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Abstract
When it comes to process mining, the more singularities there are in a business process, the more
human-in-the-loop strategies are needed. In order to apply discovery, compliance, profile identification,
prediction or recommendation algorithms, domain experts are often involved in various tasks, such as
pre-processing event logs, parameterizing algorithms and post-processing the results. However, experts’
knowledge is rarely used to directly influence the internal decision making of process mining algorithms.
The knowledge-oriented adjustment of the behavior of the algorithm facilitates data analysis, corrects
distortions, and produces results more adherent to the expectations of a domain analyst. In this paper,
we introduce the approach named interactive trace clustering, in which the human-in-the-loop strategy is
implemented through experts’ knowledge based constraint rules, modeled and merged with the decisions
of the k-Means algorithm by means of the Cop-k-Means algorithm. We discuss our proposal through a
proof of concept built on an incident completion time prediction problem. A real-world event log was
used and the results when applying interactive trace clustering showed the usefulness of our approach.
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1. Introduction

Process mining currently plays a central and strategic role in many organizations, particularly
when automatic analyses of business processes are needed. As for descriptive analysis of
processes, clustering strategies have been explored in the form of trace clustering [1, 2]. Profiles
discovered by trace clustering provide knowledge about process particularities that facilitate
the subsequent process mining tasks, contributing to achieve results more aligned with business
needs [3]. However, the specialized literature shows that trace clustering algorithms do not
deliver solutions that satisfactorily meet all these expectations. Appice and Malerba [4] reported
results in which clustering quality and the process model quality are not always positively
correlated. This kind of misalignment shows a room for trace clustering improvements.
Several technical decisions need to be made to carry out a clustering, such as different data

representations, similarity functions or the clustering algorithm and its hyperparameters. Each
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choicemay affect the revealed profiles, hence influencing the quality and usefulness of the results.
Knowing which options leads to adequate profiles is challenging, especially in the context of
unsupervised learning [5, 6] due to its nature of not using supervised information to validate the
results. When it comes to business process analyses, even if we assume organizations are not
fully aware of their actual process, experts have relevant knowledge about the organization’s
processes. Thus, instead of taking exclusively unsupervised assumptions, applying experts’
knowledge to trace clustering might produce results more aligned with business needs.
Experts’ knowledge can be addressed in clustering with interactive strategies, which also

represent ways to implement a human-in-the-loop strategy. Interactive clustering refers to
involving human experts in key decisions1 of the clustering procedure [7, 8, 9]. The combination
of interactive and trace clustering, which we call interactive trace clustering, seeks to achieve
results more aligned with business goals by incorporating experts’ knowledge in clustering. It
is expected to reduce the harmful effects of decisions purely based on statistical or arbitrary
assumptions, without causing drastic losses in the quality of the solution.
For instance, consider the business process model of Figure 1(a) and suppose we want to

cluster its process instances into two clusters to investigate how they could be managed by
two different departments. A possible clustering result is shown in Figure 1(b). Analyzing it,
someone could argue that would be better to separate in different clusters process instances
in which activity B1 occurs and instances in which B2 occurs since B1 and B2 are related to
procedures commonly carried out by different departments. We could use this expert utterance
as a constraint during the clustering process and get the results presented in Figure 1(c).

(a) Original (b) Resulting clustering 1 (c) Resulting clustering 2

Figure 1: How interactive clustering can be applied: (a) a base business process model; (b) a possible
result for clustering process instances into two clusters; (c) a possible interactive clustering result, i.e.,
involving an expert in the clustering steps who suggests separating B1 and B2 into different clusters.
The process models presented in this figure follow Business Process Model and Notation (BPMN).

In this context, we introduce the interactive trace clustering strategy and discuss its applica-
bility through a proof of concept. We propose to implement this approach using Cop-k-Means,
a constrained clustering algorithm [10]. The proof of concept was modeled on a problem of
completion time prediction [11, 12] and evaluated from the perspective of data and domain
analysts2. By applying a constrained clustering algorithm to the particular context of trace
clustering, we developed the main contribution discussed: an interactive trace clustering strat-
egy. Additional contributions include the presentation of a strategy to interact with experts

1Interactive clustering refers herein to strategies that incorporate experts’ knowledge strictly in the clustering
algorithm loop, i.e., disregarding pre- and post-processing.

