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Abstract
Embedding social robots with the capability of accompanying their sentences with natural gestures
may be the key to increasing their acceptability and their usage in real contexts. However, it could be
argued that the definition of natural communicative gestures is not trivial, since it strictly depends on the
culture of the person interacting with the robot. The proposed work investigates the usage of Generative
Adversarial Networks (GANs) for generating culture-dependent communicative gestures based on speech
audio features. To this aim, a custom dataset, only composed of persons belonging to the same culture, has
been created, to extract all keypoints and audio features needed to train the network. Then, a generative
model, also consisting of a voice conversion module, has been implemented and tested with the humanoid
robot Pepper. Preliminary results, obtained through objective measurements and subjective evaluation,
show that the proposed approach may be promising for generating culture-dependent communicative
gestures for social robots
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1. Introduction

Humans do not interact with others by only relying on their speech capabilities. Indeed, we
unconsciously accompany what we say with non-verbal movements, which are usually called
co-speech or non-verbal gestures. The importance of this kind of non-verbal communication
has been confirmed by different studies [1],[2], which have analyzed how conversational hand
gestures may convey semantic information, and how gestures are involved in the conceptual
planning of messages. The influence of culture in the generation of speech-accompanying
gestures has been the subject of many research works. In [3], starting from the assumption that
“communicative gestures are not a universal language”, the author suggests that, notwithstanding
a certain homologation process due to Western cultural hegemony, gestures are still culturally
deep, and hardly accessible to imports from other cultures.

Given the importance of communicative gestures in human-human interaction, it is natural
to ask oneself if co-speech gestures may play the same important role also in human-robot
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interaction. Answers to this question have been given in [4]. In this work, a monologue has
been performed by the humanoid robot BERTI, showing how people paid more attention to
the robot when it performed co-verbal gestures. Moreover, in the same scenario, a robotic
speech accompanied by gestures has been proven to be better recalled than when gestures are
absent. Similar conclusions have been drawn by [5]: additionally, the authors underline here
the importance of communicative gestures for a social robot, to improve the engagement and
the relational bondings that can arise between humans and robots.

On the basis of this analysis, this work describes a novel approach based on Generative
Adversarial Networks (GANs) for embedding humanoid robots with the capabilities of using
co-speech gestures during their verbal interaction with users. Given the importance of culture in
this context [6, 7, 8, 9, 10, 11, 12], the idea underlying the proposed approach is to autonomously
learn communicative gestures for a social robot by relying on a dataset composed by consid-
ered persons belonging to the same culture, thus creating a mapping between common and
uncommon poses, and their audio features. The assumption is that the synchronization between
gestures and speech is of the utmost importance in this context.

2. Methodology and Implementation

The proposed approach aims at developing a model able to learn the underlying mapping
between audio features and gestures of a group of persons identifying themselves with the same
culture. The model shall rely on a dataset composed of different speakers of the same cultures,
but with different physical and audio properties. Moreover, it shall be capable, at the same time,
of keeping the synchronization between words and gestures as well as word articulation and
their affective content. Finally, the model shall be implementable for the automatic generation
of gestures during verbal interaction with a social robot.

Concerning the proposed methodology, a scheme representing the translational model, used
for training the system, is shown in Figure 1, while Figure 2 shows the architecture used for
generating the co-speech gestures of a humanoid robot in run-time. The dataset, including
video and audio is first pre-processed for keypoints and audio extraction through software
such as OpenPose and many-to-one audio conversion approaches. Then, audio features are
fed to the Generator of a GAN to produce a sequence of “faked” keypoints, that are fed to
the Discriminator. The Generator and the Discriminator iteratively improve to, respectively,
produce fake gestures and to distinguish them from the real ones.

The run-time generation process of communicative gestures (Figure 2) starts by converting
the sentence that should be pronounced by the robot to speech, through Text-To-Speech
(TTS) functionalities: the resulting audio features are then further converted and a set of two-
dimensional corresponding keypoints vectors are generated. Two additional steps are needed,
to the aim of performing the resulting motion with a humanoid robot: keypoints need to be
translated to the three-dimensional space, and finally mapped to the robot.

A custom dataset has been built for developing and testing the system. In the current
implementation, the Indian culture and the English language have been chosen as references for
the work. Concerning the language, English was an obligatory choice, as we need a language
known to researchers, widespread in the world, and allowing us to easily find subjects for



Figure 1: Training model of the proposed approach

the experimental evaluation phase. Concerning the culture, the possibility to find subjects
for the experimental evaluation phase, the availability of many videos on the Internet with
Indian speakers, and the difference (in terms of co-speech gestures) existing between Indian
and Western culture [13] made the choice fall on Indian culture. As a remark, please consider
that any language and any culture can ideally be used for training the model.

