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Abstract
The continuously increasing availability of data and the growing maturity of data-driven analysis techniques have encouraged
enterprises to collect and analyze huge amounts of business-relevant data in order to exploit it for competitive advantages.
To facilitate these processes, various platforms for analytical data management have been developed: While data warehouses
have traditionally been used by business analysts for reporting and OLAP, data lakes emerged as an alternative concept that
also supports advanced analytics. As these two common types of data platforms show rather contrary characteristics and
target different user groups and analytical approaches, enterprises usually need to employ both of them, resulting in complex,
error-prone and cost-expensive architectures. To address these issues, efforts have recently become apparent to combine
features of data warehouses and data lakes into so-called lakehouses, which pursue to serve all kinds of analytics from a
single data platform. This paper provides an overview on the evolution of analytical data platforms from data warehouses
over data lakes to lakehouses and elaborates on the vision and characteristics of the latter. Furthermore, it addresses the
question of what aspects common data lakes are currently missing that prevent them from transitioning to lakehouses.
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1. Introduction
Within the course of the digital transformation of society
and economy, the importance of data for enterprises is
continuously growing. Due to the ever-increasing afford-
ability of smart devices and sensors in the scope of the
Internet of Things [1], as well as a wide range of other
upcoming technologies for capturing data about prod-
ucts, shop floors, suppliers, customers and other entities,
enterprises have gained manifold opportunities for col-
lecting business-related data along their value chains. By
leveraging data-driven analysis techniques, this data can
be exploited for evaluating and optimizing products and
business processes and hence constitutes a key factor
for continuous development and improvement. How-
ever, in order to be able to derive valuable insights and
knowledge from huge amounts of collected data, this
data needs to be organized and prepared in a systematic
manner, along with metadata that describes the context
in which the data was created and processed [2]. Plat-
forms for analytical data management can support these
tasks, as they are specifically developed for the storage,
management, processing and provisioning of data from
all types of data sources that is supposed to be made avail-
able for different types of analytics applications [3]. In
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practice, especially the traditional data warehouses and
the more recent data lakes have become the predominant
types of data platforms. With so-called lakehouses, a sup-
posedly new kind of data platform has recently attracted
attention: They are driven by the vision of combining the
characteristics and features of data warehouses and data
lakes, which are perceived as complementary, into inte-
grated data platforms. With the prospect of being able to
serve all kinds of analytical workloads from one univer-
sally applicable platform, lakehouses promise to simplify
and improve existing enterprise analytics architectures,
which commonly needed to operate data warehouses
and data lakes in parallel and hence suffered from high
operational costs, slow analytical processes, as well as
a low trustworthiness of analysis results [4]. Over the
past years, a variety of technologies have emerged or
evolved with the intention to address these issues and
hence to enable the construction of lakehouse-like data
platforms, such as Delta Lake1, Dremio2 or Snowflake3.
As indicated by our evaluation of several data manage-
ment tools [5], frameworks that operate on top of data
lakes and pursue to enhance them for typical features
of data warehouses appear to be particularly promising
in this regard, including Delta Lake, Apache Hudi4 and
Apache Iceberg5. This paper first provides an overview
on the evolution of data platforms and explains the vision

1https://delta.io
2https://www.dremio.com
3https://www.snowflake.com
4https://hudi.apache.org
5https://iceberg.apache.org
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behind the lakehouse paradigm. Section 3 then elaborates
on the characteristics of lakehouses, which are compared
to the architecture of a typical data lake in Section 4. This
way, several aspects are identified that conventional data
lakes need to address in order to be able to complete the
transition to lakehouses.

2. Evolution of Data Platforms
Between 1960 and 1970, the first databases appeared and
the relational data model [6] was developed. The purpose
of these databases was primarily to provide data manage-
ment capabilities for applications and were accordingly
designed for workloads where rather simple read and
write operations have to be performed on large datasets
with high frequency. However, many of these databases
are less suitable for analytics applications, where large
amounts of historical data have to be sporadically an-
alyzed with rather complex queries in order to derive
insights and knowledge that can then be used for guiding
business decisions. For this reason, data platforms for
analytical data management have been developed, which
support the systematic long-term storage, management
and querying of data for analytical purposes.
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Figure 1: Comparison of typical high-level architectures of
data warehouses (left) and data lakes (right).

