CEUR-WS.org/Vol-3177/paperl6.pdf

Learning to Rank from Relevance Judgments
Distributions

Discussion Paper

Alberto Purpura®, Gianmaria Silvello? and Gian Antonio Susto?

'IBM Research Europe, Dublin, Ireland
?University of Padua, Padova, Italy

Abstract

LEarning TO Rank (LETOR) algorithms are usually trained on annotated corpora where a single rele-
vance label is assigned to each available document-topic pair. Within the Cranfield framework, rele-
vance labels result from merging either multiple expertly curated or crowdsourced human assessments.
In this paper, we explore how to train LETOR models with relevance judgments distributions (either
real or synthetically generated) assigned to document-topic pairs instead of single-valued relevance la-
bels. We propose five new probabilistic loss functions to deal with the higher expressive power provided
by relevance judgments distributions and show how they can be applied both to neural and gradient
boosting machine (GBM) architectures. Overall, we observe that relying on relevance judgments dis-
tributions to train different LETOR models can boost their performance and even outperform strong
baselines such as LambdaMART on several test collections.

Keywords

Learning to Rank, Machine Learining, Optimization Functions, Information Retrieval

1. Introduction

Ranking is a problem that we encounter in a number of tasks we perform every day: from
searching on the Web to online shopping. Given an unordered set of items, this problem consists
of ordering the items according to a certain notion of relevance. Generally, in Information
Retrieval (IR) we rely on a notion of relevance that depends on the information need of a
user, expressed through a keyword query. When creating a new experimental collection, the
corresponding relevance judgments are obtained by asking different judges to assign a relevance
score to each document-topic pair. Multiple judges — either trained experts or participants of a
crowdsourcing experiment — usually assess the same document-topic pair, and the final relevance
label for the pair is obtained by aggregating these scores [1]. This process is a cornerstone
for system training and evaluation and has contributed to the continuous development of
IR, especially in the context of international evaluation campaigns. Nonetheless, the opinion
of different judges on the same document-topic pair might be very different or even diverge

IIR2022: 12th Italian Information Retrieval Workshop, June 29 - June 30th, 2022, Milan, Italy
*Corresponding author, work done while at University of Padua and partially supported by the EXAMODE project
co-financed by the European Union’s Horizon 2020 Programme, Grant Agreement n. 825292.
EMAIL: alp@ibm.com (A. Purpura); silvello@dei.unipd.it (G. Silvello); gianantonio.susto@unipd.it (G. A. Susto)
ORCID: 0000-0003-1701-7805 (A. Purpura); 0000-0003-4970-4554 (G. Silvello); 0000-0001-5739-9639 (G. A. Susto)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
=] CEUR Workshop Proceedings (CEUR-WS.org)

mailto:alp@ibm.com
mailto:silvello @ dei.unipd.it
mailto:gianantonio.susto@unipd.it
https://orcid.org/0000-0003-1701-7805
https://orcid.org/0000-0003-4970-4554
https://orcid.org/0000-0001-5739-9639
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

to the opposite ends of the spectrum - either because of random human errors or due to a
different interpretation of a topic. Inevitably, the aggregation process conflates the multiple
assessors viewpoints on document-topic pairs onto a single one, thus losing some information
- even though it also reduces annotation errors and outliers. Our research hypothesis is that
Machine Learning (ML) models - i.e., LEarning TO Rank (LETOR) [2] and Neural Information
Retrieval (NIR) [3] models — could use all the labels collected in the annotation process to
improve the quality of their rankings. Indeed, judges’ disagreement on a certain document-topic
pair can be due to an inherent difficulty of the topic or to the existence of multiple interpretations
of it. We argue that designing ML models able to learn from the whole distributions of relevance
judgments could improve the models’ representation of relevance and their performance through
the usage of this additional information. Following this idea, we propose to interpret the output
of a LETOR model as a probability value or distribution — according to the experimental
hypotheses — and define different Kullback-Leibler (KL) divergence-based loss functions to
train a model using a distribution of relevance judgments associated to the current training item.
Such a training strategy allows us to leverage all the available information from human judges
without additional computational costs compared to traditional LETOR training paradigms.
The loss functions we propose [4] can be used to train any ranking model that relies on
gradient-based learning, including popular NIR models or LETOR ones. In our experiments [4]
we focus on one transformer-based neural LETOR model and on one decision tree-based Gradient
Boosting Machine (GBM) model - the model at the base of the popular LambdaMART [5] ranker
and used as a strong baseline in many recent LETOR research papers such as [6, 7, 8, 9, 10].
We assess the quality of the proposed training strategies on four standard LETOR collections
(MQ2007, MQ2008, MSLR-WEB30K [11] and OHSUMED [12]). The paper is organized as follows:
in Section 2 we present the details of the training strategies we propose; in Section 3 we present
the most significant evaluation results we achieve and in Section 4 we report our conclusions.