2Process model quality and process analyst perspective analysis are outside the scope of this paper.



and discussions considering evaluations from data and domain analysis perspectives3. This
paper is organized as follows: Section 2 summarizes the theoretical background; Section 3
introduces our interactive trace clustering approach; Section 4 provides the proof of concept of
our approach; and Section 5 concludes the paper.

2. Theoretical Background

After analysing examples of interactive clustering application in the literature, we propose
to organize the interactive clustering strategies in a general framework comprising four
basic steps: (1) an initial clustering is carried out without any supervision; (2) then, selected
information about each cluster obtained is presented to experts; (3) through an interaction with
the experts, their knowledge is collected and used to perform a new clustering iteration; (4)
these last two steps are re-run a finite and pre-determined number of times, or until a minimum
error is reached, or until the experts inform the procedure must complete.

In this study, interactive clustering is implemented through constrained clustering, which
is one approach to collect and apply human knowledge in clustering. One of the ways to
implement this approach comprises adding, to the classic clustering procedure,must-link/cannot-
link constraints between pairs of data points. These constraints show whether two data points
must be associated with the same cluster (for must-link constraints) or whether two data points
must be associated with different clusters (for cannot-link constraints). In this paper, 𝑑𝑖 ∼ 𝑑𝑗
denotes the existence of a must-link constraint between data points 𝑑𝑖 and 𝑑𝑗, and 𝑑𝑖 ⋈ 𝑑𝑗, the
existence of a cannot-link constraint between data points 𝑑𝑖 and 𝑑𝑗.
Constrained clustering was implemented in this study through the Cop-k-Means [10, 13]

algorithm. The algorithm applied receives as input: (i) the data set’s vector representation 𝐷,
the must-link constraint set 𝑚 ⊆ 𝐷 × 𝐷, and the cannot-link constraint set 𝑐 ⊆ 𝐷 × 𝐷. A new
iteration occurs as long as there is no convergence (we assume convergence when the centroids’
displacement ≤ 1𝑒−04). In each iteration, each data point 𝑑𝑖 is assigned to the closest cluster 𝐶𝑗
that does not violate the constraints in 𝑚 or 𝑐; if 𝐶𝑗 cannot be found, the clustering does not
have a solution. By the end of each iteration, the centroid of each cluster is updated. Euclidean
distance was used as the similarity function in this study.

Process mining and trace clustering rely on the concepts of events, cases, traces, and event
logs [14]. An event 𝑒 is the occurrence of a process activity at a given time. Events may be
characterized by attributes such as timestamp, activity label, resource, cost etc in the way that
for each event 𝑒 in a universe of events ℰ, #𝑛(𝑒) is the value of the attribute 𝑛 for the event 𝑒.
In addition, an event can have a label 𝑒, which is associated with it through a function, called
classifier, applied to the set of attributes of the event. In general, this label determines the
context in which the process mining algorithms are carried out. A case corresponds to a process
instance and consists of events such that each event relates exactly to a case. Cases in a universe
of cases 𝒞 may be characterized by attributes, and #𝑛(𝑐) is the value of the attribute 𝑛 for the
case 𝑐 and each case has a mandatory attribute called trace, #𝑡𝑟𝑎𝑐𝑒(𝑐) ∈ ℰ∗. A trace corresponds
to a finite sequence of events 𝜎 ∈ ℰ∗, i.e., each event appears only once in 𝜎. Lastly, an event log
is a set of cases 𝐿 ⊆ 𝒞 such that each event appears at most once in the entire event log [14].

3This study was partially supported by CAPES (Finance Code 001).



In the trace clustering strategy adopted herein, traces are transformed to simple traces and
the event log is transformed to a simple event log 𝑒 = (#𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒1(𝑒), #𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒2(𝑒), ..., #𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒𝑚(𝑒)).
A simple trace is a sequence of attribute names, and a simple event log is a multi-set of simple
traces [14]. For the sake of simplicity, trace and event log are used in the remainder of this text
as synonyms for simple trace and simple event log. Then, traces are mapped to a vector space
model based on the occurrence of activities in both the trace and the event log.

