
Toward cross-granular querying over
modularized ontologies

C. Maria Keet

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
keet@inf.unibz.it

Abstract. To address the problems of both structured coordination of
linked and modularised ontologies and to query a large dynamic ontology
system, we propose a basic granularity framework and a set of functions
to query such a granulated system. The granularity framework enforces a
constrained and structured modularization. This facilitates automation
of both dividing a large body of represented information as well as re-
linking the pieces. The functions enable basic cross-granular querying in
a transparent and scalable way, as they rely on the unambiguous man-
agement layer provided by the granularity framework, and are reusable
for ontologies represented and stored in different formats.

1 Introduction

Modularization of ontologies and modularization of the subject domain to have
different ontologies require, to some extent, different methodologies and tech-
nologies to address successfully. Tried and tested approaches are, for instance,
manual modularization of conceptual data models as is customary in software
development with UML Packages [1], and the inverse where one has a large on-
tology that has to be split-up somehow in smaller chunks [2, 3]. The former tends
to be used to make the ‘cognitive overload’ manageable, whereas the latter has
more to do with a system’s performance and scalability. Moreover, modulariza-
tion of the subject domain can avoid the problem of having to modularize a large
ontology, but it passes on problems to, among others, 1) how to modularize in an
optimal way, 2) which way is optimal, 3) how to keep the modules coordinated to
avoid subject domain overlap and corresponding range ontology matching issues,
4) how to repeatedly (re-)connect those ontology modules statically or dynam-
ically on-demand when a user poses a query across the modules, and 5) if one
could keep such querying locally within the module by good design of the mod-
ularization. The most active domain of ontology development, bio-ontologies,
faces both issues: having to deal with very large ontologies that can benefit from
modularization, as well as having to manage multiple smaller ontologies that
need to be connected. One direction bio-ontologists have taken is coordination
of the ‘modules’ along levels of granularity, i.e., a specific constrained modulariza-
tion that has flavours of subject domain-motivated modularization, yet also the
desire to computationally manage this. A formal approach to such endeavours is



lacking, however. Research into computational implementations of granularity is
not new, and is applied mainly in GIS, data warehousing, and time granularity,
but its use to coordinate ontologies and application in knowledge representation
in general, is. Here it will be demonstrated that with a formally defined granu-
larity framework as additional knowledge management layer, the modularization
and connectivity is not just any mapping, but can be semantically enriched with
why and how the linking between the modules has been performed. This also
greatly simplifies posing granular queries over such a modularized system. The
connected ontologies remain separable, yet can be linked transparently into one
coherent system within such a domain granularity framework.

In the remainder of the paper, we first introduce a motivating example in
section 2, after which we introduce a basic granularity framework in section 3. In
section 4 we introduce the set of functions to perform granular queries over the
to be loosely linked and coordinated ontologies at different levels of granularity.
We close with conclusions and future work in section 5.

2 Motivating example

Early attempts to group and coordinate bio-ontologies and related medical in-
formation systems focussed primarily on identifying which perspectives one can
take on the chosen subject domain, which levels of granularity one can identify,
and how many of them would be practically useful [4–6]. The largest and most
ambitious effort to date is OBO Foundry’s approach to coordinated evolution
of ontologies [7] and LAV integration of biological databases. OBO Foundry’s
overview of both linking and modularizing bio-ontologies at different levels of
granularity is depicted in Fig.1-A, which lists 10 of the 16 Foundry ontologies
out of the 64 that are indexed [8] (as of 3-3-2008). For instance, at the “Organ
and Organism”-level, the NCBI taxonomy may be linked to both the Founda-
tional Model of Anatomy [9], which covers human anatomy only but into great
detail for supra-cellular levels, and CARO [10] that also considers anatomy of
other types of organisms but contains only generic universals for anatomy. How
all this coordination among the ontologies and between sections of ontologies
is to be implemented is not yet clear—and far from trivial. The ontologies are
developed in a distributed fashion and owned by different organizations, rep-
resented in different representation languages, of widely varying size, and are
intended to be complimentary in coverage. The latter has as major advantage
that the linking of ontologies is not expected to face serious difficulties like with
traditional ontology matching [11, 12]. Instead, connect points between the on-
tologies and sections thereof have to be clearly defined and re-computed each
time after one of the participating ontologies is updated (which is a frequent
event). A first step is enabling computational management of those different
perspectives and levels, which includes both a formal representation of granu-
larity as well as (cross-)granular querying for basic information retrieval from
such a large domain that no person comprehends in full. The second step is
cross-granular querying, for instance:



