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Abstract  
The development of modern cryptography, steganography, and communication systems with 
noise-like signals often requires the use of non-binary generators of pseudorandom key 
sequences. The main requirements for such a cryptographic construct are the compliance of 
gamma generated by them with the criteria of NIST stochastic tests and the implementation 
of the concepts of diffusion and confusion with respect to the generated gamma and the 
cryptographic key. In this paper, we empirically confirm the prospects of combining the 
advantages of quaternary bent-sequences, which are characterized by the highest nonlinearity 
value, with the advantages of the linear feedback shift registers, which are characterized by a 
high stochastic quality of the generated sequences. We present the scheme of a 
pseudorandom key sequences generator based on binary linear feedback shift registers and 
the IV-sets of quaternary bent-sequences. It has been established that the presented scheme 
generates pseudorandom key sequences corresponding to all the NIST stochastic tests, while 
the maximum values of the nonlinearity of quaternary bent-sequences provide a high level of 
implementation of the concept of confusion. At the same time, construction of IV-sets of 
quaternary bent-sequences was found, which provides the best stochastic properties of the 
generated gamma. The developed generator is characterized by high values of the number of 
protection levels and the simplicity of the algorithmic implementation. Compared to 
combining two binary generators of pseudorandom key sequences based on dual sets of 
binary bent-sequences, 40% fewer linear feedback shift registers are required to ensure the 
operation of the developed generator. The practical application of the developed generator is 
justified in systems that require many-valued logic pseudorandom key sequences. 
 
Keywords 
Pseudorandom key sequences generator, bent-sequence, many-valued logic. 

1. Introduction and statement of the problem 

The Pseudorandom Key Sequences Generator (PRKSG) is a very important construct used in 
modern cryptographic applications as well as in other areas of science and technology: PRKSG is the 
basis for the functioning of modern stream encryption algorithms, organizing modern efficient modes 
for block encryption algorithms [1], defining the steganographic path in modern steganographic 
algorithms, functioning of modern radio communication systems based on Frequency-Hopping 
Spread Spectrum (FHSS) technology [2], etc. 

Today, there are many different layouts for the PRKSG construction: the classical scheme based 
on Linear Feedback Shift Register (LFSR) with the use of nonlinear elements [3, 4], schemes based 
on the theory of dynamic chaos [5], cellular automata [6], etc. Regardless of the chosen scheme, the 
following basic requirements must be applied to PRKSG being developed today: they must be 
characterized by the high level of stochastic quality (the level of which is measured by the compliance 
with a generally accepted set of NIST stochastic tests [7]), the ability to generate pseudorandom key 
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sequences based on a short cryptographic key (at the same time, the PRKSG must provide a high level 
of implementation of Shannon’s concepts of diffusion and confusion [8] between the key element and 
the generated gamma), the simplicity of the algorithmic implementation, and the high performance of 
the PRKSG algorithm. 

The classical LFSR-based PRKSG layout with a nonlinear element fully fulfills the mentioned 
requirements, in particular, its modification based on bent-sequences proposed in [9]. 

The development of the theory of quantum cryptography, as well as the recently proposed 
cryptographic algorithms based on many-valued logic functions [10], have led to the need to create 

PRKSG operating on a non-binary alphabet 2},1,...,1,0{  qqA . Thus, the scheme of the PRKSG 
based on LFSR and dual sets of bent-sequences was generalized to operate over the alphabet 

{0,1,2}A  , which corresponds to the problems of quantum cryptography. 
However, the vast majority of information today is stored, processed, and transmitted in binary 

form, which makes it especially relevant to consider the possibility of constructing PRKSG that 

would operate over the alphabets }12,...,1,0{  kA , primarily over the quaternary alphabet 

}3,2,1,0{A . The use of the quaternary alphabet fundamentally makes it possible to simplify the 
PRKSG schemes by generating twice more gamma bits during one cycle, and also increases the 
possibility of implementing the principles of diffusion and confusion in the PRKSG [8]. The 
quaternary alphabet also provides a much greater variety of algebraic constructions that can be used to 
build high-quality PRKSG. 