Appice and Malerba [4] present two strategies for building vector representations for traces.
The first strategy is based on the presence or absence of activities on a trace (BIN, for Binary)
while the second strategy is based on the frequency of activities on a trace (AF, for Activity
Frequency). We added a third strategy based on the relationship between the frequency of
activities on a trace and the number of traces in which the activities are present (AF-ITF, for
Activity Frequency - Inverted Trace Frequency), in the same way followed in the well-known
text data representation with TF-IDF scheme [15]. Based on the trace vector representation,
similarity functions used in the classic clustering can be used to calculate the similarity between
traces. Moreover, classic clustering algorithms, such as k-Means and Cop-k-Means, also apply4.

3. Interactive Trace Clustering

To implement interactive trace clustering, we developed a constrained trace clustering-based
approach comprising the four steps presented in Section 2. The first step requires the choice
of a clustering algorithm by the data analyst. The fourth step depends on factors extrinsic to
our approach (i.e., performance of the clustering solution in the problem under analysis and
availability of experts’ time). The second and third steps require more detailed discussions, since
they carry decisions specifically adopted in the proposed interactive trace clustering approach.
Regarding the visualization of the clusters (Step (2), cf. Section 2), the designed approach is

based on the values of event attributes and the frequency with which such values occur within
a cluster. The information can be viewed in tables or graphs for each resulting cluster. In these
views, lines in a table or bars in a graph represent attribute values and properties in each cluster.
The experts’ knowledge will be collected based on the visualization of the clusters presented
to them. Considering the information used to characterize the clusters and its relation with
event attributes, the experts’ knowledge will be indirectly collected based on the occurrence
or frequency of activities in both the trace and the event log, and a mapping between clusters
properties and traces in the event log is possible (Step (3), cf. Section 2). In trace clustering, a
data point corresponds to a trace. Thus, the experts’ knowledge collected in terms of attribute
values must be mapped to trace-based pairwise constraints. All traces involving that attribute
value should be selected so that specific pairwise constraints are created for each trace.

Interactive clustering approaches have been widely used in many types of data mining
applications [9]. In process mining, there are studies combining experts’ knowledge, which
was acquired independently from the trace clustering process, with the results obtained by
applying trace clustering. Koninck et al. [16] proposed a semi-supervised approach combining
manual profile definition made a priori by an expert with the trace clustering results. Weerdt

4Each trace’s frequency is taken into consideration in the experiments presented due to the influence it may cause
on the clustering results when using a partitioning clustering algorithm.



et al. [17] proposed to apply the expert’s knowledge through an active learning approach by
using selective sampling of supervised information: a sample of traces is chosen to create initial
clusters and the remaining traces are added to the clusters if the accuracy of the process model
underlying each cluster is not significantly decreased.
From the studies we identified, Koninck et al. [18] is the one applying the knowledge of

experts into trace clustering in a closer way of what we defined in this paper as interactive
trace clustering1. The authors present experiments with two novel constrained trace clustering
techniques to leverage expert knowledge in the form of instance-level constraints and concluded
that the techniques are indeed capable of producing clustering solutions that are more justifiable
without a substantial negative impact on their quality. Although constrained clustering has
also been used in such a study, the authors simulated the experts’ knowledge. The approach
proposed herein differs from that because it includes the interactions with real-world experts
and an evaluation strategy based on a specific task related to process mining.