Data warehouses [7] represent the most established
type of analytical data platform and emerged from rela-
tional database systems in the 1980s. They are primarily
designed for the management of structured data, impose
well-defined and possibly multi-dimensional data mod-
els [8], often provide ACID guarantees and tend to offer

features that go beyond those of conventional relational
databases, such as time travel and data governance ca-
pabilities. The left side of Fig. 2 shows the common ar-
chitecture of a data warehouse, based on the reference
architecture by Bauer and Günzel [9]. Data Warehouses
are typically designed specifically for a given application
scenario and employ a Extract-Transform-Load (ETL)
process, where the data is first extracted from the data
sources, then prepared and transformed into the target
schema in a dedicated data staging area and finally load
into the core data warehouse, which is responsible for the
long-term storage of all data. While the data staging area
can leverage different types of storage systems, such as
relational or NoSQL databases, the core data warehouse
typically relies on relational databases. Due to the large
amount of data that resides in the core data warehouse, it
can be reasonable to extract parts of the data and to make
it available in dependent data marts [10], which then al-
low to speed up downstream analyses. For example, some
data marts may be based on relational databases and op-
timized for reporting, while other data marts employ
multi-dimensional databases in order to support Online
Analytical Processing (OLAP) [10]. By using appropriate
query languages, data analysts can perform their anal-
yses either on individual data marts or directly on the
core data warehouse. As data warehouses employ com-
plex, static data models, store pre-processed data instead
of the raw data and leverage proprietary data formats
that impede direct data access, they are mostly suited
for analysis questions that are already known in advance
and provide only very limited support for data mining
and machine learning. Moreover, since data warehouses
are primarily optimized for the batch processing of huge
amounts of data, they can barely be used for streaming
applications [11] that rely on the near-realtime execution
of simple data operations with high frequency. With the
goal of making data warehouses more flexible, there have
been various attempts to enable the storage of structured
raw data. For example, data vault [12] represents a data
modeling approach that facilitates the easy incorpora-
tion of changes to the data schema without requiring
adjustments to the structure of existing tables and hence
accommodates the variability of raw data.

The continuously increasing demand for organizing
and analyzing semi-structured and unstructured data
led to the emergence of data lakes [13] in about 2010.
Data lakes are based on the idea of collecting raw data
from the data sources and deciding at a later point how
this data can be processed and analyzed. This leads to a
Extract-Load-Transform (ELT) process, where the data
is first extracted and load into the data lake and subse-
quently prepared and transformed in order to make it
accessible for different types of analytics applications. As
a result, data lakes manage not only preprocessed and
pre-aggregated data, but also raw data, which allows to



increase the efficiency of re-occurring analyses while still
maintaining a high level of flexibility. As indicated on
the right-hand side of Fig. 2, data lakes typically impose
a polyglot architecture, in which several different sys-
tems for data storage and data processing are utilized,
including relational and NoSQL databases, distributed file
systems, batch and stream processing engines and event
hubs. By applying zone models, the architecture is com-
monly divided into zones that reflect different degrees
of data processing and governance policies [14]. Instead
of proprietary file formats, data lakes tend to leverage
open file formats, such as Apache Parquet6 or Apache
ORC7. These formats enable tabular data representations
and provide further optimizations in terms of data com-
pression and query processing. These aspects and the
possibility to directly access the data on the underlying
storage systems enable the execution of data mining and
machine learning applications on top of data lakes. By in-
tegrating stream storage and stream processing systems,
such as Apache Spark and Apache Kafka8, respectively,
into the architecture and by applying well-established
architecture patterns like the Lambda [15] or Kappa [16]
architecture, data lakes are also suitable for near-realtime
reporting and streaming analytics.

