and verify invariants, the require() function is used
to guarantee valid conditions, such as correct inputs, contract status variables or the return of
valid values from calls to external contracts.

Ethereum smart contracts can also fail for other reasons. For instance, transactions can fail
due to the lack of a sufficient amount of gas for code execution. The failure of a transaction may
1Approximately $773 million in 2023.
Source: https://www.slowmist.com/report/2023-Blockchain-Security-and-AML-Annual-Report(EN).pdf

2https://seahorn.github.io/
3https://github.com/hopv/rust-horn
4https://jayhorn.github.io/jayhorn/

https://www.slowmist.com/report/2023-Blockchain-Security-and-AML-Annual-Report(EN).pdf
https://seahorn.github.io/
https://github.com/hopv/rust-horn
https://jayhorn.github.io/jayhorn/

result in several consequences, including the loss of the funds invested in the transaction, the
gas fees paid to execute the transaction and, in some cases, the execution of any transactions
preceding the failing transaction may be reverted.

Many recent program analysis and verification methods [4, 5] use Constrained Horn Clauses
(CHCs) [6] as an intermediate language for specifying (i) the semantics of programs, that can be
written in a variety of programming languages, including imperative, functional, object-oriented,
and concurrent ones, and (ii) program properties, including safety, termination, and program
equivalence. CHCs are a fragment of First-Order Logic with the same syntax and semantics of
Constraint Logic Programs (CLP) but that are not intended to be directly executed as programs.

CHCs provide a formal framework for expressing verification conditions (VCs), allowing
developers to specify properties and constraints that smart contracts must satisfy. One of the
strengths of CHCs lies in their ability to capture complex program behaviors and dependencies
and summarize them into a standardized framework. This formal verification process provides
mathematical certainty about the behavior of smart contracts, strengthening confidence in their
security and reliability. Several tools for smart contract verification based on CHCs have been
developed, such as SmartAce [7], Verysmart [8], Securify [9], eThor [10], HoRStify [11] and
SolCMC [12], a module integrated in the Ethereum’s Solidity compiler.

Smart contracts are often manually reviewed by expert auditors. Auditing aims to identify
and assess risks, vulnerabilities, compliance issues and technical defects in the smart contract.

During smart contract auditing it is important for verification engineers to be able to inspect
the VCs in CHC format. Unfortunately, these clauses are often difficult to be read by humans. In
particular, if we consider the CHCs generated by SolCMC, we note some critical issues: (i) CHCs
are in SMT-LIB5 format, a quite verbose format that uses prefix notation, that further hinders
readability, (ii) CHCs contain several clauses and predicates that are generated to represent
different scenarios, such as the success and failure of function calls, the relationship between the
input and output of a function (function summaries), constructor and function initialization, (iii)
predicates may exhibit mutual dependencies, which may increase the difficulty of understanding
the CHCs. Thus, finding a direct correspondence between the generated CHCs and the original
Solidity source code can be challenging. Therefore, there is a need for a tool to assist verification
engineers in graphically inspecting the VCs in CHC format.

3. CHC Visualization

Providing a visual representation of the dependencies that exist among the CHC predicates can
be useful during the auditing process to ease the understanding of the smart contract behaviour
and increase the confidence in the correctness of the VC encoding. We have developed CHCViz,
a tool that takes as input a Solidity smart contract and a property, specified using require()
and assert() annotations, and generates a Predicate Dependency Graph (PDG), whose nodes
correspond to CHC predicates and whose edges represent the dependencies among predicates.

The tool has been implemented as a Python script that coordinates the execution of the
following stages:

5https://smtlib.cs.uiowa.edu/

https://smtlib.cs.uiowa.edu/

• CHC Generation: generation of CHCs in SMT-LIB format from the Solidity smart
contract;

• Prolog encoding: translation of the CHCs from the SMT-LIB format to Prolog format;
• PDG creation: creation of the PDG in the Graphviz DOT format;
• SVG generation: generation of the PDG in Scalable Vector Graphics (SVG) format.