4. Proof of Concept

In this section, we present a proof of concept to evaluate whether the application of interac-
tive trace clustering improves the results of a specific task related to process mining, while
maintaining clustering quality. We chose the application domain of incident completion time
prediction. Issue tracking systems, as Incident Ticket Systems, are used in organizations to
manage the various issues that come up in daily operations [19]. We have three main reasons
for choosing such an application domain: the first one is that a key task in such context is to
accurately predict the completion time of the tracked objects (the incidents) [19]. As pointed
out by Folino et al. [19], clustering as a pre-processing step can help obtain more accurate
time series predictors. The underlying goal is to have a set of specific predictors, one for each
resulting cluster, which are more accurate than a predictor build upon all data points; secondly,
according to Amaral et al. [11], solutions for incident completion time prediction are influenced
by the attributes that characterize the incident life-cycle and their respective values. Therefore,
we can hypothesize that arbitrary choices about how to use such attributes and values to build
a predictor model may lead to results inferior to the results that can be obtained with conscious
choices based on the knowledge of an expert; lastly, the execution of our proof of concept
requires the availability of domain experts and, in this application domain, we had access to a
set of experts with knowledge of ITIL framework, incident management process or business
process management.
In the proof of concept, we used an event log extracted from a real-world business process.

The event log [11] comprises events of an incident management business process and consists of
24,918 incidents and 29 descriptive attributes, extracted from an instance of the ServiceNowTM

platform used in an IT company, from March 2016 to February 2017. Each incident event is
described in terms of the incident state in the incident management standard process (inci-
dent_state). The event description is enriched through a set of attributes that describe the
incident (the process instance), such as priority, reassingment_count, etc5. The completion time
of an incident is the difference between the attributes closed_at and opened_at.

5A full attributes’ description is presented in https://archive.ics.uci.edu/ml

https://archive.ics.uci.edu/ml


We combined clustering and completion time prediction algorithms with experts’ interaction.
To evaluate, we compared the results obtained through interactive trace clustering with those
obtained through classic trace clustering, in terms of clustering quality (data analysts’ standpoint)
and prediction accuracy (domain analysts’ standpoint). The purpose of this proof of concept
is to show the feasibility and usefulness of our approach. We consider a successful proof of
concept if we obtain improvements in the accuracy of the forecast of the time of completion of
incidents without being accompanied by a great degradation in the quality of clustering. The
results6 are discussed in Sections 4.2 and 4.3.

4.1. Procedures and Resources

Figure 2 shows the two phases of this proof of concept: (i) preprocessing and clustering setup
and (ii) run of interactive trace clustering.

Figure 2: Proof of concept: overview

In the first phase, six domain experts7 took part in. Each expert selected from one to five
descriptive attributes (of 29) relevant to implement an incident completion time predictor. The
selected attributes were used to create trace vector representations (cf. Section 2). In the vector
space, the traces were submitted to k-Means (with 𝑘 = 3, 5, 10 and Euclidean distance). As
a result, clusters of traces were created, event sublogs were built from each cluster, and then
Annotated Transition Systems [20] (ATS) were built on such sublogs to implement completion
time predictors [11]8. Clustering and prediction results were evaluated from two points of view:
through the Silhouette Index (SI) [21], to analyze the quality of similarity among the traces
allocated in the same cluster; and through the Mean Absolute Percentage Error (MAPE) [22], to
analyze the quality of the prediction obtained for each sublog. As a result of this first phase, we
obtained the most appropriate combination for trace representation and number of clusters to
conduct the second phase of this proof of concept.

6The codes used are available in https://github.com/pm-usp/ITC-completion-time-prediction
7Software industry practitioners with background in BPMN, ITIL framework, and incident management process.
8ATS was chose to be used herein because of its simplicity in terms of parameters to be set: we used the abstraction
“set” and horizon = 1 [20].

https://github.com/pm-usp/ITC-completion-time-prediction


In the second phase, interactive trace clustering was applied based on the clusters resulting
from the first phase. For this, tabular and graphical representations were elaborated to present
and explain the context of each group of incidents to four experts9. The experts analyzed the
context of each group of incidents and performed four tasks. Thus, the experts: (i) proposed
improvements in the incident profile represented by each group, analyzing the values of the
incident attributes, based on information similar to Figure 3(a); (ii) proposed improvements to
the distribution of incidents in groups based on information similar to Figure 3(b); (iii) analyzed
the quality of the individual groups based on information similar to Figures 3(b;c); and (iv)
analyzed the overall organization of the groups based on information similar to Figures 3(b;c).
The experts’ responses were provided as text utterances. These utterances were manually
interpreted and mapped to pairwise must-link/cannot-link constraints to apply constrained
clustering (with Cop-k-Means). From the results of this constrained clustering, the procedures
to build sublogs and predictors (ATS) were performed again. In this phase, the SI and MAPE
were applied, as the goal was to verify whether the experts’ knowledge contributed to generate
better clusters, i.e., sublogs more adequate to build incident completion time predictors.

