CEUR-WS.org/Vol-3379/CoMoNoS_2023_1d250_Pablo_Suarez_Otero.pdf

Data migration in column family database evolution using

MDE

Pablo Suarez-Otero’, Michael]. Mior?, Maria José Suarez-Cabal and Javier Tuya’

"University of Oviedo, Campus de Viesques, Gijén, Spain

2Rochester Institute of Technology, Golisano College of Computing and Information Sciences, Rochester, USA

Abstract

When software requirements change, databases used by an application may evolve, including the database models (conceptual
model and schema), which may require data migrations to maintain data integrity. In some databases such as NoSQL column
family databases, the tables of the database often store repeated data, as schema denormalization is encouraged to achieve the
best performance. This makes data integrity maintenance more complex, as a single conceptual model change may trigger
several changes in the schema. In this work, we propose using a model-driven engineering approach named MoDEvo for
data migration in NoSQL column family databases to maintain data integrity after the schema evolves. Using a motivating
example as a case study from an open source project that requires data migration, we describe MoDEvo and use it to illustrate

how MoDEvo determined these data migrations.

Keywords

Model-Driven Engineering, Database evolution, Data Migration, NoSQL, Denormalization

1. Introduction

The requirements of a project determine how the
database schema is designed, usually using a concep-
tual model during the design phase. This is especially
important for some database types such as NoSQL col-
umn family databases (e.g. Apache Cassandra) where
the schema is usually denormalized [1, 2]. A change in
the requirements can require modifying both the con-
ceptual model and the schema (tables in the database),
which can create data integrity problems due to losing
the synchronization between the conceptual model and
the schema [3]. This problem is more difficult to solve in
databases where data is duplicated among the tables and
where the primary keys of the tables might not match the
primary keys of the conceptual model [1]. This happens
in the aforementioned NoSQL column family databases,
where each table is designed so that a specific query can
be executed against it, implying a denormalization of the
schema as the same datum can be queried more than
once and is therefore stored in several tables [4].

In NoSQL column family databases, the schema is more
flexible than in a relational database and does not have in-
tegrity constraints, which makes mistakes during schema
evolution more likely. A single change in one table must

Published in the Workshop Proceedings of the EDBT/ICDT 2023 Joint
Conference (March 28-March 31, 2023, Ioannina, Greece)
& suarezgpablo@uniovi.es (P. Suarez-Otero); mjmves@rit.edu
2P i)
(M.]. Mior); cabal@uniovi.es (M.]. Suarez-Cabal); tuya@uniovi.es
(J- Tuya)
@ 0000-0003-3282-5456 (P. Suarez-Otero); 0000-0002-4057-8726
(M.]. Mior); 0000-0001-8262-2871 (M.]. Suérez-Cabal);
0000-0002-1091-934X (J. Tuya)
© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
=== CEUR Workshop Proceedings (CEUR-WS.org)

be replicated to every table storing the same data. This
is relevant when schema evolution is required, as this
evolution may jeopardize data integrity in the database
[4], requiring additional data migrations to maintain this
integrity.

In this work in progress, we address the maintenance
of data integrity in a NoSQL column family database
when a change of requirements causes an evolution of
the schema. We propose using a MDE (model-driven engi-
neering) approach named MoDEvo (Model (Driven) Data
Evolution) to determine the data migrations required to
maintain this integrity through models. In this work,
we use a motivating example as a proof of concept to
determine the feasibility of our proposal. The contribu-
tions of this work are 1) the determination of the data
migrations required to maintain the data integrity in a
use case and 2) the definition of MoDEvo to automate
this determination.

The remainder of this paper is structured as follows.
Section 2 contains a motivating example of a real open-
source project where data migration was required. In
Section 3 we describe of MoDEvo and its use for the moti-
vating example. The related work is presented in Section
4. The paper ends in Section 5 with the conclusions and
future work.

2. Motivating example

We use as a motivating example a schema change from
the open-source project Wireapp' in which the column
‘team’ was added to the primary key of the table “is-
suer_idp”. As it is not possible to directly alter the pri-

'https://github.com/wireapp/wire-server

mailto:suarezgpablo@uniovi.es
mailto:mjmvcs@rit.edu
mailto:cabal@uniovi.es
mailto:tuya@uniovi.es
https://orcid.org/0000-0003-3282-5456
https://orcid.org/0000-0002-4057-8726
https://orcid.org/0000-0001-8262-2871
https://orcid.org/0000-0002-1091-934X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://github.com/wireapp/wire-server

mary key of a table, a new table: “issuer_idp_v2” was
created, which is illustrated in Figure 1.