Figure 1: Tool Architecture

CHC Generation The process initiates with the generation of the CHCs in SMT-LIB format
from the annotated Solidity contract. The CHC generation is performed by invoking the
SMTChecker module, also known as SolCMC, of the Solidity compiler6 by specifying assert
as the only verification target. The satisfiability of the generated CHCs encode the validity of
the property for the contract: if the CHCs are satisfiable then the property is valid.
Prolog Encoding After the generation of CHCs in SMT-LIB format, the subsequent phase

involves their translation into Prolog format using Eldarica7. The Prolog format is less verbose
and more human readable than SMT-LIB and is also the input format required by the tool used
in the subsequent phase.

PDGCreation In this phase, taking as input the CHCs in Prolog format generated by Eldarica,
we invoke Logtalk8, a Prolog-based declarative object-oriented logic programming language, for
creating the PDG specification that encodes the dependencies among the CHC predicates. The
PDG is generated as a GraphViz9 DOT file containing all the information needed for displaying
the graph. The DOT language is very flexible: it supports different attributes of nodes, edges,
graphs, and various layout engines and output formats.
SVG Generation In the final phase, the PDG is transformed into an SVG file format using

Graphviz. The SVG format has been chosen among other formats, because of its scalability and
of its support for interactivity through JavaScript and CSS.

We have run CHCViz on 187 contracts taken from [13] and we have obtained the following
results. For 174 contracts the PDGs in SVG format were successfully generated, for 10 contracts
the CHCs in SMT-LIB format generated by SolCMC contained data type declaration errors,
which were manually corrected to subsequently achieve successful SVG generation, and for
6SolCMC (version 0.8.25) https://docs.soliditylang.org/en/latest/smtchecker.html
7Eldarica (version 2.0.9) https://github.com/uuverifiers/eldarica
8Logtalk (version 3.75.0) https://logtalk.org/
9GraphViz (version 2.43.0) https://graphviz.org

https://docs.soliditylang.org/en/latest/smtchecker.html
https://github.com/uuverifiers/eldarica
https://logtalk.org/
https://graphviz.org

3 contracts, our tool was unable to generate the DOT file due to a limitation of the Prolog
encoder. The CHCViz tool, the supplementary material and our experiments are available at
https://fmlab.unich.it/chcviz.

4. Visualizing the CHCs for a simple Smart Contract

We now consider a smart contract that implements a simple banking functionality (Listing 1)
allowing users to deposit and withdraw funds from their balance, stored in the contract, via
the deposit() and withdraw() functions, respectively. The address of the sender of the
message initiating the transaction and the amount of wei, the smallest subunit of Ether (the
native cryptocurrency of the Ethereum), sent in the transaction are denoted by msg.sender
and msg.value, respectively. The contract contains require() and assert() annotations
to specify properties stating that (i) for the deposit() function: the balance of a user after a
deposit must be equal to the previous balance increased by the value specified in the transaction
(line 8), (ii) for the withdraw() function: (a) in order to withdraw a specific amount from a
balance, the specified value must be greater than zero and not greater than the balance of the
user requesting the withdrawal (line 12), (b) the return of valid values from external calls is also
checked (line 15). The VCs that are generated from this simple contract contain a significant
number of CHCs (about 30), and are not easily readable.

1 contract Bank {
2 mapping (address => uint) balances;
3
4 function deposit() external payable {
5 uint user_balance = balances[msg.sender];
6 balances[msg.sender] += msg.value;
7 uint new_user_balance = balances[msg.sender];
8 assert(new_user_balance == user_balance + msg.value);
9 }

10
11 function withdraw(uint amount) public {
12 require(amount > 0 && amount <= balances[msg.sender]);
13 balances[msg.sender] -= amount;
14 (bool success,) = msg.sender.call{value: amount}("");
15 require(success);
16 }
17 }

Listing 1. Solidity Contract: a solidity smart contract, named Bank, that
implements a simple banking functionality.