(a) (b) (c)

Figure 3: Examples of graphs to present the clustering results to the experts: (a) values of attributes
which occurs in a group; (b) the bars represent the count of each attribute value in a group; (c) boxplot of
the incidents’ duration in a group. We avoided using the word cluster when interacting with the experts.

4.2. First Phase: Trace Clustering Results

In the first phase, all experts chose the attributes category and priority, and half of the ex-
perts chose the attribute incident_state. This result corroborates with the attributes stated by
Amaral et al. [11] as the most likely choices when following the ITIL framework. These
three attributes were used in a composite way to characterize the events in a trace, i.e.,
𝑒 = (#𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑒_𝑠𝑡𝑎𝑡𝑒(𝑒), #𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑒), #𝑝𝑟𝑖𝑜𝑟 𝑖𝑡𝑦(𝑒)). Then, the traces were mapped to the vector repre-
sentations BIN, AF and AF-ITF and the k-Means algorithm was applied to such vector space
models. The resulting clusterings were evaluated in terms of SI and MAPE (Table 1). Both
measures were obtained as the average of the 𝑘 clusters. For MAPE, the standard deviation was
calculated as a way to express the uniformity in the quality of the set of clusters.

Different quality measures lead to different conclusions about the best combination of trace

9Two senior software industry practitioners and two senior academic researchers with background in business
process or incident management.



Table 1
Clustering evaluation based on SI and MAPE

Silhouette Index MAPE - ATS 𝜇 (𝜎)
𝑘 = 3 𝑘 = 5 𝑘 = 10 𝑘 = 3 𝑘 = 5 𝑘 = 10

BIN 0.17 0.18 0.28 3.38 (1.48) 2.86 (1.76) 3.60 (3.83)
AF 0.07 0.17 0.23 2.71 (0.76) 2.38 (1.30) 3.16 (2.52)

AF-ITF 0.52 0.62 0.70 4.10 (3.73) 3.41 (2.78) 3.10 (2.72)

vector representation and number of clusters. While the SI points to the AF-ITF representation,
the average of MAPE values points to the AF representation. However, the superiority of the
average of MAPE values with AF over AF-ITF is not as relevant as the SI superiority of AF-ITF
over AF. The results on number of clusters are also not conclusive: the SI points to a larger
number of clusters while the average of MAPE values points to k = 5 for BIN and AF and to
k = 10 for AF-ITF. The choice of the number of clusters for the second phase of the proof of
concept should also consider that a large number of clusters would increase the experts’ effort.
Thus, considering the analysis of the evaluation measures and the human-in-the-loop context,
the parameters chosen were the trace vector representation AL-ILF and k = 5.

4.3. Second Phase: Interactive Trace Clustering Results

The second phase was conducted using the clustering results referring only to the trace rep-
resentation AL-ILF and 𝑘 = 5. From the interaction with the experts, we obtained a set of
utterances, which were consolidated in three high level rules, and then manually mapped to five
must-link/cannot-link conceptual constraints, as shown in Table 2. These conceptual constraints
were used to establish the three set of pairwise constraints: 𝐶𝑠𝑡𝑎𝑡𝑒, 𝐶𝑝𝑟𝑖𝑜𝑟 𝑖𝑡𝑦, 𝐶𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦.