Due to these complementary alignments of data ware-
houses and data lakes, enterprises tend to employ com-
plex analytics architectures in which both types of data
platforms are operated in parallel This approach com-
monly results in several shortcomings [4], such as data
replication across multiple storage systems and the need
for continuously transferring, transforming and synchro-
nizing the data between the involved data platforms,
which likely leads to high operational costs and inconsis-
tent or erroneous data. In addition, the necessary move-
ment of data extends the time until analysis results are
available. Vendors of various data management tools
have recognized these problems and recently developed
products that pursue to close the gap between data ware-
houses and data lakes: On the one hand, modern and
possibly cloud-based data warehouses like Snowflake are
evolving in order to support the management of unstruc-
tured data, the stream ingestion of near-realtime data, as
well the querying of data that is stored in open formats
on external, third-party storage systems. On the other
hand, frameworks and query engines like Apache Hudi,
Apache Iceberg, Dremio and Trino9 are emerging that
can be used to enhance data lakes by typical features of
data warehouses and hence make analyses more conve-
nient. This observable convergence of data warehouses
and data lakes contributed to the coining of the term
"lakehouse" and its underlying vision.

6https://parquet.apache.org
7https://orc.apache.org
8https://kafka.apache.org
9https://trino.io

3. The Lakehouse Paradigm
Although there is a widespread agreement that lake-
houses represent amalgamations of data warehouses and
data lakes, different opinions in literature exist about how
the architecture of lakehouses should look like and what
characteristics these data platforms must necessarily pos-
sess. For example, many authors consider lakehouses
as integrated data platforms that are based on directly-
accessible storage, such as distributed file systems or
object storages and can also provide typical features of
data warehouses like ACID transactions [4]. However,
others argue that a two-tier architecture consisting of
self-contained data warehouses and data lakes that are
potentially connected by an integration layer for unified
data access can also constitute a lakehouse [17]. In our
work [5], we assessed different views and definitions of
the lakehouse paradigm and finally derived a new defini-
tion that reflects the additional value of lakehouses for
enterprises in comparison to conventional data platforms.
From our perspective, lakehouses are beneficial for en-
terprises when they contribute to simplifying enterprise
analytics architectures by providing a single source of
truth, limiting the variety of involved technologies and
hence reducing the number of required data movement
and transformation processes. Accordingly, we define a
lakehouse as "integrated data platform that leverages the
same storage type and data format for reporting and OLAP,
data mining and machine learning, as well as streaming
workloads." [5]. Fig. 3 illustrates how such a data platform
may look like. First of all, the term "integrated platform"
expresses that a lakehouse should not be considered as a
loose amalgamation of standalone data warehouses and
data lakes, but rather as a single, self-contained data plat-
form. Limiting the architecture to one type of storage, e.g.
to a distributed file system, and one data format, e.g. to
Apache Parquet, eliminates the need for additional data
movement and transformation processes within the lake-
house and therefore reduces the complexity and error-
proneness of the overall architecture. Furthermore, it
supports the formation of a single source of truth, as
the same data may no longer be replicated between dif-
ferent systems with varying characteristics. Finally, the
definition emphasizes that lakehouses must support all
typical analytical workloads of data warehouses and data
lakes, so that data analysts and data scientists can use a
lakehouse instead of the former data platforms.

Based on this definition and the characteristics of the
workloads mentioned therein, we derived a total of eight
technical requirements that lakehouses should fulfill [5]:
R1: Same type of storage and data format Lake-
houses must employ only a single type of storage for all
data and metadata and use only one format for the data.
R2: CRUD for all types of data Lakehouses must
support the ingestion, retrieval, updating and deletion of

https://parquet.apache.org
https://orc.apache.org
https://kafka.apache.org
https://trino.io
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Figure 2: Example of a lakehouse that uses the HDFS as
storage system and Apache Parquet as data format.

all kinds of data at least on the level of data collections.
R3: Relational data collections Lakehouses must
provide means to abstract from the stored data files and
to represent them as cohesive data collections with rela-
tional properties on the logical level.
R4: Query language Lakehouses must offer a declara-
tive, structured query language that allows to query the
data in a relational manner.
R5: Consistency Guarantees Lakehouses must pro-
vide consistency guarantees for the data, such as schema
validation, which can either be enforced on data inges-
tion or when the data is queried.
R6: Isolation and Atomicity Similar to relational
database systems, lakehouses must provide isolation and
atomicity for data operations in order to ensure the con-
sistency of the data and to support concurrency.
R7: Direct read access Lakehouses must provide di-
rect access to the data and metadata on the underlying
storage system and must employ open data formats only.
R8: Unified batch and stream processing Lake-
houses must support record-wise data operations in near-
realtime and allow to treat data collections as sources
and sinks for batch and stream processing.