 

A
 

B
 

π 1
 

λ 1
 

λ 2
 

λ 3
 

λ 4
 

λ 5
 

δ 1
 

λ 1
 

λ 2
 

λ 3
 

λ 1
 

λ 2
 

λ 3
 

π 2
 

π 3
 

F
ig

.
1
.

A
:

O
B

O
F

o
u
n
d
ry

ta
b
le

o
f

o
n
to

lo
g
ie

s
a
n
d

cu
rr

en
t

co
v
er

a
g
e

o
f

o
n
to

lo
g
ie

s
a
t

d
iff

er
en

t
le

v
el

s
o
f

g
ra

n
u
la

ri
ty

,
d
iv

id
ed

b
y

le
v
el

o
f

g
ra

n
u
la

ri
ty

(r
ow

s)
,

p
er

sp
ec

ti
v
e

(c
o
lu

m
n
s)

,
a
n
d

le
v
el

s’
co

n
te

n
ts

th
a
t

a
re

th
e

o
n
to

lo
g
ie

s
li
st

ed
b

et
w

ee
n

th
e

b
ra

ce
s

a
ft

er
ea

ch
le

v
el

’s
n
a
m

e,
su

ch
a
s

th
e

G
O

a
n
d

P
ro

te
in

O
n
to

lo
g
y

[7
];

B
:

C
le

a
re

r,
fi
n
er

-g
ra

in
ed

d
is

ti
n
ct

io
n
s

o
f

th
e

le
v
el

s
(s

h
a
d
ed

b
ox

es
w

it
h
λ

i
)

th
a
t

a
re

co
n
ta

in
ed

in
p

er
sp

ec
ti

v
es

(i
n
d
ic

a
te

d
w

it
h

d
a
sh

ed
re

ct
a
n
g
le

s
a
n
d
π

i
)

th
ro

u
g
h

th
e
R

E
(λ

i
,π

i
)

re
la

ti
o
n
,

th
a
t,

in
tu

rn
,

a
re

co
n
ta

in
ed

in
th

e
d
o
m

a
in

g
ra

n
u
la

ri
ty

fr
a
m

ew
o
rk
δf 1

(s
o
li
d

re
ct

a
n
g
le

)
w

it
h
R

E
(π

i
,δ

f i
).

R
el

a
ti

o
n
s

b
et

w
ee

n
le

v
el

s,
su

ch
a
s
R

L
(λ

5
,λ

4
)

in
π

1
,

a
n
d

b
et

w
ee

n
p

er
sp

ec
ti

v
es

(e
.g

.,
R

P
(π

1
,π

2
))

a
re

n
o
t

d
ra

w
n
.

A
b
b
re

v
ia

ti
o
n
s:

C
A

R
O

=
C

o
m

m
o
n

A
n
a
to

m
y

R
ef

er
en

ce
O

n
to

lo
g
y,

C
h
E

B
I

=
C

h
em

ic
a
l

E
n
ti

ti
es

o
f

B
io

lo
g
ic

a
l

In
te

re
st

,
C

L
=

C
el

l
T

y
p

e,
F

M
A

=
F

o
u
n
d
a
ti

o
n
a
l

M
o
d
el

o
f

A
n
a
to

m
y,

G
O

=
G

en
e

O
n
to

lo
g
y,

N
C

B
I

=
U

S
N

a
ti

o
n
a
l

C
en

tr
e

fo
r

B
io

te
ch

n
o
lo

g
y

In
fo

rm
a
ti

o
n
,

P
R

O
=

P
ro

te
in

O
n
to

lo
g
y,

R
n
a
O

=
R

N
A

o
n
to

lo
g
y,

S
O

=
S
eq

u
en

ce
o
n
to

lo
g
y.



