CEUR-WS.org/Vol-3089/ttc20_paper3_Copei.pdf

The Fulib solution to the TTC 2020 migration case

Sebastian Copei’, Albert Zuendorf?

Kassel University, Germany

1. Introduction

At Kassel University we are working on a solution for
bidirectional transformations based on event sourcing
for about a year, now. It turned out, that the TTC 2020
migration case [1] is a special case of a bidirectional trans-
formation and that our approach provides a reasonable
solution for it.

2. Design

The idea and design for our solution stems from Domain
Driven Design [2] and Event Sourcing [3]. Basically, we
use two editors M1Editor and M2Editor, one for each
model of the case study, cf. Figure 1. Each editor holds the
current object model (based on the corresponding ecore
model). In addition, each editor provides editing com-
mands following the command design pattern of [4]. All
operations on the object model are encapsulated within
editor commands. Each editor keeps track of all executed
commands (and the used command parameters) within
its event store, cf. Figure 1. To enable collaboration
of M1Editor and M2Editor, both editors provide the same
set of commands: a HavePerson command with param-
eters id, name, and age and a HaveDog command with
parameters id, ownerId, name, and age, cf. Figure 3
and Figure 2.

each editor implements the command execution differ-
ently according to its specific ecore model. As an example,
Listing 1 shows the implementation of the HavePerson
command within M2Editor. Line 22 of Listing 1 shows
how the age parameter of the HavePerson command is
turned into a ybirth value for model M2.

Generally, we consider M1Editor and M2Editor as inde-
pendent programs that may run on different computers,
concurrently. Therefore each editor is able to serialize its
event store (in yaml format) and to send its commands
to the other editor. Correspondingly, the receiving editor
is able to deserialize and execute the commands, too.

TTC’20: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. Garcia-Dominguez, G. Hinkel, and F.
Krikava, 17 July 2020, BergenNorway (online).

EMAIL: sco@uni-kassel.de (S. Copei); zuendorf@uni-kassel.de

(A. Zuendorf)

Commons Lete Ao 10 ertiona CC B 20—

=== CEUR Workshop Proceedings (CEUR-WS.org)

M1Editor ‘ ’ M2Editor

M1 event store M2 event store

Figure 1: Design

M1Editor 1 M2Editor
}
p1: M1Person h3: HavePerson 1 h5: HavePerson p7: M2Person
id = “obj0” id = “obj0” 1 id = “obj0” id = “obj0”
name = “Alice” name = “Alice” 1 name = “Alice” name = “Alice”
age =25 age = “25" | age = “25" ybirth= 1995
1
h4: HaveDog 1 h6: HaveDog
d2: M1Dog 1 d8: M2Dog
id = “obj1” 1 id = "obj1’
name = “Bob” 1 name = “Bob”
age=2 ownerld = “obj0" . ownerld = “obj0"

Figure 2: Objects

In [5] we have developed theoretical foundations for
this command (or event) sharing between multiple edi-
tors: basically, we require that multiple commands that
address the same object (have the same id) overwrite
each other, i.e.: if c1 and ¢2 are commands with the same
id than applying c1 and then c2 is similar to applying
only c2. In addition, commands that work on different
objects may be executed in any order (are commutative),
i.e. if ¢3 and c4 are commands with different ids, applying
first ¢3 and then c4 must result in the same object model
as applying c4 first and c3 second. While these are pretty
strong conditions, it turned out to be easy to implement
the commands according to these rules. For the TTC2020
migration case we will discuss this in Section 3.

Provided with overwriting and commutative com-
mands, our editors are able to merge commands executed
by themselves or received from another editor: if a new
command arrives that uses an id that is already used by
some old command, the new command is executed and
then the old command is replaced by the new command
in the event store. If a new command arrives that uses a
new id, the new command is executed and added to the

mailto:sco@uni-kassel.de
mailto:zuendorf@uni-kassel.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Command
id: String
run ()
HavePerson HaveDog

name: String
age: String

name: String
age: String
ownerld: String

run ()

run ()

Figure 3: Command Classes

event store. The event store is treated as a set, i.e. the
order of the commands (and the order of the command
execution) does not matter due to our commutativity
condition.

Overall this editor design enables us to implement the
TTC2020 migration case as outlined in Figure 4. The mi-
grate step is invoked by the test or benchmark Tasks. The
loading of objects is done by loading the corresponding
xml files via EMF mechanisms. The parsing steps are
discussed in Section 4. The sending is done via our yaml
serialization and deserialization. The execution of com-
mands is discussed in Section 3. The modification step
is again done by the test or benchmark tasks. Similarly,
the test and benchmark tasks invoke the migrate back
step. The migrate back step uses parsing and sending
and execution similar to the migrate forward step. How-
ever, some details dealing with missing information are
discussed in Section 4.