Table 2
Constraints obtained through interaction with experts

High level rule #1: “Incidents that pass through ‘awaiting...’ states should be grouped together as
they may last longer because of the waiting time.”
Constraint must-link on values of attribute incident_state: {awaiting evidence, awaiting problem,
awaiting user, awaiting vendor }∼ {awaiting evidence, awaiting problem, awaiting user, awaiting vendor }
High level rule #2: “Incidents with high (1 and 2), medium (3) and low (4) priorities should be
organized into different groups.”
Constraints cannot-link on values of attribute priority : {priority 1, priority 2} ⋈ {priority 3};
{priority 1, priority 2} ⋈ {priority 4}; {priority 3} ⋈ {priority 4}
High level rule #3: “Incidents involving requests for ‘password and access’, ‘remote access’ and ‘office
pack’, which are easily remotely resolved, must be in the same group.”
Constraint must-link on values of attribute category :
{password and access, remote access, office pack} ∼ {password and access, remote access, office pack}

To evaluate the effect of the interactive trace clustering, with each set of pairwise constraints
separately, on predicting incident completion time, the average (and corresponding standard
deviation) for the MAPE values obtained for each of the five ATS predictors constructed in
each clustering was contrasted with the average (and corresponding standard deviation) for



the MAPE values obtained for the five ATS predictors built on the five clusters resulting from
the classic trace clustering. These contrasts are presented in Figure 4. The best results are the
ones with lower average of MAPE values and the corresponding standard deviation, i.e., results
located closer to the origin of the presented graph.
We explored the Cop-k-Means algorithm stability by executing it ten times for each set of

pairwise constraints. A total of 30 executions of Cop-k-Means were carried out. Ten executions
of k-Means were also conducted, using the same parameters chosen in the first phase. As shown
in Figure 4 through the variation of the average of MAPE values among the executions, there is
an instability among results of classic trace clustering executions. The result used in the first
phase (marked as [×]) is the closest to the average point of the classic trace clustering executions
(marked as faded [⋆]).

Figure 4: Average of MAPE values and standard deviation of the ATS predictors built on the results
of interactive trace clustering, classic trace clustering of the first phase [×]. [⋆] refers to classic trace
clustering executions; [•] refers to interactive trace clustering executions using 𝐶𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 constraints; [■]
refers to using 𝐶𝑠𝑡𝑎𝑡𝑒 constraints; [♦] refers to using 𝐶𝑝𝑟𝑖𝑜𝑟 𝑖𝑡𝑦 constraints. The faded symbols represent the
average point for executions represented by that same symbol.

Considering the results corresponding to the application of each set of pairwise constraints,
we observed the following: (a) when applying 𝐶𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 70% of executions presented an average
of MAPE values smaller than the average point of classic trace clustering executions. Standard
deviations were smaller than the obtained with classic trace clustering executions, thus repre-
senting more uniformity in the quality of the results; (b) the application of 𝐶𝑠𝑡𝑎𝑡𝑒 resulted in a
more disperse distribution of average of MAPE values and standard deviations. Even though
some reduction can be observed in the average of MAPE values when comparing these results to
the average of MAPE values obtained from classic trace clustering executions, the average point
of 𝐶𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 results shows this set of pairwise constraints might not be adequate for the desired
increase of prediction’s accuracy; (c) the results obtained with the application of 𝐶𝑝𝑟𝑖𝑜𝑟 𝑖𝑡𝑦 led to
the worst results, with no result with a smaller average than the result of the first phase. The
standard deviation values were all greater than the obtained with classic trace clustering. Thus,
this set of pairwise constraints is not adequate. We suppose this issue is related to the issue in
IT services’ environments of priority setting by who inserts incident details in the system.



The results of classic and interactive trace clustering executions from the data analyst’s
perspective, in terms of SI, are presented in Figure 5. The SI values of classic trace clustering
results reveal lower instability among executions when compared to the values obtained among
the executions of each set of pairwise constraints. For the interactive trace clustering results,
corroborating with the analysis of average of MAPE values, better average SI values were
observed when applying 𝐶𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 and worse results with 𝐶𝑝𝑟𝑖𝑜𝑟 𝑖𝑡𝑦. These SI results suggest that
the selection of the right set of pairwise constraints enables the implementation of interactive
trace clustering without significant quality damage from the data analyst’s perspective.