Q1: “What are the cell components of blood?”, which can be decomposed into
smaller tasks where Blood resides in another level as the cells it has as parts

Q2: “which organs have macrophages?”, i.e. for each macrophage (and its sub-
classes in the Cell-level), which organ (or its subclasses in the Organ-level)
are they part of?

Q3: “Which hormones are located in the kidney, and where in the kidney?” This
query uses three different perspectives, being a structural one for Kidney (an
organ) with its parts, one for location (a spatial perspective), and a functional
one for Hormone (a molecule with a specific function).

That is, we need ways to select and retrieve entities, levels, and perspectives,
and combine such queries into more complext ones.

3 Basic granularity framework for relating the ontologies

To enhance coordination of the modules that contain the ontologies or sections
of an ontology at different levels of granularity, we introduce a simplified, yet
effective, granularity framework. A comprehensive theory of granularity with
definitions, constraints, and proofs—i.e., with model-theoretic semantics—is pre-
sented in [13], but abridged here due to space limitations. The main components
are given in the following definition. Note that, given that it is to be applied to
(type-level) ontologies, we would be in second order, but they could be used in
a first order language or description logic language with nominalization, added
outside the ontology itself in the application layer, or added to an ontology that
is stored in a database.

Definition 1 (Granularity framework G) A granularity framework is a tu-
ple Σ = {∆,Π,Λ, Υ,Θ, Γ,RE , RL, RC , RG, usesγ} where
– ∆ is the domain, that can be divided up into a particular subject domain δs

and the encompassing granularity frame δf that contains the other elements
of the granularity framework;

– Π denotes granular perspective (granulation hierarchy), where its instances
are denoted with π1, . . . , πn;

– Λ denotes granular level, where its instances are denoted with λ1, . . . , λn;
– Υ is the granulation criterion (a combination of at least two properties) by

which one granulates a particular perspective, where its instances are denoted
with υ1, . . . , υm;

– Θ is a type of granularity from the taxonomy of types of granularity [14];
– Γ is a granulation relation between entities residing in adjacent levels;
– RE is a binary parthood relation constrained to relating two framework com-

ponents, being either a level and a perspective or a perspective and a domain;
– RL is a binary parthood relation constrained to relating two adjacent fine

and coarser-grained levels that reside in the same perspective;
– RC is a binary relation associating a granulation criterion to a perspective;
– RG is a binary relation relating a perspective or level to the type of granularity

it adheres to;
– usesγ is a binary relation between Θ and Γ .



Salient constraints are that each perspective must have at least two levels, a
level must be contained in exactly one perspective (∀x(Λ(x) → ∃!yRE(x, y))),
that the multiplicity (cardinality) for RL is 1:1, and a perspective can be iden-
tified by the combination of the criterion and type of granularity it adheres to
(∀x(Π(x)→ ∃!y, φ(RC(x, y) ∧RG(x, φ))) where φ is a shorthand for any of the
eight types of granularity). The components of G enable one to represent ex-
plicitly the distinction between, e.g., an is-a taxonomy of structural body parts
versus a partonomy of body parts (‘is-a vs. part-of’ is dealt with by Θ and Γ
and the ‘human structural anatomy’ by Υ and Π), and to manage various dis-
tinct perspectives within one domain. There are three perspective depicted in
Fig.1-B, each with at least three levels. As levels for the partonomic granular
perspective for humans, we have in Fig.1-B, e.g., λ2 = Organ in π1, where its
contents are provided by the FMA by means of selecting the Organ entity type as
root and recursively querying for the taxonomic subtypes of organ (about 3000
entity types). The molecule levels in the three perspectives, on the other hand,
are not well covered by the FMA, therefore this gap is filled by other ontologies,
such as PRO and ChEBI in λ5 in Fig.1-B. That is, the contents at each level
are intended to be (or assumed to be) complimentary to one another, where
the G provides the machinery for a structured coordination and linking; hence,
one knows what is linked where and how, which then is, at least in theory, easy
to generate again when an ontology is developed independently and at certain
time intervals updated and re-connected. Likewise, adding a new level filled with
another ontology can be done transparently and non-disruptive for the other per-
spectives and levels. Thus, we have four principal components for a granulated
information system: the types of granularity [14] that links to the granularity
framework as theory (Definition 1) through Θ, an instantiation (model) of this
theory for a specific subject domain, such as the λi, πi etc. shown in Fig.1-B,
and the data sources that are granulated (the GO, FMA, etc.).