Steganography is another important application of quaternary PRKSG in view of the peculiarities 
of the choice of the steganographic path: the ability to select one of the three color components or skip 
a given pixel from the process of information embedding. 

These facts substantiate the tasks of further research on the possibilities of improvement of the 
classical layout for constructing the PRKSG operating over the quaternary alphabet. 

The purpose of this paper is to develop a quaternary PRKSG based on IV-sets of bent-sequences. 

2. The theoretical foundations for the proposed PRKSG 

The classic layout of the PRKSG implies the use of LFSR as the main component. 
Definition 1 [11]. An LFSR is a shift register consisting of  d  memory cells, the value of the input 

element of which is determined by the value of the function constructed in accordance with the 
primitive irreducible over the Galois field )2(GF  polynomial of degree d . 

It is known [10] that the use of LFSR makes it possible to achieve good diffusion, and also 
provides a sufficiently high stochastic quality of the generated pseudorandom key sequences, which 
will be shown below in Table 2 on the example of LFSR built on the basis of the primitive irreducible 
polynomial 

1)( 454683  xxxxxf .  (1) 

The disadvantages of LFSR include the fact that they generate pseudorandom key sequences in 
accordance with a fairly simple rule defined by a primitive irreducible polynomial. 

This does not allow them to provide a sufficiently high level of nonlinearity of the relationship 
between the elements of the short key and the generated pseudorandom key sequence. In other words, 
these constructions do not provide a sufficient level of confusion. This circumstance leads to the 
possibility of launching attacks against such a generator, for example, using the Berlekamp-Massey 
algorithm. 

One of the historical attempts to overcome this shortcoming is the Geffe Generator, which 
provides a significantly higher level of confusion compared to the direct application of the LFSR 
through the use of several interconnected LFSR units. However, this level of confusion is also 
insufficient due to the simplicity of the links between the pooled LFSR units. 

In modern PRKSG, this drawback is eliminated by using a non-linear element in conjunction with 
LFSR, which is often represented by the Boolean function with a high level of nonlinearity. Thus, the 
block diagram of PRKSG in its classical layout is shown in Fig. 1. 



 
Fig. 1: Block diagram of PRKSG based on LFSR and nonlinear element 

 
The ideal option for nonlinear element is to use such special algebraic constructions as bent-

functions (whose truth tables are called as bent-sequences), which have the maximum level of 
nonlinearity, and, accordingly, provide the highest level of confusion implemented by PRKSG. 

In accordance with the definition [9], a binary sequence ],...,,...,,[ 110  Ni bbbbB , where }1{ib  

are coefficients, of even length mN 22 , 1,...,1,0  Ni  is called a bent-sequence if it has uniform 
absolute values of its Walsh-Hadamard spectrum )(BW , which can be represented in matrix form 

BAWB )( , 1,...,1,0  N , (2) 

where A  is the Walsh-Hadamard matrix of order N . 
The Walsh-Hadamard matrices are constructed in accordance with the Sylvester construction, 

which is specified using the following recurrent rule 
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Despite the successful layout of the block diagram shown in Fig. 1, the practical application of 
bent-sequences in it is extremely difficult due to bent-sequences imbalance, as a result of which the 
gamma generated by PRKSG is also unbalanced, and, therefore, does not meet the most basic criteria 
of stochastic quality. 

Another undoubted disadvantage of using binary bent-sequences is their existence only for lengths 

,...256,64,16,422  mN , while binary bent-functions of an odd number of variables do not exist, 
which limits the scalability of PRKSG schemes. 

In [9], for the binary case, a solution to this problem was proposed based on the use of dual sets of 
maximally nonlinear bent-functions. 

This PRKSG scheme showed excellent characteristics both in terms of performance and in terms 
of the quality of the generated pseudorandom key sequences, which is confirmed by both a set of 
stochastic tests [12], as shown in [9], and a set of NIST stochastic tests [7]. The number of protection 

levels of this scheme reaches the value 16549 21067,2  , which exceeds the number of protection 
levels of the AES-128 block symmetric cipher [13]. 