Figure 1: Previous and new version of issuer_idp

issuer_idp_v2

issuer_idp Column
m New version issuer PK
issuer PK e———
” team PK
i
P idp

To maintain data integrity, each row of “issuer_idp”
must be migrated to “issuer_idp_v2”, adding the appropri-
ate value for column ‘team’ to complete each row. Values
of column ‘team’ must be obtained from table “idp” as it
is displayed in Figure 2.

Figure 2: Migration of data from column team from ‘idp’ to
column ‘team’ from ‘issuer_idp_v2’

P 4 ,
‘issuer’ and ‘idp’ copied to new table I Data migration to ‘team

e e L = B |

D
isuer | ido VAW isuer [team [idp [l suer [team [idp |
1 Dom3 version 1 3 Dom3 1 3 Dom3
2 Dom2 2 2 Dom2 2 2 Dom?2
2 Dom1 2 1 Dom1 2 1 Dom1

It is important to note, that this migration is still not
being executed by the developers of the project. They
have left the previous table to be queried for the data that
was previously stored and a TODO task to migrate the
data in the future. Maintaining the old table “issuer_idp”
jeopardizes data integrity, as both tables are actually stor-
ing different data, although they are intended to store the
same relationship between entities “issuer” and “idp”. In
the next section, we propose MoDEvo to avoid scenarios
like this one.

3. MoDEvo description

In this section we propose MoDEvo, an MDE approach
that determines the required migrations of data to main-
tain data integrity when the schema evolves. Figure 3
displays the MoDEvo process divided in three phases
(middle row) alongside its inputs (top row) and results
of each phase (bottom row), which are also inputs in the
following phase.

In the first two phases, MoDEvo receives the infor-
mation of the evolution of the schema through 3 input
models: 1) the conceptual model, 2) the schema before
the change and, 3) the schema change. In the first phase

Figure 3: MoDEvo process

EPNE] o 5
Input @ o)
models E] él Cl o
Conceptual Previous Schema
model Schema change
Data
N D
MoDEvo migration DB . atg
phases model statements migration
. creation execution
creation
W —
MoDEvo - —
results e
Data migration ~ Data migration Datai?}?se
w

model script

migrated data

(Data migration model creation), MoDEvo determines
through model transformations implemented in ATL [5]
the “Data migration model” (conforms to the metamodel
illustrated in Figure 4), which contains the data migra-
tions. In the second phase (DB statement creation),
the “Data migration model” is transformed, through M2T
(model to text) transformations, into a script that con-
tains the database statements required to perform the
data migrations. In the third phase (Data migration
execution), MoDEvo sends this script to a migration
engine (e.g. Apache Spark) to execute the script. We
focus on the two first phases.

A Data Migration model (Figure 4) contains a Migra-
tionTable element for each target table that requires data
migrations in some of its columns. For each of these tar-
get columns, a MigrationCol element is defined, which
determines this target column that receives data and the
source column that provides the data.

The target and source columns are specified through
references to Target and Source elements, which likewise
contain the references ‘Data’ and ‘Key’ to schema column
elements:

« ‘Data’: Indicates the source column from where
data will be obtained and the target column
where data will be inserted.

« ‘Key’: Indicates a functional dependency that the
‘Data’ column has with other columns, which
makes it possible to determine the specific data
to insert in each row of the ‘Data’ target column.
MoDEvo determines a functional dependency if
the following condition is met: Being a column
Datac mapped to a non-key attribute Data, and
a set of columns Key,, mapped to a set of key

Figure 4: Data Migration metamodel

) i Data migration
MigrationTable

MI:P MigrationCol FSEES
Table
1:1
Ke TablePrev
Data O‘y 01
11 n Data
. 1
1:1 Key
4 0:n
0 O ‘
N Name: String N1
Key: Boolean Name: String
Schema

attributes Key,, if Key, — Data, then Key, —
Data,.