4 Granular queries

The next step is cross-ontology reasoning over such ontologies linked by granu-
larity, which already has been noted as a requirement [7, 15]. A major advantage
of having a granularity framework for coordinating the different (sections of) on-
tologies, is that one can reuse the underlying idea of querying conceptual models
[16], but where in this case it is not the conceptual model but the granularity
framework G (illustrated in Fig.1-B) that is used to structure and simplify the
granular queries. They share the notion that the goal of the query can remain
the same, but their implementation differ, be it different SQL versions [16] or
a Semantic Web ontology language. Given that ontologies can be represented
and saved in different languages and software, we define the types of granular
queries in a purpose-oriented way to ensure portability. The first group deals with
querying for perspectives and levels, the second with retrieving level’s contents,
and the third group with conditional cross-granular queries and other auxiliary



queries to retrieve additional information. The functions will be discussed in the
remainder of this section.

Table 1. List of function arguments and how they relate to each other.

Symbol Selected section

P Set of perspectives in a domain granularity framework i.e., π1, . . . , πn ∈ P
DL Set of levels in a domain granularity framework, i.e., λ1, . . . , λm ∈ DL
L Set of levels λi, . . . , λk (i, k ≤ m, i 6= k) of a particular πi

li Selected level λi, output of the function selectL

lsi Set of selected levels, output of the function selectLs

lssi Set of selected levels, output of the function selectDL

E Collection of universals residing in a particular level λi

I Intersection of the contents of two levels λi and λj (with i 6= j)

Selection of one level. Selecting a level within a perspective is a four-step
process: retrieve the desired perspective, select a perspective, retrieve the levels
in the selected perspective, and then select the desired level; subscripts denote
what is selected.

F1. Goal: retrieve all granular perspectives π1, . . . , πn contained in the domain
granularity framework df . Input is a df and output is an unordered set of per-
spectives of that domain, P . Specification: getP : δf 7→ P (F.1)

F2. Goal: select a granular perspective πi from the perspectives retrieved with
getP . Input is the set of perspectives of the domain, P, output is a set with one
perspective πi ∈ P. Specification: selectPΠ=πi

: P 7→ P (F.2)

F3. Goal: retrieve all granular levels λ1, . . . , λn contained in the selected per-
spective πi. Input is a πi ∈ P and output is an ordered set of levels of that
perspective, L. Specification: getL : P 7→ L (F.3)

F4. Goal: select a particular granular level λi from the levels retrieved with the
getL function. Input is the set of levels of the perspective, L, output is a set, li,
with a single element from L. Specification: selectLΛ=λi : L 7→ L (F.4)

Although one could choose to add a function to select a level from DL (all
specified levels) only, this is prone to user-mistakes, the above four functions can
more easily be reused for other selection and retrieval functions, and they can
be abstracted into one compound user-interface operation anyway.

To select the Cell-level as declared in Fig.1-B for query Q2, one uses getP
to retrieve {π1, π2, π3}, selectPΠ=π1 to obtain the human structural anatomy
perspective, and with getL the levels of that perspective ({λ1, . . . , λ5}), and,
last, selectLΛ=λ3 for the Cell-level. The same procedure can be used for selecting
the Organ-level, but with the last step being selectLΛ=λ2 .



Selection of multiple levels. Two options to select multiple levels are dis-
tinguished: 1) selecting several levels to subsequently retrieve and combine its
contents for further processing, and 2) conditional selection that considers the
contents as well. Option 1 can be subdivided into two similar operations: select-
ing more than one level from one perspective and selecting levels from different
perspectives. Both can be accomplished with a sequence of sub-functions. In ad-
dition to those introduced in the previous section, we have:

F5. Goal: select ≥ 1 granular levels contained in one granular perspective. Input
is set of levels L retrieved with getL, output is a set of selected levels lsi from
L such that lsi ⊆ L holds. Specification: selectLsV

λi
: L 7→ L (F.5)