This scheme was also modified for the ternary case in [14] using LFSR based on primitive 
irreducible polynomials over the Galois field )3(GF , as well as triple sets of bent-sequences. Despite 
the absence of specific NIST tests for ternary pseudorandom sequences, the sequences generated by 
PRKSG [13] fully correspond to the set of tests [12], which suggests their high level of quality. 

To construct a quaternary PRKSG, it is proposed to use the complete class of quaternary bent-
sequences described in [15] and synthesized in [16]. Let us introduce the definition of the Vilenkin-
Chrestenson transform that we will need, as well as the definition of the many-valued logic bent-
sequence. 

Definition 2 [16]. The coefficients of the Vilenkin-Chrestenson transform of a q-valued logic 
function is the vector obtained by multiplying its truth table T  (represented in the exponential form) 
by the complex conjugate of the Vilenkin-Chrestenson matrix 

16VTA  .  (4) 



while for the case of 4-functions the Vilenkin-Chrestenson matrix is constructed according to the 
following recurrent rule 
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where “+” is the operation of addition mod4, the matrices V  are represented in symbolic form, i.e. the 
summation is performed with respect to the indices iz , and 
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Definition 3 [16]. For the Vilenkin-Chrestenson matrix of order kqN  , a bent-sequence 

],...,,...,,[ 110  Ni hhhhH  is a sequence over the alphabet 1,...,1,0,
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uniform absolute values of the Vilenkin-Chrestenson spectrum, which can be represented in matrix 
form 

1,...,1,0,)(  NconstVH NH  , (7) 

where NV  is the Vilenkin-Chrestenson matrix of order N  over the alphabet 

1,...,1,0,
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Bent-sequences are very important mathematical objects for cryptographic constructions 
development, however, their main drawback, which limits their use in cryptography, in particular, in 
the problems of development of cryptographically secure PRKSG, is their imbalance, the inequality 

of the number of symbols 1,...,1,0 q  contained in them, i.e. 110 ...  qKKK . This drawback was 
solved in [9] and [14] by using dual sets and triple sets of bent-sequences respectively, while the 
definition of dual sets and triple sets was generalized in [16], resulting in the definition of a q-set of 
bent-sequences which was presented. 

Definition 4 [16]. A set of q q-ary bent-sequences is called a q-set if the concatenation of their 

truth tables is balanced, i.e. it satisfies the relation 110 ...  qKKK . 
The research of the complete class of quaternary bent-sequences of length 16N  makes it 

possible to distinguish the following weight structures, which are presented in Table 1 in the 

following form },,,{ 3210 KKKK . 
 
Table 1 
Weight structures of quaternary bent‐sequences of length  16N  

Weight 
structure 

J  
Weight 
structure 

J  
Weight 
structure 

J  
Weight 
structure 

J  

}0,6,0,10{   192  }6,0,6,4{   2112  }2,4,2,8{   6336  }3,7,3,3{   10240 

}6,0,10,0{   192  }0,6,4,6{   2112  }4,2,8,2{   6336  }7,3,3,3{   10240 

}0,10,0,6{   192  }5,5,5,1{   6144  }2,8,2,4{   6336  }4,6,4,2{   25152 

}10,0,6,0{   192  }5,5,1,5{   6144  }8,2,4,2{   6336  }6,4,2,4{   25152 

}6,4,6,0{   2112  }5,1,5,5{   6144  }3,3,3,7{   10240  }4,2,4,6{   25152 

}4,6,0,6{   2112  }1,5,5,5{   6144  }3,3,7,3{  10240  }2,4,6,4{   25152 



Based on the data presented in Table 1, as well as on the Definition 4, it is fundamentally possible 
to construct 3948 IV-sets, which can be formed on the basis of a complete class of quaternary bent-
sequences of length 16N . As the experiments show, the best stochastic quality of the generated 
pseudorandom key sequences is provided with the following choice of their structure 

]4mod)3(4mod)2(4mod)1([  HHHH , (8) 

where H  is one of the quaternary bent-sequences of length 16N , the cardinality of the complete 
class of which is 200704J . 