When applying MoDEvo to the case study from the mo-
tivating example, it first analyzes the conceptual model,
the schema and the schema change to create the migra-
tion model (displayed in Figure 5 graphically and textu-
ally). MoDEvo then sets ‘team’ as ‘Data’ column in both
the Source table “issuer_idp_v2” and the Target table
“idp”. Likewise, columns ‘issuer’ and ‘idp’ are set as ‘Key’
columns, as they will be used to determine which value
of ‘team’ stored in the source table is inserted in each
row of the target table. Additionally, the element Mi-
grationTable references the target table and its previous
version through the attributes Table and TablePrev.

Using the generated model, MoDEvo creates through
M2T transformation the data migration script. This script
contains the database statements to: 1) obtain the data
stored in each row of the previous table “issuer_idp”,
2) associate these data with the appropriate value for
the column ‘team’ and, 3) insert the data in the target
table “issuer_idp_v2”. Finally, this script will be sent to a
migration engine. The resulting migration was illustrated
in the previous section in Figure 2.

After the migration is performed, the previous table “is-
suer_idp” can be removed, avoiding the problems related
to data integrity that were detailed in Section 2.

4. Related Work

Database migrations for column family databases have
been approached in several work by Storl et al. [6, 7, 8, 9].
In two of these works [9, 7], the authors also addressed
the maintenance of data integrity on document-oriented

Figure 5: Model that specifies the data migration. Blue: Data
Migration. Green: Schema

M1: MigrationTable

Table : issuer_idp_v2
TablePrev: issuer_idp

C1: MigrationCol

<MigrationTable xmIns="DataMigration" Table=
"issuer_idp_v2" TablePrev = “issuer_idp”>
<MigrationCol>
<Source Data="team" Key="issuer, idp"
DataTable="issuer_idp_v2"/>
<Target Data="type" Key="issuer, idp"
DataTable="idp"/>
</MigrationCol>
MigrationTable>

T: Target

)

Data

Name: team Name: issuer Name: team Name: issuer
idp: Column idp: Column
Name: idp Name: idp
issuer_idp_v2: Table idp: Table
Name: issuer_idp_v2 Name: idp

databases such as MongoDB by determining the required
data migrations. Focusing on column family DBs, Storl
et al have addressed other issues, such as optimizing the
performance of these databases [8] as well as reducing
the monetary cost of the infrastructures where they are
deployed [6].

Data integrity in column family databases have been
researched for several problems, such as analyzing how
malicious attacks can affect data integrity [10]. We also
addressed the maintenance of the data integrity when
the data changes [4]. However there has not been any
research that addressed the maintenance of data integrity
when the schema evolves in column-family databases.,
which is what we address in this work.

We made a first approach for database evolution [11]
by identifying the conceptual model changes that oc-
curred in a set of open-source projects. We determined
that after one of these changes three processes must be
performed: 1) schema evolution, 2) data migrations to
maintain data integrity and 3) update client application.
In another work [3] we also considered the scenario
where the schema changes and the conceptual model
needs to be updated. However, in neither of these works
[11, 3] we focused on the details of the aforementioned
processes.

5. Conclusions

In this work, we propose MoDEvo, a MDE approach that
provides the migrations required to maintain data in-
tegrity when a column family database schema changes.
MoDEvo helps developers to avoid scenarios like the one
presented in Section 2 where a deprecated table was kept

in the schema because their data was not migrated to
the tables that are being used at the moment. Maintain-
ing deprecated tables increases the risk of having issues
regarding data integrity, as they are storing data that is
not consistent with the rest of the database. MoDEvo
reduces this risk by making legacy tables unnecessary.

MoDEvo also reduces the time that developers need
to employ when evolving the database, as it automati-
cally determines what needs to be migrated. Developers
will have a script with the database statements that are
required to perform all the data migrations needed to
maintain the data integrity.

As future work, we plan to complete MoDEvo by de-
veloping its third phase and migrate data by sending the
data migration script to a migration engine. We also
plan to combine our previous work for schema evolution
[3] with MoDEvo. With this combination, we will pro-
vide at the same time what needs to be changed in the
schema and what data migration must be executed to
maintain the data integrity for any requirement change
that modifies the conceptual model.

Acknowledgments

This work was supported in part by projects [TIN2016-
76956-C3-1-R] funded by the Spanish Ministry of Econ-
omy and Competitiveness, [PID2019-105455GB-C32]
funded by MCIN/ AEI/10.13039/501100011033 and the
Severo Ochoa pre-doctoral grant PA-21-PF-BP20-184.