2. Proposed Approach

We propose five different loss functions formulations that allow ranking models to take advan-
tage of relevance judgments distributions prior to their aggregation. They are all based on two
intuitions that allow us to model relevant judgments as probability distributions and to use KL
divergence-based measures to compare them. We first propose to interpret the relevance label
(or a set of relevance labels) assigned to the same document as if it was generated by a Binomial
(or Multinomial) random variable modeling the judges’ annotation process. For example, we
assume that n assessors provided one binary relevance label for each document-topic pair, i.e.,
to state whether the pair was a relevant or a not-relevant one. This process can be modeled
as a Binomial random variable P ~ Bin(n, p) where the success probability p for each sample
is the average of the binary responses submitted in n trials. We can follow the same process
to represent a set of relevance labels associated to the same document as a sample from a
Multinomial random variable. We then apply the same reasoning for the interpretation of our
model output probability score as another Binomial (or Multinomial) distribution P~ Bin(n, p)
with the same parameter n — empirically tuned for the numerical stability of the gradients
during training — and probability p equal to the output of the model. The second option we

propose is to consider relevance labels associated to each document (or batch of documents)
as samples from Gaussian (or multivariate Gaussian) random variables P ~ N (j,, o) with
the same standard deviation ¢ but centered on a different point depending on the relevance
label associated with the document. Depending on the modeling strategy, the proposed loss
functions take the following formulations typical of pointwise, pairwise hinge [13] or listwise
losses that are frequently employed in NIR [14] and LETOR approaches [15, 16, 17, 6].

« Pointwiser ,(Bin) = (DKL (Pj||P;) + Dg (P]Pl)) * w;, where we rescale each term
in a training batch by a factor w;, inversely proportional to the number of times an item
of the same class (relevant or not relevant) appeared in it;

« Pointwise s 1,(arur) = (DKL(Mul)(PiHPi) + DKL(Mul)(PiHPi)) * wj, where we employ
a Multinomial random variable instead of a Binomial one to represent a set of relevance
labels associated to a certain topic-document pair by an annotator;

« Pairwiseyr(pin) = max(0,m — sign(p* — p*)DKL(Bm)(Pgm, Pg.), where m is a
slack parameter to adjust the distance between the two distributions, p* and p~ are the
outputs of the LETOR model associated to two documents — the former with a higher
relevance label than the latter - P}, ~ Bin(n,p") and Pg, ~ Bin(n,p~) are two
Binomial distributions corresponding to a relevant and to a not-relevant document-topic
pair, respectively;

« Pairwisej(n) = max(0,m — sign(pt — p~) D v (Pyr, Py), where we adapt the
previous hinge-style loss function to represent labels distributions with a Gaussian random
variable instead of a Binomial one;

o Listwiserr,(n,) = DKL(Nmult)(pHP) * w, where we consider the relevance labels
associated to multiple documents to rerank for the same query at the same time, mod-
eling the list of relevance scores and their respective labels as multinomial Gaussian
distributions.

We evaluate the proposed loss functions on different LETOR models, i.e. the LightGBM
implementation of LambdaMART [5], and a simpler transformer-based neural model [18] with
one self attention layer followed by a feed forward one. The experimental collections that we
consider in our experiments are: MQ2007, MQ2008, MSLR-WEB30K [11] and OHSUMED [12],
which are the experimental collections of reference in the LETOR domain. All collections
are already organized in five different folds with the respective training, test and validation
subsets. We report the performance of our model averaged over these folds with the exception
of the MSLR-WEB30K collection where we only consider Fold 1 as in other popular research
works [19, 20, 21, 10]. Our code and implementation of the proposed loss functions are available
at: https://github.com/albpurpura/PLTR.