Note that theoretically, as a LFSR, it is possible to use registers based on primitive irreducible 

polynomials over the extended field )2( 2GF . A method for synthesizing such a primitive irreducible 
polynomials over extended fields is presented in [17]. Based on this method, for example, we can 
construct following polynomial 

23233)( 234678910  xxxxxxxxxf , (9) 

on the basis of which the LFSR scheme shown in Fig. 2 can be built. 
 

 
Fig. 2: LFSR scheme based on primitive irreducible polynomial (9) 

 
Note that the operations of multiplication and summation in the LFSR scheme shown in Fig. 2 

are performed in the extended Galois field )2( 2GF , which arithmetic is determined by a single 

irreducible polynomial over the Galois field )2(GF  of second degree 1)( 2  xxxf  in accordance 
with the following tables 
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However, the results of the performed research which are presented in Table 2 show that 
LFSR constructed using extended fields show significantly worse stochastic performance compared to 
LFSR constructed using prime Galois fields. This circumstance does not allow them to be applied in 
the developed quaternary PRKSG. In our opinion, a good solution is to use binary LFSR with their 
subsequent multiplexing to ensure that arguments are supplied to the input of the IV-set of bent-
sequences, as well as the choice of a specific quaternary bent-sequence from the IV-set is performed. 

3. PRKSG scheme and its characteristics 

Based on the above theoretical information, we present a quaternary PRKSG scheme based on 
a IV-set of quaternary bent-sequences. The following primitive irreducible polynomials are used for 
constructing LFSR (in accordance with the results of [9], in order to maximize the period of the 
generated pseudorandom key sequences, the degrees of primitive irreducible polynomials are chosen 
as coprime) 
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and also, the IV-set of quaternary bent-sequences is chosen in accordance with condition (8) 

}.1230023220021222{

};0123312113310111{

};3012201002203000{

};2301130331132333{

4

3

2

1






H

H

H

H

  (12) 

In Fig. 3, we present the scheme of the developed PRKSG based on the IV-set of quaternary bent-
sequences (12) and LFSR constructed in accordance with primitive irreducible polynomials (11). 
 

 
Fig. 3: Scheme of the proposed PRKSG based on IV‐sets of bent‐sequences (12) 

 
Note that in view of the formation of a IV-set of quaternary bent-sequences in accordance with 

rule (8), in contrast to the PRKSG schemes presented in [9] and [14], there is no need to store the 
entire IV-set, as well as implement a selection block, which can be replaced by a summation device, 
which greatly simplifies the technical implementation of PRKSG and saves required for its 
implementation memory cells. 

Thus, the values of quaternary bent-functions 432 ,, HHH  can be formed by adding a constant 1,2  

or 3  to the original bent-function 1H , respectively. At the same time, the simultaneous operation of 

5LFSR  and 6LFSR  allows choosing these values with equal probabilities, which leads to ensuring 
the equiprobable choice of one of the quaternary bent-sequences from the IV-set at each iteration of 
the PRKSG operation. 

Let us note the features of the operation of the proposed PRKSG scheme based on IV-sets of 
quaternary bent-sequences. Binary registers 1LFSR  and 2LFSR  generate pseudorandom sequences, 
which are subsequently multiplexed into quaternary sequences that determine the first input variable 
of the bent-function (equivalent to corresponding bent-sequence). Similarly, the binary registers 



2LFSR  and 3LFSR  define the second input variable of the quaternary bent-function (equivalent to 
corresponding bent-sequence). 

The registers 5LFSR  and 6LFSR  after the multiplexer generate one of the values from the set 

}3,2,1,0{ , which determines the choice (with help of summation) of quaternary bent-sequence from 
the IV-set. Next, the corresponding value of the quaternary bent-function (equivalent to corresponding 
bent-sequence) is calculated, which is the output value of the PRKSG at a current cycle of operation. 

