
Learning to Program - Programming to Learn: Technology
Supporting Digital, Physical and Social Learning in Schools

Kristina Litherland

University of Oslo, P.O Box 1092, Blindern, 0312 Oslo, Norway

Abstract
The purpose of this project is to provide a deeper understanding of programming pedagogic

practices by studying two cases of programming in school, providing two different entry points

to learning of and with computer programming. The cases represent two approaches to

technology enhanced learning of programming, namely screencasts and so-called

“makerspaces”, but also how programming as a technology itself may enhance learning. Using

qualitative research methods, my aim is to develop theory and practice related to programming

pedagogy. Preliminary results show that both screencasts and makerspaces are potentially

useful tools for learning programming, and that programming may be a useful learning tool in

itself. However, these findings need to be explored and refined further.

Keywords 1
Computer programming, interdisciplinarity, screencasts, makerspaces, socio-cultural

perspective

1. Introduction

The autumn of 2020 marked the starting

point of the new national curriculum in

Norwegian primary and secondary education

(years 1 to 10), known as “the Renewal of

Subjects” [1, author’s translation]. One of the

new aspects of the curriculum is the explicit

inclusion of computer programming in several

subjects, specifically mathematics, science,

music, and arts and craft; all of which are

mandatory subjects for all students. Computer

programming has been an elective subject in

Norwegian secondary schools since 2016, but

with the new curriculum, all students are

obliged to learn to program as part of their

mathematics course so they can successfully

use programming as a tool in both mathematics

and other subjects. This provides several

challenges, but also some opportunities. One

such challenge is that teachers must learn both

computer programming and how to integrate it

into their subjects, even though there is little

Proceedings of the Doctoral Consortium of Sixteenth European

Conference on Technology Enhanced Learning, September 20–21,

2021, Bolzano, Italy (online).
EMAIL: Kristina.litherland@iped.uio.no

ORCID: 0000-0001-9694-1291

©️ 2020 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

knowledge on how this is best done [2]. On the

other hand, programming may provide the

opportunity to engage students in

interdisciplinary activities and problem solving

in several subjects [3].

The Nordic approach to programming in

school, where programming is integrated into

other subjects [4], is fundamentally different to

approaches seen in other Western countries’

educational systems where programming is

organised as separate subjects (see e.g. [5]). The

new, Norwegian curriculum and the existing

programming courses provide an opportunity to

study programming for the subjects versus

programming as a subject. One rationale for the

importance of learning how to program at a

basic level is the idea that all members of

society need an understanding of the role of

programming in the digital world that

surrounds us (e.g. what is an algorithm and how

can it be used to deliver personalised ads).

However, not all students need professional

knowledge on how to create industrial-strength

computer programs. In the Nordic countries,

there is an emphasis on programming as a

bridge between subject domains, e.g.

mathematics and natural science, and statistics

and social science.

The aim of this PhD-project is to provide a

deeper understanding of programming

pedagogic practices in Norwegian schools by

studying two cases providing two entry points.

The cases represent different approaches to

technology enhanced learning of and with

programming described in detail later in this

paper. Note that my project concerns both

learning of conceptual knowledge of

programming and other subjects, and how

technological tools can support this learning. I

view programming skills themselves as

technological learning tools.

The PhD-project overall is guided by the

following research question with two sub-

questions, which, when combined, will provide

a basis for elaborating on the main research

question. How do computer programming

classes and integrated subject/computing

classes compare as interdisciplinary learning

arenas?

1. How does interactive screencast

technology support digital and social

learning practices in computer programming

classes?

2. How are learning processes supported

by programming as an intermediate tool

between physical making and conceptual

knowledge in a digital science classroom?

Using a qualitative, primarily bottom-up

approach to explore my research questions, my

contribution will be to improve the

understanding of the two approaches to

programming knowledge development in

Norwegian schools. Hence, the aim of the

project is not to make statistically generalizable

claims, but to give reliable and valid

perspectives of development processes

observed within the cases at hand. I hope that

the project will reveal both challenges and

opportunities that are relevant for developing

the field of programming pedagogy in school

further, and how technical tools are involved in

these processes.