3. Evaluation

In Table 1, we report the most significant results of our performance evaluation. For each
experimental collection, we report the performance of the best variants of a LambdaMART and
a Transformer Neural Network (NN) model when trained with the different loss functions we

https://github.com/albpurpura/PLTR

Loss Function ERR P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5 AP

GBM - LambdaMART 0.3211 0.4669 0.4397 0.4167 0.4217 0.4243 0.4285 0.4646
GBM - Pointwise KL (Binomial) 0.3233 0.4752 0.4354 0.4167 0.4303 0.4207 0.4275 0.4591]
MQ2007 GBM - Listwise KL (Gaussian) 0.3219 0.4592 0.4399 0.4164 0.4152 0.4240 0.4267 0.4595
NM - Pairwise KL (Gaussian) 0.3218 0.4817 0.4381 0.4201 0.4350 0.4249 0.4318 0.4665
NM - Listwise KL (Gaussian) 0.3177 0.4657 0.4332 0.4145 0.4173 0.4192 0.4255 0.4634
GBM - LambdaMART 03045 0.4413 03869 0.3446 0.3858 0.4260 0.4664 0.4746
GBM - Pointwise KL (Binomial) 0.3072 0.4439 0.3941 0.3464 0.3935 0.4325 0.4690 0.4771
MQ2008 GBM - Listwise KL (Gaussian) 0.2991 0.4362 0.3852 0.3444 0.3801 0.4214 0.4633 0.4775
NM - Pairwise KL (Gaussian) 0.3019 0.4375 0.3852 0.3398 0.3871 0.4222 0.4603 0.4697
NM - Listwise KL (Gaussian) 0.3008 0.4349 0.3814 0.3457 0.3827 0.4171 0.4630 0.4729
GBM - LambdaMART 0.3955 0.7918 0.7541 0.7288 0.5925 0.5711 0.5670 0.6299

GBM - Pointwise KL (Binomial) ~ 0.3550] 0.7789] 0.7503 0.7261 0.5435] 0.5344] 0.5343] 0.63267
WEB30K GBM - Listwise KL (Gaussian) ~ 0.3861] 0.7918 0.7565 0.73237 05825 05647, 05615 0.63471

NM - Pairwise KL (Gaussian) 0.3454] 0.7753] 0.7423] 0.7166) 0.5315] 0.5209). 0.5214] 0.5971]
NM - Listwise KL (Gaussian) 0.3523] 0.7612] 0.7258] 0.70164 0.5322] 0.5152], 0.5141] 0.5871]
GBM - LambdaMART 0.4704 0.5283 0.4874 0.4906 0.4387 0.3980 0.4037 0.4175
GBM - Pointwise KL (Binomial) 0.5036 0.5755 0.5220 0.5000 0.4953 0.4474 0.4330 0.4210
OHSUMED GBM - Listwise KL (Gaussian) 0.5139 0.5755 0.5314 0.5151 0.5000 0.46431 0.45257 0.4243
NM - Pairwise KL (Gaussian) 0.4520 0.5377 0.4403 0.40004 0.4481 0.3707 0.3481] 0.2903]
NM - Listwise KL (Gaussian) 0.5248 0.6038 0.56921 0.5057 0.5189 0.47961 0.4456 0.3861]

Table 1

Performance of different LETOR models (decision tree-based Gradient Boosted Machine (GBM) model
or a simpler Transformer-Based Neural Model (NM)) trained with the best-performing proposed loss
functions averaged over all topics. 1 or | indicate a statistically significant (o < 0.05) difference with
the LambdaMART model trained on the original relevance judgments. Best performance measures per
collection are in bold as the loss function with the most best measures per collection.

described above. The performance measures we consider are the Precision@k, nDCG@k - with
k € {1,3,5} — mean Average Precision (AP) and ERR [22]. In most of the cases, our simple
Tranformer-based neural model trained with the proposed loss functions is able to outperform a
LambdaMART model - one of the best performing state-of-the-art models often used as baseline
in the LETOR literature. We also observe how a GBM-based model is able to benefit from the
proposed loss functions. In fact, when evaluated on the MQ2007, MQ2008 and OHSUMED
collections, the proposed variant of the GBM model trained with the Pointwise KL (Binomial)
loss function outperforms the GBM - LambdaMART model according to different performance
measures.