F6. Goal: perform a selection of ≥ 1 levels from ≥ 1 perspectives. Input is the
set of perspectives, P, and for each perspective the set of levels, L, from which
one selects, and output is a set of levels contained in df , DL, denoted with lssi,
where lssi ⊆ DL. Specification: selectDLV

πi
V
λi

: P × L 7→ DL (F.6)

Thus, selectL is extended for multi-level selection within one perspective, using
the binary operator ∧ to select multiple levels, which has been written in short-
hand notation,

∧
, such that

∧
λi = λ1∧ ...∧λk where πi contains j levels, k ≤ j,

and RE(λi, πi). Note that lsi is not a proper subset of L because it is possible
that a user wants to select all levels in the chosen perspective. The 1-level se-
lection is a special case of the multi-level one, but labelled differently to avoid
overloading terms.

For selection of more than one level from more than one perspective, selectLs
cannot be extended to selecting levels from multiple perspectives, because one
has to nest selection of at least one other perspective and have some way to
distinguish levels belonging to different perspectives. A mapping of (F.6) to a
formal notation and implementation algorithm can be achieved with a loop in
two near-equivalent ways: either to select all desired perspectives and subse-
quently one or more levels for each selected perspective, or repeat the two-step
process of selecting a perspective & retrieve levels and then selecting levels.

Retrieving the contents of a level. Retrieving the contents of a partic-
ular granular level is conceptually straightforward with a getC function, but
this hides many details, in particular the need to use the structure of the level’s
contents given the different types of granularity. This is elaborated on afterward.

F7. Goal: retrieve the contents, i.e., entity types and their relations, of a selected
granular level λi. Input is the selected level, where λi ∈ L and output is a set of
predicates, E ∈ E , that takes into account the structure of the contents in the
level. Specification: getC : L 7→ E (F.7)

F8. Goal: intersect the retrieved contents of selected granular levels λi, λj (with
RE(λi, πi), RE(λj , πj), and i 6= j). Input are the contents of the selected levels



Ei and Ej (obtained with getC for each level), and output is the intersection,
set I ∈ I, where I ⊆ E . Specification: intersect : L × L 7→ I (F.8)

getC takes a particular granular level as argument and returns the contents of
that granular level, irrespective of how the contents themselves may be structured.
Without having represented explicitly which type of granularity is used for the
perspective and levels, one cannot know this other than manually hardcoding
this information, which is laborious and error-prone. However, if we have, for
instance, two granular perspectives that both devise the levels where entity types
in finer-grained levels are always part of those residing in coarser levels and for
both hierarchies the contents is a taxonomy, such as types of organs and types
of molecular processes, then the mechanism of granulation is the same (just
applied to different subject domain information). One can exploit this sameness
in approach of granulation by identifying each principal granulation mechanism
and relate the mechanism to the levels and perspectives, so that one has to
define only once how the contents of a level should be retrieved. For the types
of organs and types of molecular processes, this amounts to a straight-forward
recursive query. To achieve this efficiency, we can reuse the taxonomy of types
of granularity [14], i.e. a set of granulation mechanisms, and relate that to the
perspectives and levels. This is achieved by reusing RG and transforming it
into a function, tgL, which is an abbreviation of type of granularity that the
level adheres to, thus tgL : L 7→ Θ iff RG(x, φ), where RG has been typed
already such that Λ(x) and φ→ Θ (φ is syntactic sugar for the eight leaf types
in the taxonomy of types of granularity). Thus, to retrieve a level’s contents
with getC, the nested function tgL has to be used to query for the type of
granularity that a level adheres to (details can be found in section 4.2 of [13]).
In an implementation, this may well be an intermediate query or database view in
the ontology-stored-in-a-database, done with a method in a C++ program, and
so forth. For instance, to retrieve Macrophage (in Q2), we first consult the type
of granularity that λ3 adheres to, i.e., tgL(λ3), which returns nrG by which we
also obtain the type of granulation relation used, which is proper parthood (see
[13] for details). Subsequently, the contents of level λ3 is retrieved with getC(λ3)
and, by knowing the type of granularity—hence, also the mechanism required
for retrieval—it is ensured that a taxonomy is returned as query answer (in casu,
a taxonomy of cell types); to select the entity type of interest, Macrophage, the
selectE function will be introduced below.