The number of protection levels of the developed PRKSG is determined both by the number of 
possible initial states of the LFSR and by the number of bent-sequences in the complete class. In our 
case, when using primitive irreducible polynomials (11), as well as the complete class of quaternary 
bent-sequences [16], the number of protection levels of the developed PRKSG is defined as 

6,173371719312923 2200704)12)(12)(12)(12)(12)(12(  ,  (13) 

which exceeds the number of protection levels of the AES-128 block symmetric cipher. 
At the same time, we note that in order to obtain a quaternary PRKSG based on a combination of 

two binary PRKSG units based on dual sets of bent-sequences [9], we would have to use 10 LFSR 
items, which is 40% more than in the proposed scheme. Thus, the use of IV-sets of quaternary bent-
sequences makes it possible to simplify the algorithmic implementation of PRKSG in the applications 
where quaternary pseudorandom key sequences are required. 

We note an important property of the proposed PRKSG scheme: it is easily scalable and makes it 
possible, if necessary, to easily increase the number of protection levels by using quaternary IV-sets 
of bent-sequences of greater length. 

For example, consider the possibility of using quaternary bent-sequences of length 64N . We 
take as a basis one of the quaternary bent-sequences of given length 64N  

]2020222301321003213131220233333012012310320221313100003333301203[1 H ,  (14) 

on the basis of which, considering the construction (8), we obtain the IV-set 
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In view of the fact that each of the bent-sequences (15) is the equivalent of the corresponding bent-
function of three variables, to construct the corresponding PRKSG we need another two LFSR to 
ensure the presence of an input signal for each of the variable of equivalent bent-function, as well as 
two LFSR for ensuring the selection of the bent-sequence from the IV-set. 

Thus, in addition to the primitive irreducible polynomials (11), we choose two additional primitive 
irreducible polynomials 
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On Fig. 4 we present a PRKSG scheme operating using eight LFSR and a IV-set of quaternary 
bent-sequences (15) of length 64N . 
 



 
Fig. 4: Scheme of the proposed PRKSG based on IV‐sets of bent‐sequences (15) 

 
The number of protection levels of the developed PRKSG is determined by the number of possible 

initial states of the eight LFSR included in it. In the case of using primitive irreducible polynomials 
(11) and (16), we obtain the following value 

.2)12)(12)(12(

)12)(12)(12)(12)(12)(12(
287474341

371719312923




  (17) 

The obtained value of the number of protection levels exceeds the value of the number of 
protection levels of the AES-256 cryptographic algorithm. 

Note that, to date, there are practically no methods for synthesizing complete classes of quaternary 
bent-sequences of length 16N  represented in the literature, which leads to the decrease in the total 
value of protection levels number for developed PRKSG shown in Fig. 4. This circumstance naturally 
poses the practical problem of developing such a methods in order to increase the number of 
protection levels for PRKSG based on IV-sets of quaternary bent-sequences. 

In Table 2, we present the results of the NIST stochastic tests of the developed PRKSG, its 
structural elements as well as some known analogues. 

 
Table 2 
Results of the NIST stochastic tests 

LFSR based 
on (1) 

LFSR based 
on (9) 

PRKSG 
[10] 

Developed 
PRKSG 
(Fig. 3) 

Developed 
PRKSG 
(Fig. 4) 