4. Conclusions

We presented different strategies to train a LETOR model relying on relevance judgments
distributions. We introduced five different loss functions relying on the KL divergence between
distributions, opening new possibilities for the training of LETOR models. The proposed loss
functions were evaluated on a transformer-based neural model and on a decision tree-based GBM
model - the same model employed by the popular LambdaMART algorithm [5] — over a number
of experimental collections of different sizes. In our experiments, the proposed loss functions
outperformed the aforementioned baselines in several cases and gave a significant performance
boost to LETOR approaches — especially the ones based on neural models - allowing them to also
outperform other strong baselines in the LETOR domain such as the LightGBM implementation
of LambdaMART [5, 10].

References

(1]
(2]
(3]

M. Hosseini, I. Cox, N. Mili¢-Frayling, G. Kazai, V. Vinay, On aggregating labels from
multiple crowd workers to infer relevance of documents, in: Proc. of ECIR, 2012.

N. Tax, S. Bockting, D. Hiemstra, A cross-benchmark comparison of 87 learning to rank
methods, IP&M 51 (2015).

K. Onal, Y. Zhang, I. Altingovde, M. Rahman, P. Karagoz, A. Braylan, B. Dang, H. Chang,
H. Kim, Q. McNamara, A. Angert, E. Banner, V. Khetan, T. Mcdonnell, A. Nguyen, D. Xu,
B. Wallace, M. Rijke, M. Lease, Neural information retrieval: At the end of the early years,
Information Retrieval 21 (2018).

A. Purpura, G. Silvello, G. Susto, Learning to rank from relevance judgments distributions,
Journal of the Association for Information Science and Technology (2022).

C. Burges, From ranknet to lambdarank to lambdamart: An overview, in: MSR-TR-2010-82,
2010.

S. Bruch, M. Zoghi, M. Bendersky, M. Najork, Revisiting approximate metric optimization
in the age of deep neural networks, in: Proc. of SIGIR, 2019.

S. Bruch, An alternative cross entropy loss for learning-to-rank, arXiv:1911.09798 (2019).
R. Pasumarthi, H. Zhuang, X. Wang, M. Bendersky, M. Najork, Permutation equivariant
document interaction network for neural learning to rank, in: Proc. of ICTIR, 2020.

S. Bruch, S. Han, M. Bendersky, M. Najork, A stochastic treatment of learning to rank
scoring functions, in: Proc. of WSDM, 2020.

Q. Zhen, Y. Le, Z. Honglei, T. Yi, K. Rama, W. Xuanhui, B. Michael, N. Marc, Neural rankers
are hitherto outperformed by gradient boosted decision trees, in: Proc. of ICLR, 2021.

T. Qin, T. Liu, Introducing letor 4.0 datasets, arXiv:1306.2597 (2013).

T. Qin, T. Liu, J. Xu, H. Li, Letor: A benchmark collection for research on learning to rank
for information retrieval, Information Retrieval 13 (2010).

W. Chen, T. Liu, Y. Lan, Z. Ma, H. Li, Ranking measures and loss functions in learning to
rank, Proc. of NIPS (2009).

S. Marchesin, A. Purpura, G. Silvello, Focal elements of neural information retrieval models.
an outlook through a reproducibility study, Information Processing & Management 57
(2020) 102109.

T. Qin, T. Liu, H. Li, A general approximation framework for direct optimization of
information retrieval measures, IR Journal 4 (2010).

A. Purpura, M. Maggipinto, G. Silvello, G. Susto, Probabilistic word embeddings in neural
ir: A promising model that does not work as expected (for now), in: Proc. of ICTIR 2019,
2019, pp. 3-10.

S. MacAvaney, A. Yates, A. Cohan, N. Goharian, Cedr: Contextualized embeddings for
document ranking, in: Proc. of SIGIR, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin,
Attention is all you need, in: Proc. of NIPS, 2017.

H. Zhuang, X. Wang, M. Bendersky, M. Najork, Feature transformation for neural ranking
models, in: Proc. of SIGIR, 2020.

H. Zhuang, X. Wang, M. Bendersky, A. Grushetsky, Y. Wu, P. Mitrichev, E. Sterling, N. Bell,
W. Ravina, H. Qian, Interpretable learning-to-rank with generalized additive models,

arXiv:2005.02553 (2020).

[21] M.Ibrahim, M. Carman, Comparing pointwise and listwise objective functions for random-
forest-based learning-to-rank, ACM TOIS 34 (2016).

[22] O. Chapelle, D. Metlzer, Y. Zhang, P. Grinspan, Expected reciprocal rank for graded
relevance, in: Proc. of CIKM, 2009.

	1 Introduction
	2 Proposed Approach
	3 Evaluation
	4 Conclusions

