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Abstract
The TTC 2021 Incremental Laboratory Workflow benchmark presents a challenging incremental transformation problem.
This paper presents our ATOL-based partial solution, and discusses the reasons why the kind of incrementality supported
by ATOL does not match the kind of incrementality required to solve the problem.

Keywords
ATL, Incremental Model transformation, Incremental Recompilation

1. Introduction
Incrementality is a mechanism by which a computation
result can be updated after input changes, without hav-
ing to perform all the computations required to produce
the initial result again. This results in a significant per-
formance advantage, because much fewer computations
typically need to be performed after each input change
than were initially necessary. Some model transforma-
tions can be executed incrementally, depending on the
language they are specified in, and the execution engine
that is used. For instance, some ATL transformations
can be quite efficiently executed incrementally with the
ATOL [1] engine, but other approaches exist for ATL [2],
or other languages [3, 4, 5]

However, not all incremental problems have the same
properties, and it is not clear which incremental trans-
formation engine can be used for each incremental prob-
lem. The TTC 2021 Incremental Laboratory Workflow
benchmark [6] was specified in order to provide means
to compare incremental engines on a very specific incre-
mental problem. This paper presents a partial solution to
this problem written in ATL, and executed with ATOL.
Because the required kind of incrementality does not
match what ATOL provides, the whole problem could
not be solved without abusing ATOL.

The remainder of this paper is organized as follows.
Section 2 reminds the reader about what kind of incre-
mentality can be achieved with ATOL. An overview of

TTC’21: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel,
25 June 2021, Bergen, Norway (online).
" frederic.jouault@eseo.fr (F. Jouault);
theo.le-calvar@imt-atlantique.fr (T. Le Calvar)
� 0000-0002-2395-9623 (F. Jouault); 0000-0003-2273-2053
(T. Le Calvar)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

the problem to solve is given in Section 3. Section 4
presents our ATOL-based solution to this problem. Ex-
perimental results are briefly presented in Section 5, and
finally Section 6 concludes.

2. Incremental ATL with ATOL
The declarative nature of ATL makes it easily amenable to
different execution modes. The original execution mode
is called batch mode, and simply creates a (set of) target
model(s) from a (set of) source model(s)1. Incremental-
ity is a different execution mode supported by more re-
cent ATL execution engines, which are able to propagate
source model changes into corresponding target model
changes. ATOL [1] is an incremental ATL execution en-
gine, which leverages composable active operations [7]
in order to achieve model transformation incrementality.

The definition of incrementality supported by ATOL
is that change propagation should be equivalent to full
re-execution. In this paper, we will call this commutative
incrementality. This is illustrated by the commutative
diagram represented in Figure 1, in which:

• 𝑡 is a model transformation, which can be viewed
as a function.

• 𝐴, 𝐴′, 𝐵, and 𝐵′ are models. 𝐵 is the result of
applying 𝑡 to 𝐴, which can be written: 𝐵 = 𝑡(𝐴).
𝐵′ is the result of applying 𝑡 to 𝐴′, which can be
written: 𝐵′ = 𝑡(𝐴′). 𝐵 and 𝐵′ are target models
of 𝑡, whereas 𝐴 and 𝐴′ are source models of 𝑡.

• 𝛿𝐴 and 𝛿𝐵 are changes, viewed as functions, re-
spectively performed on 𝐴, and 𝐵, turning them
into 𝐴′, and 𝐵′. This can be written: 𝐴′ =
𝛿𝐴(𝐴), which is a source change wrt. 𝑡, and
𝐵′ = 𝛿𝐵(𝐵), which is a target change wrt. 𝑡.

1Although ATL is capable of handling multiple source and tar-
get models, the remainder of the paper will generally refer to a sin-
gle source, and a single target model to simplify explanations.
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Figure 1: Commutative incrementality diagram for transfor-
mation 𝑡 creating 𝐵 from 𝐴

• 𝑝𝑟𝑜𝑝 is a change propagation higher-order func-
tion, which can translate changes on 𝐴 into
changes on 𝐵. 𝛿𝐵 can thus be obtained from 𝛿𝐴
by applying 𝑝𝑟𝑜𝑝, which can be written: 𝛿𝐵 =
𝑝𝑟𝑜𝑝(𝛿𝐴)

This diagram commutes because 𝐵′ = 𝑡(𝛿𝐴(𝐴)) =
𝛿𝐵(𝑡(𝐴)). This can be rewritten without referring to
𝛿𝐵 in the following way: 𝐵′ = 𝑝𝑟𝑜𝑝(𝛿𝐴)(𝑡(𝐴)). Trans-
formation re-execution corresponds to 𝐵′ = 𝑡(𝛿𝐴(𝐴)),
whereas change propagation corresponds to: 𝐵′ =
𝑝𝑟𝑜𝑝(𝛿𝐴)(𝑡(𝐴)).

