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Abstract
This paper presents the results of the WomboCombo Matcher in the Ontology Alignment Evaluation
Initiative (OAEI) 2022. WomboCombo is an ontology matching tool that finds node pairs starting out
from simpler exact string matching based steps through more complex neural Language Model based
steps. We also train a classifier to differentiate between entities with the same and entities with similar
meaning.
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1. Presentation of the system

1.1. State, purpose, general statement

Word meaning based matcher over Combinations (WomboCombo) is a multi-stage ontology
matching system that uses only textual information to find the same entities in two knowledge
graphs. The first step is a simple exact string similarity based pairing process followed by more
complex and resource exhausting steps as we progress through the whole system. Later stages
utilize pretrained Language Models to find entities with the same meaning but different lexical
representations. Each stage has its own output which we then combine for a final alignment
(therefore the name Combo). WomboCombo was built for and got tested only on the Knowledge
Graph track and mainly focused on the instance pairs. This decision is supported by the fact of
instance nodes carrying the core information of a graph. Also class and property counts are
only a handful, making it easier to correctly pair and most knowledge graphs even miss out on
representing classes or properties. WomboCombo is implemented in python and is compatible
with the Matching EvaLuation Toolkit (MELT) [1] with SEALS packaging.

1.2. Specific techniques used

In this section we explain how each of the WomboCombo’s steps work and how they connect
to each other. Figure 1 depicts the system architecture. You can see this pipeline visually on
figure 1.
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Figure 1: WomboCombo pipeline.

1.2.1. Exact matching module

The exact matching module takes a property as input and given the two graphs it will search
for nodes that has the same string representation of this property.
We’ve also experimented with fuzzy string matching algorithms with different parameters,

however these solutions brought more noise with themselves than actual pairs. Therefore we’ve
discarded using fuzzy string matching.

WomboCombo’s first two steps use the exact matching module but with a different property.
The first step uses the nodes’ Label property, the second step uses the nodes’ AltLabel property
both of them resulting in a high precision matches. Even though the precision is high using the
following module’s we focus on increasing the recall of our final alignment.

1.2.2. SentenceBert module

This module loads a pretrained SentenceBert model and outputs a vector embedding to all of
the nodes in the two graphs using their textual description (abstract). For each of the nodes of
graph A the 𝑋 most similar nodes from the other graph will be paired using cosine similarity.
The main purpose of the module is to get a pool of pairs where the nodes have similar meaning.

This is the 3rd step in our pipeline where we load all-MiniLM-L6-v2 [2] model and use the
abstract properties text value trimmed to the first two sentence to get a vector representation.
Maximum the top 6 pairs were gathered for each node and discarded all pairs below 0.6 cosine
similarity treshold. In case a graph have no abstract property this module is inactive.



1.2.3. Same vs Similar module

The Same vs Similar module is the most resource exhausting one. Our goal with this module
is to train a classifier that can differentiate between two nodes that are similar versus two
nodes that represent the same concept. We achieve this by automatically creating a training
dataset with 2 classes {same, similar } and training a Language Model based classifier. Based
on a candidate pair pool the trained model discards the predicted similar pairs and returns the
remaining.

In our submission the selected Language Model was albert-base [3] pretrained on the MRPC
task which is a sentence similarity task. The pairs we’ve considered same meaning (positive)
were the exact matching pairs on the Label property (1st steps output). We’ve generated 1
similar pair (negative) to each of these using the SentenceBert module where we replaced one
of the nodes of the pair with the highest ranking node that wasn’t the positive. We can say that
these negative pairs might contain noise, but as the task only has 1:1 gold pairs the noise should
be minimal. We used the abstract property to get the textual information for each node. As for
the training process a batch size of 1 and a learning rate of 10−5 were used. The training process
was let to run for 100 epochs, but an EarlyStop with 5 patience could shut it down before that
which suggest that we split the dataset to train and evaluation sets. To get the output alignment
of this module we used the trained classifier to filter the Sentence Bert module’s output.

1.2.4. Union and Filtering module

This module can union different alignments considering the confidence of each candidate. As
the gold pairs are all 1:1 matches we run a Top 1 filtering based on the confidence score of each
pair. In our pipeline the final alignment is calculated from 3 alignment pools maintaining the
order: Exact Matching over Labels, Exact Matching over AltLabels and the Same vs Similar
module’s output. If a pair is selected into the final alignment we pay attention to not include
any additional connections to these nodes while merging the different pair sets.

2. Results

2.1. Knowledge Graph

WomboCombo was not evaluated due to the organizers reporting TypeError when running the
system, but we report the scores achieved on the Knowledge Graph V4 test cases calculated
on our local machine using the official library and evaluation code. Our score achieved on the
marvel dataset is much lower than the other datasets due to missing abstract fields for most of
the nodes.

3. General comments

We have tested our system with different parameters for example whether cutting the abstracts,
using SentenceBert to vectorize over labels/altlabels or even tried different pretrained language
models. We could not find one parameter set that works best on all the 5 datasets, mostly



Prec. Rec. F-m.
marvelcinematicuniverse-marvel 0.877 0.663 0.755

memoryalpha-memorybeta 0.932 0.899 0.915
memoryalpha-stexpanded 0.968 0.940 0.954

starwars-swg 0.872 0.775 0.821
starwars-swtor 0.930 0.906 0.918

Table 1
The results of Knowledge Graph track 2022.

different parameters worked better on certain datasets. For submission we have selected the
parameters with the best mean scores over the datasets.

WomboCombo is not the best choice when matching properties or classes as these nodes do
not have abstract fields most of the time. Therefore only the exact match pairs could be found
in the resulting alignment. This was a big issue on the Marvel datasets as even the instances
had no abstract property in 90% of the nodes.

4. Conclusions

In this paper, we presented the WomboCombo matching system and its results in the OAEI
2022 campaign. The system participated only in the Knowledge Graph track. Our solution only
considers the textual information of a node and creates pairs using a multi-step process that
includes exact string matching and more complex neural Language Model based steps as well.
The results show that these complex steps can successfully find not so trivial pairs boosting the
most basic matchers.
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