Once the content is retrieved, it can be used for further processing, such
as intersecting contents of two levels. To this end, the intersect function (F.8)
is introduced, which first retrieves the contents of each level with getC and
subsequently intersects them. For instance, to answer a query like “retrieve those
molecules that are also hormones” we have, among others, the molecule Insulin in
the molecule-level λ5 of π1 in Fig.1-B but also in λ3 of the function-perspective
π2 where it is categorised as a hormone. Obviously, this can be scaled up to
intersection of more than two levels.



Type selection to retrieve its levels. We introduce five functions to achieve
unambiguous selection of types (universal/class/concept) from an ontology and
to query for the level(s) it resides in to simplify scalability and reusability.

F9. Goal: select a type from the ontology (subject domain). Input is a type,
C ∈ ds, and the output of the selection ensures that the selected type resides in
some level λi already, hence C ∈ E. Specification: selectE : δs 7→ E (F.9)

F10. Goal: given a selected type C, retrieve the level λi that C resides in. Input
is a type C ∈ ds and output of the function is a level that is a subset of L.
Specification: grain : δs 7→ L (F.10)

F11. Goal: given a selected type C, retrieve all the levels λ1, . . . , λj (in different
perspectives π1, . . . , πk, k = j) that C resides in. Input is a type C ∈ ds, and
output of the function is a set of levels that is a subset of DL. Specification:
grains : δs 7→ DL (F.11)

F12. Goal: given multiple selected types C1, . . . , Cn, retrieve their levels λ1, . . . ,
λj within one perspective πi. Input are types C1, . . . , Cn ∈ ds, uses grain as
nested function, and output of the function is a set of levels within one perspec-
tive (a subset of L). Specification: grainM : δs 7→ L (F.12)

F13. Goal: given multiple selected types C1, . . . , Cn, retrieve their levels λ1, . . . ,
λj among multiple perspectives π1, . . . , πk. Input are types C1, . . . , Cn ∈ ds, uses
grains as nested function, and output of the function is a set of levels as subset
of DL. Specification: grainsM : δs 7→ DL (F.13)

The basic function to retrieve the level an entity resides in, is grain. Its neat
simplicity, however, does not suffice [5]. The main limitations are that it is
perspective-unaware and is based on the assumption that any entity type Ci can
be categorised only in one level in the whole granularity framework. Although it
is possible that a particular granularity framework contains only π1 or constrain
it to that [17, 4], it is more realistic that multiple perspectives have been declared
and that Ci is located in more than one granular level across perspectives [5].
To remedy this, two scalable and reusable options are at our disposal. First, one
can restrict usage to one limited case: if one knows which perspective to search,
one can construct a rule alike “if πi then do grain(x) = λi” or precede it with
the selection operator selectP . The same approach can be used to decompose
the retrieval of multiple levels into sequential steps of the grain function, but
this requires additional process management. Second, to define a new function
that retrieves all levels the selected type resides in, i.e. grains (F.11).

In a more complex subject domain than the OBO Foundry setting depicted
in Fig.1, such as human infectious diseases that could rely on the granulations of
the OBO Foundry, we then can retrieve all levels of, say, Cholera toxin, with the
grains function and retrieve {π2λ9, π6λ2}; that is, using the granulation from



[5], the Cholera toxin resides in the Molecule-level (from structural component
perspective π2) as well as the Inhibitor-level (from π6, a function the molecule
has in the Second Messenger System). The four functions (F.10-F.13) address all
permitted options to find the level(s) of entities (/types). Other combinations,
such as one type in one perspective residing in multiple levels, violate the con-
straints of granularity framework G. For instance, if a user had allocated Nisin
(a type of bacteriocin) both in the Peptide (λk) and in the Quaternary protein
structures (λi, where i < k) levels within the same perspective, then something
is wrong about the knowledge of what Nisin is, the user is confused, the domain
granularity framework has been ill-designed, or all of them, because Nisin can-
not be both a peptide and complex protein. The constraint to have an entity
in no more than one level within the same perspective should have prevented
this double allocation, or have returned an error upon checking the granulated
system for consistency.