3. Commands

Our approach relies on commands that are shared be-
tween the two editors. In the simple TTC20 Migration
case we need only two commands, cf. Figure 3 and Fig-
ure 2. To facilitate the merging of concurrent edits, we
require that commands are overwriting and commuta-
tive. Thus, if we e.g. execute a HavePerson command
with a certain id on an empty model, the first time we
shall create a Person object and fill its attributes. How-
ever the second time, we shall not create a second Person

1. migrate M1 to M2

a) load M1 objects

b) parse M1 objects into M1 event store

¢) send M1 commands to M2Editor

d) execute commands by M2Editor creating M2
objects and filling M2 event store

2. modify M2 objects to M2’
3. migrate M2’ back to M1’

a) parse (modified) M2’ objects and detect new
commands and merge the new commands
into the old M2 event store

b) send the updated M2 commands to the
M1Editor

c) execute (modified and new) commands on M1
objects and update M1 event store

Figure 4: The Fulib Migration Approach

object but we shall lookup the already existing object
and just adjust its attributes. In Line 5 of Listing 1 our
HavePerson command achieves this behavior by using
the getOrCreatePerson method of its editor. Our edi-
tors have hash tables for each model class (i.e. for Person
and Dog) and the getOrCreatePerson method looks
up this hash table. If the hash table already has a Per-
son with the given id, this Person is returned. Otherwise,
getOrCreatePerson creates a Person object, initializes
its id, adds it to the hash table, and then returns the new
Person. Thus, you may call getOrCreatePerson with
a certain id as often as you like, it will always return the
same Person object.

This getOorCreate mechanism also helps us to
achieve commutativity for our commands. Commu-
tativity for commands requires e.g. that you can ex-
ecute a HaveDog command before you execute the
HavePerson command for the dog owner. To allow this,
our HaveDog commands uses getOrCreatePerson
with the owner1Id to retrieve the corresponding Person
object. If the owner already exists, we just use it, other-
wise, the owner object is created on the fly. In the latter
case, a subsequent execution of the HavePerson com-
mand with the same id will retrieve the already existing
Person object and then fill the Person’s name and age (or
ybirth).

Once the targeted Person object has been retrieved,
Line 6 to Line 22 of Listing 1 fill the attributes of that
Person. In this solution, we use EMF dynamic editing
features to set the name and age or ybirth attributes.
The different migration tasks use different ecore models
with different properties. We store the current ecore
model within the editors and thus the commands just
query the current ecore model e.g. whether the current
Person has either an age attribute or an ybirth attribute.
Thus one implementation of our M2 . HavePerson com-

1 public class HavePerson extends Command {
2 @Override

3 public Object run(M2Editor editor) {
4 EObject person
5 editor.getOrCreatePerson(getId());
6 EClass personClass
7

8

9

(EClass) editor
.getEmfModel ()
.getEClassifier("Person");

person.eSet (
personClass.getEStructuralFeature("name"),
name) ;

EStructuralFeature ageFeature
personClass.getEStructuralFeature("age");

if (ageFeature != null) {
person.eSet (ageFeature,

this.age);

EStructuralFeature ybirthFeature
personClass
.getEStructuralFeature("ybirth");
if (ybirthFeature != null) {
person.eSet (ybirthFeature,
2020 - this.age);

return person;

Listing 1: M2.HavePerson::run()

mand suffices to address all different migration tasks of
the TTC2020 migration case. Note, the M1 .HavePerson
command also has only one implementation for all tasks,
however this implementation is slightly simpler as the
one of M2 .HavePerson as no variant of model M1 deals
with ybirth attributes.

4. Parsing

The implementation of the different migration tasks pro-

vided by the TTC2020 migration case resources [6] load
the different start models from XML files. After the first

migration the task implementation may retrieve the mi-

grated model and it may modify the migrated model
directly via dynamic EMF means. This means, the task
implementation does not use our editor commands to
load or to modify the models. Thus, our first task is
to parse the provided model and to derive the editing
commands that correspond to it.

For this purpose, our editors provide a parse method
that basically uses a visitor to travel through the current
model. For each model object our visitor then calls special
parsePerson or parseDog methods, respectively.