Figure 5: Average SI of the results of classic trace clustering executions and interactive trace clustering
executions. [■] refers to the result of the first phase and [■] refers to the other classic trace clustering
executions; [■] refers to Cop-k-means executions with constraints related to attribute category ; [■]
constraints related to attribute priority ; [■] related to attribute incident_state

Following the interactive trace clustering concept, we could present the results of this phase
to experts and collect more inputs to further refine the clustering result. Unfortunately, due to
the experts’ unavailability, another phase is not in the scope of this work.
Table 3 shows the contrasts of the results presented in the first phase and in the interactive

trace clustering phase, considering the best execution with 𝐶𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 constraints. Due to the
relation of the applied set of pairwise constraints with the category attribute, the contrast is
presented with ten most common values for the category attribute and the average of MAPE
values for each group. From this kind of analysis, the experts could, for example, suggest that
in addition to the must-link constraints in 𝐶𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, there should be cannot-link constraints
between {password and access, remote access, office pack} ⋈ {SAP, SAP ECC}.

4.4. Cost of the proposed strategy

Based on the proposed mapping strategy, the number of constraints grows exponentially in
relation to the number of affected traces. To evaluate the effect of the quantity of constraints on
the algorithm runtime, we defined the data space rate concept, which refers to the choice of a
percentage of the set of all traces to be clustered. For instance, if the expert says all incidents in
which “activity A” occurs must be assigned to the same group, an alternative seeking algorithm
runtime reduction could be to add must-link constraints to 50% of the traces in which “activity
A” occurs. Such traces can be chosen by random. We refer this selection as space since the
traces to be selected should be those associated with data points positioned in different regions
of the vector space model. The obtained results revealed low correlation between the amount
of pairwise constraints and runtime. Since constraints can narrow down, or even totally define,
the options of the assignment of data points to clusters, our assumption is that the order of data
assignment to clusters and the type of the pairwise constraints can actually accelerate runtime.



Table 3
Category attribute values and average of MAPE values (𝜇) in each cluster of the result of phase 1 in
contrast with the result of phase 2. The list of category values is presented in a descending order of
value occurrence in the incidents of the group and the list of groups is in a descending order of 𝜇. SW =
software

Group 1 Group 2 Group 3 Group 4 Group 5

Ph
as
e
1 Desktop Others Peripheral Infrastructure Desktop

Internet Passwords Radio frequency Internet Internet
Notebook Remote access SW - industry Network Office pack
Passwords SAP SAP Passwords Passwords
Printer SAP CRM Telephony Peripheral Remote access
SAP ECC SAP ECC Passwords Radio frequency SAP
SAP ECC EN SAP ECC EN Internet Remote access SAP CRM
MAPE 𝜇 = 8.16 MAPE 𝜇 = 3.61 MAPE 𝜇 = 2.49 MAPE 𝜇 = 1.35 MAPE 𝜇 = 0.65

Ph
as
e
2 SAP Software Database Desktop Internet

Office pack SAP ECC EN Software Software Software
Passwords SW - industry SW - industry Peripheral Network
Printer SAP Others Network Infrastructure
Network SAP ECC Peripheral Printer Notebook
Telephony SAP CRM SAP ECC EN Notebook Security
Remote access Internet Server Radio frequency
MAPE 𝜇 = 4.35 MAPE 𝜇 = 1.92 MAPE 𝜇 = 0.74 MAPE 𝜇 = 0.71 MAPE 𝜇 = 0.46

5. Final remarks

In this paper, we introduced the interactive trace clustering as a way to use experts’ knowledge
to improve process mining results. A proof of concept on completion time prediction showed
the potential of the approach to obtain better results from the domain analysts’ standpoint,
without significant losses from data analysts’ standpoint. The use of interactive clustering brings
more meaningful trace clustering results, given the possibility of replacing or complementing
unsupervised assumptions with experts’ knowledge. Our experiments showed the advantage of
interactive trace clustering depends on the choice of the set of pairwise constraints. However
this decision would involve the process stakeholders’ knowledge which might guide decision
making more aligned with business goals. Even if the stakeholders are not fully aware of the
underlying business process, knowledge of how they perceive the process is useful. Results
obtained from a successful proof of concept provide evidence for analytical generalization. The
experts’ time consumption is a challenge to overcome in order to execute other interactive phases
(similar to section 4.3), including experiments with different combination of the constraints
extracted by the end of each phase. Another future work identified is conducting experiments
that enable comparing our results to the ones presented in Koninck et al. [18].
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