References

[1] A. Chebotko, A. Kashlev, S. Lu, A big data model-
ing methodology for Apache Cassandra, in: 2015
IEEE International Congress on Big Data, IEEE,
2015, pp. 238-245.d0i:10.1109/BigDataCongress.
2015.41.

[2] M.]J. Mior, K. Salem, A. Aboulnaga, R. Liu, Nose:
Schema design for NoSQL applications, IEEE
Transactions on Knowledge and Data Engineer-
ing 29 (2017) 2275-2289. doi:10.1109/TKDE. 2017 .
2722412.

[3] P. Suarez-Otero, M. J. Mior, M. J. Suarez-Cabal,
J. Tuya, An integrated approach for column-
oriented database application evolution using con-
ceptual models, in: International Conference on
Conceptual Modeling, Springer, 2021, pp. 26-32.
doi:js5t.

[4] M.]. Suérez-Cabal, P. Suarez-Otero, C. de la Riva,
J. Tuya, MDICA: Maintenance of data integrity
in column-oriented database applications, Com-
puter Standards & Interfaces 83 (2023) 103642.
doi:10.1016/j.csi.2022.103642.

[5] F.Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL:
A model transformation tool, Science of com-
puter programming 72 (2008) 31-39. doi:10.1016/
j.scico.2007.08.002.

[6] A. Hillenbrand, M. Levchenko, U. Storl,
S. Scherzinger, M. Klettke, Migcast: putting
a price tag on data model evolution in NoSQL data
stores, in: Proceedings of the 2019 International
Conference on Management of Data, 2019, pp.
1925-1928. doi:10.1145/3299869.3320223.

[7] A.Hillenbrand, U. Stérl, S. Nabiyev, M. Klettke, Self-
adapting data migration in the context of schema
evolution in NoSQL databases, Distributed and
Parallel Databases (2021) 1-21. doi:10/js5k.

[8] M. L. Moller, M. Klettke, U. Storl, Evobench-a
framework for benchmarking schema evolution in
NoSQL, in: 2020 IEEE International Conference
on Big Data (Big Data), IEEE, 2020, pp. 1974-1984.
doi:10.1109/BigData50022.2020.9378278.

[9] M. Klettke, U. Storl, M. Shenavai, S. Scherzinger,

NoSQL schema evolution and big data migration

at scale, in: 2016 IEEE International Conference

on Big Data (Big Data), IEEE, 2016, pp. 2764-2774.

doi:10.1109/Bighata.2016.7840924.

G. Weintraub, E. Gudes, Data integrity verifica-

tion in column-oriented NoSQL databases, in:

Data and Applications Security and Privacy XXXII:

32nd Annual IFIP WG 11.3 Conference, DBSec

2018, Bergamo, Italy, July 16-18, 2018, Proceed-

ings 32, Springer, 2018, pp. 165-181. doi:10.1007/

978-3-319-95729-6_11.

P. Suarez-Otero, M. J. Mior, M. J. Suarez-Cabal,

J. Tuya, Maintaining NoSQL database quality dur-

ing conceptual model evolution, in: 2020 IEEE Inter-

national Conference on Big Data (Big Data), IEEE,

2020, pp. 2043-2048. doi:10.1109/Bighata50022.

2020.9378228.

http://dx.doi.org/10.1109/BigDataCongress.2015.41
http://dx.doi.org/10.1109/BigDataCongress.2015.41
http://dx.doi.org/10.1109/TKDE.2017.2722412
http://dx.doi.org/10.1109/TKDE.2017.2722412
http://dx.doi.org/js5t
http://dx.doi.org/10.1016/j.csi.2022.103642
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1145/3299869.3320223
http://dx.doi.org/10/js5k
http://dx.doi.org/10.1109/BigData50022.2020.9378278
http://dx.doi.org/10.1109/BigData.2016.7840924
http://dx.doi.org/10.1007/978-3-319-95729-6_11
http://dx.doi.org/10.1007/978-3-319-95729-6_11
http://dx.doi.org/10.1109/BigData50022.2020.9378228
http://dx.doi.org/10.1109/BigData50022.2020.9378228

	1 Introduction
	2 Motivating example
	3 MoDEvo description
	4 Related Work
	5 Conclusions