Listing 2 shows the parsePerson method of our
M2Editor. Basically, Line 5 to Line 20 of Listing 2 use
dynamic EMF features to retrieve the parameters needed
for the corresponding HavePerson command. Line 20 to
Line 25 then create the desired HavePerson command
and provide its parameters. Finally, Line 26 executes the

1
2
3
4
5
6
7
8
9

10
11

public class M2Editor {

private void parsePerson(EObject instance) {
EClass eClass instance.eClass();
String name
(String) instance
.eGet (eClass
.getEStructuralFeature("name")) ;
int age -1;
EStructuralFeature ageFeature
eClass.getEStructuralFeature("age");
if (ageFeature != null) {
age (Integer) instance.eGet (ageFeature) ;

EStructuralFeature ybirthFeature
eClass.getEStructuralFeature("ybirth");
if (ybirthFeature != null) {
age 2020 -
(Integer) instance.eGet (ybirthFeature) ;

}

HavePerson havePerson
. setName (name)
.setAge(age);

String id getPersonld(instance) ;

havePerson.setld(id);

execute (havePerson) ;

new HavePerson()

Listing 2: M2Editor::parse()

command. Thereby, the editor adds the new command
to the event store.

One crucial step during parsing is the retrieval of ids
for the model objects, cf. Line 15 of Listing 2. Usually,
we require that the model objects have an id attribute. In
the TTC2020 migration case this is not true. We solve
this by storing the ids for model objects within the hash
tables that are used by our getOrCreate methods. To
look up the id of a model object that is already stored
in such a hash table, we search e.g. the hash table for
Persons for the given instance. If an entry exists, we
return the corresponding id. If there is no entry yet (i.e.
after loading the initial object model) we just create a
new id and add the instance to the hash table under this
new id and then return the new id. Within the backward
migration step the hash table will already contain the
instance and the old id is retrieved.

There is one special case when merging the commands
created by the parse methods into the editor’s event store:
In migration Task4 of the TTC2020 migration case [1],
in model M2 the Dog has no age attribute. Thus, when
we parse the Dog object during the backward migration
step, the parseDog method will not find any age infor-
mation. However, this age information is still contained
within the original HaveDog command that has been re-
ceived from M1Editor and that has been executed and
added to the event store of M2Editor during forward
transformation. To keep the age information alive, if
the parseDog method cannot find the age attribute in

the parsed model object, it tries to retrieve the old com-
mand from the M2Editor event store and copies the age
information from there into the new command.

Altogether, our parsing approach utilizes that our com-
mand execution is overriding and commutative. Due to
the commutativity, the parsing visitor may visit the ob-
jects of the current input model in any order and thus
create the editor commands in any order. Due to the
overriding property, the backward migration may just
(re)execute the detected commands and this will over-
write the old commands and blend into the event store,
easily.

5. Results

Overall, our editor and command approach was very well
suited for the TTC2020 migration case. We were able to
address all migration task with the same implementation.
While our design might appear a little bit over engineered
we took benefit from the FulibServiceGenerator, a
tool we are just building and that generates a lot of boiler
plate code for editors and commands. After all we just
had to implement the run methods of the 2 commands
for the two editors and the parsing methods for the two
editors as described above.

We believe that the use of overwriting and commuta-
tive commands provides a great leverage for the parsing
and merging of command sets. Overall, our design is able
to handle much more complicated migration cases which
we address in our current work.

Unfortunately, our performance is very poor, on a test
run the Fulib solution took 9.6 seconds for 10000 itera-
tions while the original solution used only 0.3 seconds.
We had no time to go into the details of this.

You find our solution on:

Github:

https://github.com/fujaba/
ttc2020MigrationCaseByFulib

Docker: zuendorf/fulib-solution-ttc2019

References

[1] ttc2020migration, Ttc2020 case: Round-trip
migration of object-oriented data model
instances, https://www.transformation-tool-
contest.eu/2020_roundtrip.pdf, 2020. Last viewed

13.06.2020.

!Fortunately, the TTC2020 migration case does not include any
delete operations during model modification. To handle deletion of
model objects one has to remove the corresponding old commands
from the event store and one has to propagate this command re-
moval to the other editor and the other editor needs to remove the
command, too, and it needs to undo the command in order to roll
back the corresponding model changes. This rollback needs some
careful dealing with our getOrCreate operations.

[2] E.Evans, Domain-driven design: tackling complex-
ity in the heart of software, Addison-Wesley Profes-
sional, 2004.

[3] V. Vernon, Implementing domain-driven design,
Addison-Wesley, 2013.

[4] E.Gamma, R. Helm, R. Johnson, J. Vlissides, Design
patterns: Abstraction and reuse of object-oriented
design, in: European Conference on Object-Oriented
Programming, Springer, 1993, pp. 406-431.

[5] S.Copei, A. Zundorf, Mx for microservices, in: Proc.
Dagstuhl Seminar, volume 18491, 2019.

[6] ttc2020resources, Ttc2020 case: Round-trip migra-
tion of object-oriented data model instances, github
resources, https://github.com/lbeurerkellner/ttc2020,
2020. Last viewed 13.06.2020.

	1 Introduction
	2 Design
	3 Commands
	4 Parsing
	5 Results