An extract of a single CHC clause in Prolog format obtained after the CHC Generation and
Prolog encoding phases is shown in Listing 2 (you can see the same clause in SMT-LIB format
in the Appendix).

https://fmlab.unich.it/chcviz

block_10_function_deposit(A,B,C,D,E,F,G,H,I,J,K) :- \+(L),(A = 1),\+(((L; (M = N)), (\+((M = N));
\+(L)))),(N =< 115...935),(N >= 0),(N = (O + P)),(P =< 115...935),(P >= 0),(P = msg.value(E)
),(O =< 115...935),(O >= 0),(O = J),(M =< 115...935),(M >= 0),(M = K),(K = Q),(Q >= 0),(Q =<
115...935),(Q >= 0),(Q = select(mapping(address => uint256)_tuple_accessor_array(I), R)),(R
=< 146...975),(R >= 0),(R = msg.sender(E)),(S = I),(T = I),(I = mapping(address => uint256)
_tuple(store(mapping(address => uint256)_tuple_accessor_array(U), V, W), mapping(address =>
uint256)_tuple_accessor_length(U))),(X =< 115...935),(X >= 0),(X = select(mapping(address =>
uint256)_tuple_accessor_array(U), V)),(U = Y),(W =< 115...935),(W >= 0),(W = (Z + A1)),(Z >=
0),(Z =< 115...935),(Z =< 115...935),(Z >= 0),(Z = select(mapping(address => uint256)
_tuple_accessor_array(Y), V)),(V =< 146...975),(V >= 0),(V = msg.sender(E)),(B1 = Y),(A1 =<
115...935),(A1 >= 0),(A1 = msg.value(E)),(J = C1),(C1 >= 0),(C1 =< 115...935),(C1 =<
115...935),(C1 >= 0),(C1 = select(mapping(address => uint256)_tuple_accessor_array(Y), D1)),(
D1 =< 146...975),(D1 >= 0),(D1 = msg.sender(E)),(E1 = Y),(F1 = 0),(G1 = 0),block_8_deposit(H1,
B,C,D,E,F,G,H,Y,G1,F1).

Listing 2. CHC clause extract: a clause in Prolog format.

Figure 2: PDG for the deposit() function

In the clause shown in Listing 2, (i) 115...935
and 146...975 denote integers with 78 and 49
digits, respectively, corresponding to the max-
imum allowed value for a transaction and
for an account address, and (ii) select and
store are terms encoding read and write
operations on the array associated with the
balances variable, that maps addresses to
the corresponding balances. Note also that
clauses may contain redundant constraints,
unnecessary variables and multiple occur-
rences of large constants. Figure 2 shows the
PDG corresponding to the deposit() func-
tion of the example smart contract. There we
can see how the two possible outcomes of
a function call are handled: the case of fail-
ure, causing the transaction to revert, is iden-
tified by block_10_function_deposit
while the case of success is identified
by block_9_return_function_deposit.
The summary_4_function_deposit pred-
icate is used to keep track of the relationship
between the function’s input and output, de-
rived from all its possible executions. This is
linked to error_target_4 which occurs in
the query false :- error_target_4 that
is used to check the satisfiability of the CHCs.
The complete PDG for the Bank contract is
shown in the appendix.

5. Related Work and Conclusions

Some other tools focus on the visualization of smart contracts on the Ethereum platform, such as
Surya10, Solgraph11 and Solidity Auditor12 which generate Control Flow Graphs (CFG), Smart-
Graph [14], that generates UML diagrams from Solidity source code, and SmartInspect [15] for
visualizing the contract stored state. Other approaches for visualising blockchain and smart
contracts are compared in [16]. Our approach differs from the above mentioned works in that
we focus on the visual representation of the CHCs derived from the smart contract, not on the
smart contract itself.

Ensuring the correctness of smart contracts poses a significant challenge, requiring auditors
to employ supportive tools for effective verification. In addition to automated verification tools,
CHC visualization tools can be a valuable aid in comprehending predicate dependencies, and
increase the confidence in the correctness of the encoding of the considered property.