ATOL automatically derives 𝑝𝑟𝑜𝑝 from 𝑡, making it
relatively easy for transformation developers to execute
classical ATL transformations incrementally. Although
the same 𝐵′ can be theoretically obtained from 𝐴, 𝛿𝐴,
and 𝑡 by following either path, each one has specific
practical properties:

• Change propagation is generally faster.
Transformation re-execution requires about the
same amount of computation for most simple
source changes2. Change propagation is typically
much faster for simple changes, because it does
not need to process the whole source model again.

• Change propagation performs in-place up-
dates. Very often, only the actual structure of
a model matters, and models duplicated by re-
executing a whole transformation are equivalent
to in-place updated ones for all purposes. How-
ever, in some situations, object identity matters,

2A precise definition of what a simple change is is beyond the
scope of this paper. The intuition is that a simple change modifies
a number of model elements which is small compared to the total
number of elements in the model.

and it makes a difference whether a model is up-
dated in-place or not. This is the case, for instance,
when target model elements are linked to non-
model elements, such as Graphical User Interface
(GUI) elements. Updating the existing model will
not break its link with the GUI elements, whereas
recreating it will result in a new model that does
not have any link with the GUI elements.

Now that the definition of commutative incremental-
ity on which ATOL is based has been given, the role
of active operations can be explained briefly. An active
operation is a basic transformation operation, such as
an OCL collect (called map in other languages), or
select (called filter in other languages), equipped
with a propagation algorithm respecting commutative
incrementality. Model transformations can be specified
by composing these operations, and change propagation
is obtained by composing their change propagation algo-
rithms.

3. Problem overview
The full specification of the TTC 2021 Incremental Lab-
oratory Workflow benchmark is presented in [6]. This
section gives a brief overview of the problem definition.
Solving this problem basically requires developing a com-
piler for laboratory workflow jobs given to robotic liquid
handlers. These robots can perform many tasks required
to, for instance, analyze biological samples. However,
they must be given very detailed descriptions of what
low-level tasks, such as transferring tube contents, in-
cubating samples, or washing containers, to perform on
which samples. An abstract syntax for these low-level
job descriptions is provided as part of the benchmark in
the form of a metamodel called JobCollection.

Because this metamodel operates at a very low level
of abstraction, a second, higher-level metamodel is in-
troduced: LaboratoryWorkflow. At this level, it is only
necessary to specify a collection of tasks to be applied
to every specified sample. The job of the compiler to
develop is first to create a model conforming to JobCol-
lection for every model conforming to LaboratoryWork-
flow it is given. This requires assigning samples to tube
runners that may only contain a maximum of 16 samples,
and then replicating jobs as necessary to transfer all sam-
ples onto microplates that may only contain a maximum
of 96 samples. Moreover, all transfer operations must be
performed on microplate columns that may only contain
a maximum of 8 samples.

Then, the compiler must be able to support addition
of new samples at any time, and to incorporate feedback
from the robot in the form of information about partially
failed jobs. When new samples are added after older sam-
ples have already been partially processed, they must



be processed up to the same point by adding new jobs.
When some samples fail to be properly processed by a
job, they must be marked as failed so that all future jobs
can skip them. However, already executed jobs must not
be changed. Compilers that support applying these mod-
ifications incrementally are expected to be more efficient
than those that must recompile the full process.

4. Solution presentation
The previous section has briefly presented the problem
to solve, and this section continues by presenting our
ATOL-based solution. The solution presented here was
partially inspired by the NMF [4] solution provided in the
solutions/Reference folder of the case repository3.

4.1. Problem incrementality vs. ATOL
incrementality

Firstly, change propagation must be able to proceed after
either source modifications (adding samples), or target
modifications (marking jobs as partially failed). This re-
quires some level of bidirectional propagation, which
active operations can achieve, but for which ATL is ill-
equipped. Its OCL-based syntax does not support speci-
fying enough information for reverse change propagation
to work in all cases. For instance, an OCL collect oper-
ation can only take one lambda expression as argument
to process elements in the forward direction, whereas
bidirectionality additionally requires a lambda expression
to process elements in the reverse direction. ATOL can,
however, be used for this purpose because it enables users
to specify some helper functions in xtend4, rather than
in ATL, while still keeping most of the transformation as
declarative ATL code.

Secondly, the solution must be able to perform some
changes while taking into account the fact that part
of the process has already been executed by the robot.
This means that change propagation should not result in
the same model as what would be obtained by fully re-
executing the transformation. The kind of incremental-
ity required here is therefore noncommutative, whereas
ATOL was designed to make sure it performs commuta-
tive incrementality.