Cross-granular queries and other functions. The functions (F.1-F.13)
introduced in the preceding subsections enable formulation of more complex
queries, such as Q1-Q3 in section 2. It is possible to define many more func-
tions for a granularity framework, also because, in principle, the same approach
could be taken for knowledge bases and, among others, ontology-enhanced Data
WareHouses (DWH) or modularized ontology-driven information systems. DWH
implementations in particular focus on querying the information system with
advanced queries. Functions for such queries can be easily added. For instance,
with P still the set of perspectives, and adding C as the set of criteria, then
crit : P 7→ C enables us to retrieve the criterion of a granular perspective,
tgP : P 7→ Θ to retrieve the type of granularity of a perspective, and plain
functions to query the entity types and relations of the ontology proper are also
still possible [18, 13] either independently or together with the granularity frame-
work by using a granulation relation from Γ . Moreover, one can define functions
to retrieve each component of the granularity framework G and the more com-
prehensive the representation of granularity-components, the more versatile and
well-founded the queries one can pose over a G. There are limitations to it,
however, in particular if the ontology is represented in a common DL-based Se-
mantic Web ontology language. Most notably, then we can neither represent and
query over the weak entity type that Π is nor combine querying for Θ and Υ in
one go due to known undecidability results with the role composition operator
[19, 20], likewise if one would want to introduce a newly defined path Π has Γ
such that Π has Γ , RG ◦ usesγ to retrieve the granulation relation of the en-
tity types residing in the levels in a particular perspective (e.g., π1 in Fig.1-B
uses proper parthood as γ). Implementing the coordinated modularization with
granularity and such advanced querying for ontologies stored in database is, of
course, an option. On the other hand, given the current state of granulation in
bio-ontologies, these issues are not of great concern, yet. It will be the mod-
eling exercise to meaningfully and in a structured way represent a particular
granularity framework that will be of most use to organise the relatively large



amount of bio-ontologies at this stage. In addition, this eases transparent coor-
dination of the distributed development of the yet to be developed ontologies to
fill the ‘gaps’ in the granulation hierarchies as well as to maintain the existing
ontologies—often also developed in a distributed fashion—on a long-term basis.

Looking at prospects for immediate use, the functions obviously could be
hard-coded and pre-computed as is customary in bioinformatics, be it as succes-
sive steps or also with additional compound queries. However, with the granu-
larity framework, one has a management structure in place so that (i) queries
can be executed that suits the user on-demand as opposed to being limited to
the imagination of the software developer, and (ii) F.1-F.13 are defined in an
implementation-independent and a reusable way so that practicalities of a soft-
ware system can be hidden from the domain experts so as to avoid burdening
them to learn yet another query language, to re-write the whole query for each
permutation (e.g., macrophages in tissues), and to keep in mind which levels
there are whereas that can be added to the informationsystem now. At present,
Q1-Q3 can be performed by standard relational database management systems
(RDBMS), such as the FMA in PostgreSQL [21] with queries in StruQL. This
requires more effort for OWL ontologies due to traversal over a path of an arbi-
trary but finite amount of DL-roles for Q2 [22].

5 Conclusions

To address the problems of both structured coordination of linked and modu-
larised ontologies and to query a large dynamic ontology system like proposed
by the OBO Foundry, we proposed a basic granularity framework and a set of
functions to query such a very large granulated system. The granularity frame-
work enforces a constrained modularization so that dividing a large body of
represented information as well as re-linking the pieces is amenable to automa-
tion. The proposed functions enhance cross-granular querying in transparent and
scalable way, because they rely on the unambiguous management layer provided
by the granularity framework, and are reusable for ontologies represented and
stored in different formats. We are currently working on transforming the theory
of granularity [13] to a practically usable OWL version to ease experimentation
in the real-life setting with the many available bio-ontologies.

References

1. OMG: Superstructure specification. Standard 2.1.2, Object Management Group
(2007) http://www.omg.org/spec/UML/2.1.2/.

2. Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and web on-
tologies. In: Proc. of KR’06. (2006) Lake District, UK.

3. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
Extracting modules from ontologies. In: Proc. of WWW-2007. (2007) Canada.