The dataset has been created by exploiting TED Talks YouTube videos, as done in [14].
Indeed, TED Talks are particularly well suited for the aim of the project (i.e., extracting speakers’
skeleton keypoints and audio features): there is a huge number of available videos (including
videos of Indian persons speaking English), the speech contents and the speakers are different,
the speeches are well prepared (so we may expect that the speakers are using proper hand
gestures) and speakers are usually standing and not even partially occluded, which allows for
easily extracting their skeleton features.

Considering the Audio Conversion step, please notice that audio segments corresponding
to different speakers shall be mapped to the same target speaker. The approach pursued in
our work has been inspired by [15], which developed a Neural Network approach based on



Figure 2: Run-time model for generating co-speech gestures

Phonetic PostreriorGrams (PPGs), capable of representing articulation of speech sounds in
a speaker-normalized space. A PPG is a time-versus-class matrix representing the posterior
probabilities of each phonetic class for each specific time frame of one utterance [16]. A phonetic
class may refer to senones, words, and phones: in [15] senones were used, which consist of
clusters of shared Markov states, representing similar acoustic events. It is worth saying that
senones are per se speaker-independent, because they mainly rely on the typical sounds used
for pronouncing a word: thus, they are particularly suited for building a Speaker-Independent
Automatic Speech Recognition (SI-ASR) system [17], to the final aim of building a many-to-one
voice conversion model. Differently from [15], the proposed approach may be applied to audio
files of different durations: indeed, in the current implementation, the Short Term Fourier
Transform has been applied multiple times for each audio file, by adopting a moving window of
fixed length (512 samples), also setting a window hop (80 samples), so as to make the approach
independent from the length of the audio files.

Speaking about the learning model, the log-Mel spectrogram of the converted audio files



is used as input of an audio encoder, which downsamples the spectrograms through a set of
convolutions, thus producing a 1𝐷 signal. At this point, a UNet translation architecture learns
the mapping between this signal and a temporal series of keypoints. Indeed, the UNet approach
has been proven to give better results than classic Convolutional Autoencoder [18], [19]. The
Discriminator takes as input the extracted (and normalized) keypoints and the motion predicted
by the Generator, making sure that generated motions that are too different from ground truth
poses (thus, also the ones which are too smooth) are classified as fake. Inputs of 64 keypoints
vectors and corresponding audio files samples have been used for training, by repeating the
training process for 300 epochs, 300 steps each, reaching a total number of 90000 iterations.

Finally, in order to generate poses that can be executed by a robot, a simple neural network
that estimates depth values from 2𝐷 poses has been used. More in detail, the network consists of
a cascade of three fully connected layers with 30, 20, and 7 nodes with batch normalization, and
it has been trained by using a subsection of the CMU Panoptic Dataset [20]. The 3𝐷 keypoints
generated by the network have been remapped into 12 Degrees of Freedom of the robot (Pepper,
by Softbank Robotics [21]): Head (Pitch and Yaw), Hip (Pitch and Roll), Left and Right Shoulders
(Pitch and Roll), Left and Right Elbow (Roll and Yaw). The mapping was achieved by computing
rotation matrices from pose vectors, and eventually the corresponding Euler angles.

This architecture was practically implemented by using Tensorflow 2 and Python 3.

3. Pilot Experiment and Conclusions

Preliminary tests, involving subjects identifying themselves with different cultures (i.e. Indian
and non-Indian), have proven the capability of the system to embed cultural characteristics:
indeed, a statistically significant difference has been identified between the evaluations, given by
Indian and non-Indian subjects, of the naturalness of the gestures generated with the proposed
approach, leading to the conclusion that Indian participants have perceived GAN-generated
Gestures as more natural with respect to non-Indian participants [22]. The same pilot experiment
has been carried out also with randomly-generated co-speech gestures and rule-based gestures:
in both cases, no statistical differences has been identified in the two groups of subjects.

Still, some improvements may be needed to the proposed approach. For example, even if
the current implementation of audio conversion keeps the articulation of words, it may lose
some characteristics of the original expression and intonation of the sentence, and needs to
be refined. Also, the final mapping of the gestures on the robot should be improved, and
adding hands gestures may be of the utmost importance in this context. Finally, the current
implementation is only based on audio features, which leads to losing the semantic contents
of words: a hybrid method that uses both audio features and written words, or able to mix
rule-based and GAN-generated gestures, may possibly lead to better results.
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