4.2. Transformations
The overall process we implemented is represented on
Figure 2. The source model (called M1) conforming to
the LaboratoryWorkflow metamodel is first processed by
the LaboratoryChunking.atl transformation, which dis-
tributes samples into tube runner-sized chunks, as well

3https://github.com/tecan/ttc21incrementalLabWorkflows/
4https://www.eclipse.org/xtend/

as in microplate column-sized chunks. The latter are then
distributed into microplate-sized chunks (i.e., 96/8 = 12
rows). This results in model M2 conforming to the Labo-
ratoryWorkflow’ metamodel, which extends the Labora-
toryWorkflow metamodel to include information about
chunks. This extension is basically the same as in the
NMF solution, and is implemented by leveraging the ca-
pability of ATOL to consider metaclasses that are not
specified in Ecore. It is defined in the LaboratoryWork-
flow.xtend source file. This first transformation is rela-
tively simple, but required implementing a new chunking
active operation. Because appending samples is the only
required change, we have not implemented propagation
of other changes, such as removal, or insertion. More-
over, because this transformation targets a superset of
its source metamodel, it was implemented using ATL’s
refining mode, which supports in-place model modifica-
tion. This means that only the new elements must be
created, and the already existing elements can be kept as
is. This is relatively efficient when compared to a regular
non-refining transformation, which would have to copy
all the existing elements.

In a second step, model M2 is then transformed by
Lab2Job.atl, which performs the actual translation to the
JobCollection metamodel. Most of this transformation is
relatively simple standard ATL code. The tricky part is
related to noncommutative incrementality, and is detailed
in the next section.

4.3. Abusing ATOL incrementality
Because the problem calls for change propagation that is
not equivalent to full transformation re-execution (i.e.,
noncommutative incrementality), solving it with ATOL is
not an easy task. We have not yet been able to fully solve
the problem with ATOL. Nonetheless, we have managed
to abuse it into performing noncommutative change prop-
agations. To achieve this, the main mechanism is change
filtering, which takes place for reverse propagation of tip
state to sample state. This is performed using an ad hoc
noncommutative active operation. It is implemented in
method mapState of Lab2Job.xtend.

However, even with this hack, our solution is not able
to perform the required incremental propagations cor-
rectly in all cases. The remaining problems with our
solution could possibly be solved by similarly abusing
ATOL, but we decided not to do so until we better under-
stand what having noncommutative active operations
entails. Here is the list of remaining problems in our
solution that we have identified:

• Problem 1. Failed samples reappear in failed
jobs, which is a change filtering issue. This may
not be an actual problem in practice because these
jobs will not be re-executed anyway.

https://github.com/tecan/ttc21incrementalLabWorkflows/
https://www.eclipse.org/xtend/
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Figure 2: Overview of the transformation process of our ATOL-based solution

• Problem 2. Newly added samples require ad-
ditional jobs to perform jobs already completed
on existing samples. This is again a case of non-
commutative incrementality, which we have not
attempted to solve.

4.4. Non-ATL supporting code
In addition to ATL code, and the previously described
xtend helpers, some xtend code was also required for
the following aspects (identified with comments in the
LaboratoryChunking.xtend and Lab2Job.xtend files):

• Accessing tuple properties. This is necessary
on account of a current ATOL compiler limitation,
but this code could be automatically generated.

• Enumeration literal comparison helpers.
This could be implemented in ATL, although
string comparison would have to be used because
ATOL translates enumeration literals to and from
strings.

• Number zero-padding. This is necessary to
generate tube runner and microplate names that
conform to what is used in the benchmark’s
change specification files (although [6] does not
specify padding). This could be implemented in
ATL, but would be cumbersome because of lim-
ited OCL support for string operations.

Finally, the transformation driver, and the change appli-
cation code are also written in xtend.

5. Experimentations
Our ATOL solution to the TTC 2021 Incremental Labo-
ratory Workflow benchmark is available on GitHub5. It
reuses driver code from previous TTC contests.

Performance seems relatively good, as can be seen on
Figures 3, 4, and 5, although we have not spent much time

5https://github.com/ESEO-Tech/
ttc21incrementalLabWorkflows

on optimization, which could still be performed. How-
ever, since our solution does not completely solve the
problem, comparing its performance to other solutions
may not be that meaningful.

6. Conclusion
This paper has presented our partial ATOL-based solu-
tion to the TTC 2021 Incremental Laboratory Workflow
benchmark. Although this benchmark requires some
kind of incrementality, it is not exactly the same kind
of incrementality supported by ATOL, unless a better
way to encode the problem as model transformation has
eluded our investigations. We have shown that ATOL
can be abused to at least partially solve the problem, but
we have no theory with which to reason about our so-
lution. It may therefore be the case that it could fail in
unexpected ways beyond the already identified ones.

This benchmark is definitely not the one to showcase
ATOL on, but it presents an intriguing problem. A new
expanded theory of incrementality would be necessary
to understand it precisely wrt. the active operation ap-
proach. However, it is not clear whether such a new
theory would be general enough to support other rel-
evant noncommutative incrementality problems, or if
each new problem would require extending the theory.
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Figure 3: Benchmark results for new_samples scenario
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Figure 4: Benchmark results for scale_assay scenario
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Figure 5: Benchmark results for scale_samples scenario
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