4. Kumar, A., Smith, B., Novotny, D.D.: Biomedical informatics and granularity.
Comparative and Functional Genomics 5(6-7) (2005) 501–508



5. Keet, C.M., Kumar, A.: Applying partitions to infectious diseases. In Engelbrecht,
R., Geissbuhler, A., Lovis, C., Mihalas, G., eds.: Connecting Medical Informatics
and bio-informatics (MIE2005), Amsterdam: IOS Press (2005) 1236–1241 Geneva,
Switzerland, 28-31 August, 2005.

6. Tange, H.J., Schouten, H.C., Kester, A.D.M., Hasman, A.: The granularity of
medical narratives and its effect on the speed and completeness of information
retrieval. J. Am. Med. Inf. Assoc. 5(6) (1998) 571–582

7. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg,
L., Eilbeck, K., Ireland, A., Mungall, C., OBI Consortium, T., Leontis, N., Rocca-
Serra, A., Ruttenberg, A., Sansone, S.A., Shah, M., Whetzel, P., Lewis, S.: The
OBO Foundry: Coordinated evolution of ontologies to support biomedical data
integration. Nature Biotechnology 25(11) (2007) 1251–1255

8. : OBO Foundry (2006) http://obofoundry.org.
9. Rosse, C., Mejino Jr, J.V.: A reference ontology for biomedical informatics: the

foundational model of anatomy. J. of Biomedical Informatics 36(6) (2003) 478–500
10. : Common anatomy reference ontology (2006)

http://www.bioontology.org/wiki/index.php/CARO:Main Page.
11. Bouquet, P., Euzenat, J., Franconi, E., Serafini, L., Stamou, G., Tessaris, S.: Spec-

ification of a common framework for characterizing alignment. Technical report,
KnowledgeWeb Deliverable D2.2.1, v1.2, 3-8-2004 (2004)

12. Klein, M.: Combining and relating ontologies: Problems and solutions. In: IJCAI
Workshop on Ontologies. (2001) Seattle, USA.

13. Keet, C.M.: A Formal Theory of Granularity. Phd thesis, KRDB Research Centre,
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy (2008)

14. Keet, C.M.: A taxonomy of types of granularity. In: Proc. of GrC2006. IEEE
Computer Society (2006) 106–111 Atlanta, USA, May 10-12 2006.

15. Keet, C.M., Roos, M., Marshall, M.S.: A survey of requirements for automated
reasoning services for bio-ontologies in OWL. In: Proc. of OWLED2007. Volume
258 of CEUR-WS. (2007) 6-7 June 2007, Innsbruck, Austria.

16. Bloesch, A.C., Halpin, T.A.: Conceptual Queries using ConQuer-II. In: Proc. of
ER’97. Volume 1331 of LNCS., Springer (1997) 113–126

17. Bittner, T., Smith, B.: A Theory of Granular Partitions. In: Foundations of
Geographic Information Science. London: Taylor & Francis Books (2003) 117–151

18. Keet, C.M.: Enhancing comprehension of ontologies and conceptual models
through abstractions. In Basili, R., Pazienza, M., eds.: Proc. of AI*IA 2007. Volume
4733 of LNAI., Springer Verlag (2007) 814–822 Rome, September 10-13, 2007.

19. Schmidt-Schauss, M.: Subsumption in KL-ONE is undecidable. In: Proc. of KR’89.
(1989) 421–431

20. Wessel, M.: Obstacles on the way to qualitative spatial reasoning with description
logics: some undecidability results. In Goble, C.A., McGuinness, D.L., Möller,
R., Patel-Schneider, P.F., eds.: Proc. of DL’01. Volume 49 of CEUR WS. (2001)
Stanford, CA, USA, August 1-3, 2001.

21. Mork, P., Brinkley, J.F., Rosse, C.: OQAFMA querying agent for the foundational
model of anatomy: a prototype for providing flexible and efficient access to large
semantic networks. Journal of Biomedical Informatics 36(6) (2003) 501–517

22. Keet, C.M.: Granular information retrieval from the Gene Ontology and from
the Foundational Model of Anatomy with OQAFMA. KRDB Research Centre
Technical Report KRDB06-1, Free University of Bozen-Bolzano, Italy (2006)