No. Test 

P-
value 

Pass 
rate 

P-
value 

Pass 
rate 

P-
value 

Pass 
rate 

P-
value 

Pass 
rate 

P-
value 

Pass 
rate 

1 Monobit test 0.51 ✔ 0.86 ✔ 0.30 ✔ 0.09 ✔ 0.18 ✔ 
2 Frequency within 

block test 
0.74 ✔ 0.73 ✔ 0.99 ✔ 0.47 ✔ 0.06 ✔ 

3 Runs test 0.72 ✔ 0.85 ✔ 0.11 ✔ 0.40 ✔ 0.72 ✔ 
4 Longest run ones 

in a block test 
0.14 ✔ 0.80 ✔ 0.04 ✔ 0.75 ✔ 0.19 ✔ 



5 Binary matrix rank 
test 

0.76 ✔ 0 ✘ 0.08 ✔ 0.87 ✔ 0.78 ✔ 

6 DFT test 0.84 ✔ 0 ✘ 0.79 ✔ 0.34 ✔ 0.68 ✔ 
7 Non overlapping 

template matching 
test 

0.99 ✔ 0.97 ✔ 1 ✔ 1 ✔ 1 ✔ 

8 Overlapping 
template matching 
test 

0.01 ✔ 0.98 ✔ 0.26 ✔ 0.89 ✔ 0.08 ✔ 

9 Maurers universal 
test 

0.8 ✔ 0.01 ✔ 0.16 ✔ 0.40 ✔ 0.23 ✔ 

10 Linear complexity 
test 

0.16 ✔ 0 ✘ 0.83 ✔ 0.24 ✔ 0.93 ✔ 

11 Serial test 0.9 ✔ 0.99 ✔ 0.18 ✔ 0.04 ✔ 0.81 ✔ 
12 Approximate 

entropy test 
0.9 ✔ 0.99 ✔ 0.18 ✔ 0.04 ✔ 0.81 ✔ 

13 Cumulative sums 
test 

0.49 ✔ 0.99 ✔ 0.18 ✔ 0.06 ✔ 0.16 ✔ 

14 Random excursion 
test 

0.33 ✔ 0.04 ✔ 0.16 ✔ 0.17 ✔ 0.04 ✔ 

15 Random excursion 
variant test 

0.42 ✔ 0 ✘ 0.29 ✔ 0.07 ✔ 0.03 ✔ 

 
The analysis of the data presented in Table 2 leads to the conclusion that the proposed PRKSG 

based on IV-sets of quaternary bent-sequences of length 16N , as well as quaternary bent-sequences 
of length 64N  has a high level of stochastic quality and fully complies with all the NIST stochastic 
tests. 

The NIST test results presented in Table 2, as well as the obvious simplicity of the technical 
implementation of the proposed PRKSG structure, allow us to recommend to use both developed 
PRKSG variants (Fig. 3 and Fig. 4) for practical use. 

4. Conclusion 

We note the main results of the research: 
1. It has been established that the construction of quaternary PRKSG is possible on the basis of 

binary LFSR, as well as IV-sets of quaternary bent-sequences. At the same time, the configuration of 
the IV-set was found, which provides the best stochastic properties of the gamma generated by the 
PRKSG. 

2. The scheme of the PRKSG is proposed which is based on binary LFSR and IV-set of quaternary 
bent-sequences. The proposed PRKSG provides a high level of stochastic properties of the generated 
sequences and the number of protection levels that can be easily scaled. For the case of use of the 
complete class of quaternary bent-sequences of length 16N , the number of protection levels 

reaches the value 65,2092 , while in the case of using bent-sequences of length 64N , the number 

of protection levels reaches the value 2872 , which exceeds the number of protection levels of the 
AES-256 cryptographic algorithm. Developed PRKSG also requires 40% smaller number of LFSR 
for generation of quaternary pseudorandom key sequences compared to combining of two PRKSG, 
based on dual sets of bent-sequences. 

3. The presented PRKSG is of interest from the point of view of practical application where 
quaternary pseudorandom key sequences are needed, for example stream encryption algorithms 
operating based on many-valued logic principles, communication systems based on the FHSS 
technology, steganographic algorithms with the possibility of pseudorandom selection of a 
steganographic path. 



Considering the above material, an important direction for further research is the development of 
methods for the synthesis of complete classes of quaternary bent-sequences, which will expand the 
variety of possible structures of the developed PRKSG, as well as increase the number of its 
protection levels value. 

Another possible direction for further development of the proposed PRKSG is its modification in 
order to use larger values of base q. 
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