These requirements can be achieved in various ways,
for example by opening existing data warehouses and
driving them into the direction of data lakes or by devel-
oping technologies that enhance data lakes for common
features and characteristics of data warehouses.

4. Transitioning from Data Lakes
to Lakehouses

In the course of our evaluation of several data manage-
ment tools [5], frameworks for data lakes like Delta Lake,
Apache Hudi and Apache Iceberg appeared to be particu-

larly promising for the fulfillment of the aforementioned
requirements and thus for the construction of lakehouses.
These frameworks basically act as libraries for highly
scalable batch and stream processing engines, such as
Apache Spark10 or Apache Flink11 and implement data
access protocols that control how these engines read data
from and write data to storage systems (cf. [18]). In ad-
dition, they manage technical metadata, which allows
them to represent datasets as relational data collections
and track additions, updates and deletions of data.
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Figure 3: Typical architecture of a data lake that can transi-
tion to a lakehouse by adding a corresponding framework.

Fig. 4 shows the conceptual architecture of a data lake
as it can often be encountered in practice. It essentially
consists of a storage system, which can be either a dis-
tributed file system or an object storage that persists the
data as data files in an open file format. A batch and
stream processing engine can read data from the stor-
age system, process it and then write the results back
to the storage system. Hence, the data lake is supposed
to store the raw data next to pre-processed and aggre-
gated data. This processing engine is also used to ingest
data and data analysts can leverage it in order to query
the data via a query language like SQL. For data mining
and machine learning, data science applications can di-
rectly access the data on the storage system. Without
the lakehouse framework that is depicted in Fig. 4, the
data lake would already satisfy the requirements R1, R2,
R3, R4, and R7. R3 is satisfied because many processing
engines like Apache Spark already enable relational data
abstraction, so that multiple data files that reside on the
storage system can collectively represent the contents of
a table. R5 and R6 are not met, since processing engines
10https://spark.apache.org
11https://flink.apache.org

https://spark.apache.org
https://flink.apache.org


usually do not provide means for enforcing the internal
consistency of a table, nor do they guarantee atomicity
and isolation when performing operations on the data.
Although processing engines like Apache Spark gener-
ally support the batch and stream processing of data that
resides on a distributed file system or object storage, R8
is often not met, because especially engines that apply
micro-batching are often not optimized for simple data
operations that occur at high frequency, which results
in the creation of many small data files when streaming
data needs to be materialized. This high number of data
files prevents the efficient querying of data, as many files
have to be read and consolidated [18]. To solve this issue,
a dedicated stream storage system, such as Apache Kafka,
could be leveraged, but this would in turn increase the
complexity of the data lake and in particular violate R1,
as it represents another type of storage system.

When integrating a lakehouse framework into the pro-
cessing engine, the previously unmet requirements R5,
R6, and R8 can be satisfied [5]: As these frameworks pro-
vide means for enforcing the inner consistency of data
collections, such as schema validation and constraint
checking, R5 can be fulfilled. Furthermore, they use the
collected technical metadata in order to implement data
access protocols that achieve atomicity and at least snap-
shot isolation [19] via multi-version concurrency con-
trol [20] (cf. R6). By offering various optimizations, such
as different table types that are either designed for fre-
quent reads or writes, as well as compaction techniques
for data and metadata, these frameworks avoid the cre-
ation of many small data and metadata files and hence
increase the efficiency of stream processing (cf. R8).

5. Conclusion
By assessing the properties of a typical data lake archi-
tecture and comparing them to requirements that are
relevant for lakehouses, it became apparent that it lacks
consistency guarantees, atomicity and isolation for data
operations, as well as optimizations for stream processing
in order to complete the transition to a lakehouse. While
the lakehouse approach looks promising, its concepts and
technologies have not reached maturity yet and hence
require further research, for example in terms of data
modeling and the suitability of different architectures.
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