In this paper, we have presented a prototype tool aimed at visualizing the dependencies
among the CHCs derived from Solidity contracts. The tool can be extended and improved
along several directions. The CHC generation module can be extended to employ translation
schemes based on different operational semantics [17], or for programs written in different
programming languages (for instance, Seahorn could be used to generate CHCs for LLVM-
based languages). The Prolog Encoding and the PDG Creation modules could be improved or
rewritten in order to have better control over the content of the output DOT file. For instance,
it could be useful to annotate the CHCs with the source code from which they are generated,
enabling a clearer understanding of the correspondence between code and clauses. Other
improvements include the possibility of interacting with the PDG for exploring the CHCs (e.g.
expanding, collapsing, browsing) and invoking CHC solvers to check the validity of the property.
Furthermore, the tool could evolve towards a GUI for VeriMAP [18] for selectively applying
satisfiability-preserving CHC transformations with the aim of improving solver effectiveness.
In this case, it would be essential to keep track of the applied transformations. In this way,
verification engineers could experiment with different optimization strategies while maintaining
the ability to revert to previous states, ensuring both agility and reliability. In conclusion, by
providing advanced visualization and analysis capabilities, the tool could help auditors to more
easily detect specification violations and improve the overall reliability of smart contracts.

Acknowledgments
We thank Emanuele De Angelis, Alberto Pettorossi and Maurizio Proietti for useful discussions.
This work has been partially supported by the project FAIR - Future AI Research (PE00000013),
under the NRRP MUR program funded by the NextGenerationEU, and subproject SMARTK (CUP
D23C24000220006). Fabio Fioravanti is member of the Gruppo Nazionale Calcolo Scientifico-
Istituto Nazionale di Alta Matematica (GNCS-INdAM).

10https://github.com/ConsenSys/surya
11https://github.com/raineorshine/solgraph
12https://github.com/Consensys/vscode-solidity-auditor

https://github.com/ConsenSys/surya
https://github.com/raineorshine/solgraph
https://github.com/Consensys/vscode-solidity-auditor

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2008).
[2] N. Szabo, Formalizing and securing relationships on public networks, First monday (1997).
[3] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, H.-N. Lee, Ethereum smart contract analysis

tools: A systematic review, IEEE Access 10 (2022) 57037–57062.
[4] E. D. Angelis, F. Fioravanti, J. P. Gallagher, M. V. Hermenegildo, A. Pettorossi, M. Proietti,

Analysis and transformation of constrained Horn clauses for program verification, Theory
and Practice of Logic Programming 22 (2022) 974–1042.

[5] A. Gurfinkel, Program verification with constrained Horn clauses, in: Computer Aided
Verification - 34th International Conference, Proceedings, Part I, Springer, 2022.

[6] J. Jaffar, M. Maher, Constraint logic programming: A survey, Journal of Logic Programming
19/20 (1994) 503–581.

[7] S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, A. Gurfinkel, Verifying
solidity smart contracts via communication abstraction in smartace, in: Verification,
Model Checking and Abstract Interpretation, Springer International Publishing, 2022.

[8] S. So, M. Lee, J. Park, H. Lee, H. Oh, Verismart: A highly precise safety verifier for Ethereum
smart contracts, in: 2020 IEEE Symposium on Security and Privacy (SP), IEEE, 2020.

[9] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, M. Vechev, Securify: Practical
security analysis of smart contracts, in: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, Association for Computing Machinery, 2018.

[10] C. Schneidewind, I. Grishchenko, M. Scherer, M. Maffei, eThor: Practical and provably
sound static analysis of Ethereum smart contracts, in: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020, pp. 621–640.

[11] S. Holler, S. Biewer, C. Schneidewind, Horstify: Sound security analysis of smart contracts,
in: 2023 IEEE 36th Computer Security Foundations Symposium (CSF), IEEE, 2023.

[12] R. Otoni, M. Marescotti, L. Alt, P. Eugster, A. Hyvärinen, N. Sharygina, A solicitous
approach to smart contract verification, ACM Trans. Priv. Secur. 26 (2023).

[13] M. Bartoletti, F. Fioravanti, G. Matricardi, R. Pettinau, F. Sainas, Towards Benchmarking
of Solidity Verification Tools, in: 5th International Workshop on Formal Methods for
Blockchains (FMBC 2024), Open Access Series in Informatics (OASIcs), 2024, pp. 6:1–6:15.

[14] A. Zhukov, V. Korkhov, Smartgraph: Static analysis tool for solidity smart contracts, in:
Computational Science and Its Applications – ICCSA Workshops, Springer, 2023.

[15] S. Bragagnolo, H. Rocha, M. Denker, S. Ducasse, Smartinspect: solidity smart contract
inspector, in: 2018 International workshop on blockchain oriented software engineering
(IWBOSE), Ieee, 2018, pp. 9–18.

[16] F. Härer, H.-G. Fill, A comparison of approaches for visualizing blockchains and smart
contracts, Jusletter IT (2019).

[17] E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti, Semantics-based generation of
verification conditions via program specialization, Sci. Comput. Program. 147 (2017)
78–108.

[18] E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti, VeriMAP: A tool for verifying
programs through transformations, in: Tools and Algorithms for the Construction and
Analysis of Systems, Springer, 2014, pp. 568–574.

6. Appendix

In Listing 3 a CHC clause in SMT-LIB format is shown. You can see the same clause in Prolog
format in Listing 1. This is to highlight the differences in verbosity and readability between the
Prolog and SMT-LIB formats.

CHC clause extract in SMT-LIB format
(declare-fun |block_10_receive_39_82_0| (Int Int |abi_type| |crypto_type| |tx_type| |state_type| |mapping(address

=> uint256)_tuple| |state_type| |mapping(address => uint256)_tuple| Int Int) Bool)
(assert
(forall ((abi_0 |abi_type|) (amount_41_0 Int) (amount_41_1 Int) (balances_4_length_pair_0 |mapping(address =>

uint256)_tuple|) (balances_4_length_pair_1 |mapping(address => uint256)_tuple|) (balances_4_length_pair_2 |
mapping(address => uint256)_tuple|) (crypto_0 |crypto_type|) (error_0 Int) (error_1 Int) (error_2 Int) (
expr_11_1 Int) (expr_12_1 Int) (expr_14_length_pair_0 |mapping(address => uint256)_tuple|) (
expr_14_length_pair_1 |mapping(address => uint256)_tuple|) (expr_14_length_pair_2 |mapping(address => uint256)
_tuple|) (expr_16_1 Int) (expr_17_1 Int) (expr_17_2 Int) (expr_19_1 Int) (expr_20_1 Int) (
expr_24_length_pair_0 |mapping(address => uint256)_tuple|) (expr_26_1 Int) (expr_27_1 Int) (expr_30_0 Int) (
expr_31_0 Int) (expr_33_1 Int) (expr_34_1 Int) (expr_35_1 Bool) (expr_9_length_pair_0 |mapping(address =>
uint256)_tuple|) (new_user_balance_23_0 Int) (new_user_balance_23_1 Int) (new_user_balance_23_2 Int) (
old_user_balance_8_0 Int) (old_user_balance_8_1 Int) (old_user_balance_8_2 Int) (state_0 |state_type|) (
state_1 |state_type|) (state_2 |state_type|) (success_67_1 Bool) (this_0 Int) (tx_0 |tx_type|))

(=> (and (and (block_8__38_82_0 error_0 this_0 abi_0 crypto_0 tx_0 state_0 balances_4_length_pair_0 state_1
balances_4_length_pair_1 old_user_balance_8_1 new_user_balance_23_1) (and (= expr_35_1 (= expr_30_0 expr_34_1)
) (and (=> true (and (>= expr_34_1 0) (<= expr_34_1 115...935))) (and (= expr_34_1 (+ expr_31_0 expr_33_1)) (
and (=> true (and (>= expr_33_1 0) (<= expr_33_1 115...935))) (and (= expr_33_1 (|msg.value| tx_0)) (and (=>
true (and (>= expr_31_0 0) (<= expr_31_0 115...935))) (and (= expr_31_0 old_user_balance_8_2) (and (=> true (
and (>= expr_30_0 0) (<= expr_30_0 115...935))) (and (= expr_30_0 new_user_balance_23_2) (and (=
new_user_balance_23_2 expr_27_1) (and (and (>= expr_27_1 0) (<= expr_27_1 115...935)) (and (=> true (and (>=
expr_27_1 0) (<= expr_27_1 115...935)))

(and (= expr_27_1 (select (|mapping(address => uint256)_tuple_accessor_array| balances_4_length_pair_2) expr_26_1)
) (and (=> true (and (>= expr_26_1 0) (<= expr_26_1 146...975))) (and (= expr_26_1 (|msg.sender| tx_0)) (and
(= expr_24_length_pair_0 balances_4_length_pair_2) (and (= expr_14_length_pair_2 balances_4_length_pair_2) (
and (= balances_4_length_pair_2 (|mapping(address => uint256)_tuple| (store (|mapping(address => uint256)
_tuple_accessor_array| expr_14_length_pair_1) expr_16_1 expr_20_1) (|mapping(address => uint256)
_tuple_accessor_length| expr_14_length_pair_1))) (and (=> true (and (>= expr_17_2 0) (<= expr_17_2 115...935))
) (and (= expr_17_2 (select (|mapping(address => uint256)_tuple_accessor_array| expr_14_length_pair_1)
expr_16_1)) (and (= expr_14_length_pair_1 balances_4_length_pair_1) (and (=> true (and (>= expr_20_1 0) (<=
expr_20_1 115...935))) (and (= expr_20_1 (+ expr_17_1 expr_19_1)) (and (and (>= expr_17_1 0) (<= expr_17_1
115...935)) (and (=> true (and (>= expr_17_1 0) (<= expr_17_1 115...935))) (and (= expr_17_1 (select (|mapping
(address => uint256)_tuple_accessor_array| balances_4_length_pair_1) expr_16_1)) (and (=> true (and (>=
expr_16_1 0) (<= expr_16_1 146...975))) (and (= expr_16_1 (|msg.sender| tx_0)) (and (= expr_14_length_pair_0
balances_4_length_pair_1) (and (=> true (and (>= expr_19_1 0) (<= expr_19_1 115...935))) (and (= expr_19_1 (|
msg.value| tx_0)) (and (= old_user_balance_8_2 expr_12_1) (and (and (>= expr_12_1 0) (<= expr_12_1 115...935))
(and (=> true (and (>= expr_12_1 0) (<= expr_12_1 115...935))) (and (= expr_12_1 (select (|mapping(address =>
uint256)_tuple_accessor_array| balances_4_length_pair_1) expr_11_1)) (and (=> true (and (>= expr_11_1 0) (<=

expr_11_1 146...975))) (and (= expr_11_1 (|msg.sender| tx_0)) (and (= expr_9_length_pair_0
balances_4_length_pair_1) (and (= new_user_balance_23_1 0) (and (= old_user_balance_8_1 0) true)))))))))))))))
)))))))))))))))))))))))))) (and (and true (not expr_35_1)) (= error_1 1))) (block_10_receive_39_82_0 error_1
this_0 abi_0 crypto_0 tx_0 state_0 balances_4_length_pair_0 state_1 balances_4_length_pair_2
old_user_balance_8_2 new_user_balance_23_2))))

Listing 3. CHC clause extract: a clause in SMT-LIB format

Figure 3: Complete PDG for the Bank contract

The complete PDG for the Bank contract is shown in Figure 3. Despite the modest complexity
of the contract, it is surprising to observe the size of the generated graph. In addition, blocks
relating to the initialisation of the contract and the implicit constructor are also included, adding
further complexity and detail to the graphical representation.

	1 Introduction
	2 Smart Contract Verification
	3 CHC Visualization
	4 Visualizing the CHCs for a simple Smart Contract
	5 Related Work and Conclusions
	6 Appendix