2. Theoretical framework

The theoretical framework for the project is

grounded in the sociocultural perspective on

learning, which considers learning as

fundamentally social [8]. A key concept of the

sociocultural perspective is that tools mediate

learning. According to Vygotsky [8], language

itself is the most powerful mediating tool, and

researchers should therefore give attention to

language use when studying learning.

However, language is not the only tool involved

in learning computer programming; therefore,

also other (computer mediated and non-

computational) tools and artefacts will be

included as objects for analysis. Computer

programming is about creating code a computer

can read, which is a technological artefact.

However, humans also read, modify, use, and

write code, often based on other people’s code.

I argue that this makes programming an

inherently social activity, and that

programming should be treated as such. This

idea of sociality is in line with Vygotsky’s view

of learning.

Computer science (CS) education is a broad

field and includes CS education at all levels in

the educational system: From elementary

school to higher education. Nygaard [9] claims

the term computer science is too narrow, as it

places too much emphasis on the computer

itself and does not cover all (e.g. social) aspects

of the field. I choose to use the term

programming pedagogy, as using a verb

(programming) makes the term more

process/action oriented, to cover the field of

teaching and learning to program in a wide

sense, including programming concepts,

practices and perspectives [10].

This theoretical perspective will frame my

analysis by providing a focal point on

knowledge development over cognitive

assessment. Potential findings relate to

observed classroom episodes where the use of

tools (e.g. language, gestures, and digital tools)

are involved in this development. Since

programming in Norwegian schools is a new

phenomenon, there is a need to better

understand what is happening during

programming classes/classes with

programming and what the potentials are.

3. Programming in school

The idea of using programming in school is

not new and often dated to Seymour Papert’s

1980 book Mindstorms [3] and his concept of

“Turtle Geometry”. At the time, Papert and his

team at Massachusetts Institute of Technology

had recently developed a text-based

programming language called Logo. Papert had

grand ideas about how children could learn

mathematics and geometry hands-on, but also

how they could learn to think, by using Logo

and constructing programs [11]. However, later

research has criticised some of the claims by

finding that a programmer’s knowledge and

experience does not always develop into

cognitive/higher order skills (see e.g. [12]).

Mitch Resnick, one of Papert’s students and

leader of the team that developed the most well-

known block-based programming language

used in education, Scratch, is a champion for an

interest-driven approach as a programming

pedagogy [13]. Resnick’s idea is that children

can develop what is often referred to as 21st

century skills, such as creativity and

collaboration skills, through open ended

programming activities, which involve very

little upfront teaching. The success of this

approach, according to Resnick, relies on the

elimination of complicated programming

syntax, which is the aim of block-based

programming.

From Papert to Resnick the rationale has

moved from being quite specific (mathematics

and thinking) to talking about more general

skills. The Nordic model of programming can

be placed somewhere between the two, as

programming is placed within subjects but are

meant to develop both domain specific and

general skills. Waite [2] mentions

programming for the subject as a specific

context for programming that needs a specific

pedagogy. She uses as example the dilemma of

how to help students both connect and

differentiate between programming and the

subject in question. One particular challenge in

this regard is how symbols like punctuation

marks or equals signs are used in specific ways

in programming languages that are not

necessarily compatible with other fields, such

as mathematics.

In recent years, a growing number of

researchers have studied programming

pedagogy. The nominal paper by Wing [6] in

2006 is typically credited as the source of the

current wave of programming in schools across

the world. As a result of this wave, the field of

programming in school has gotten an

increasingly large mass of available tools and

resources (see e.g. [14]). This is also

symptomatic for the field of research. There is

a high focus on programming languages and

environments, but not on what concepts, ideas,

or practices the learners are expected to know.

In the Norwegian curriculum, concepts such as

variables, loops and if-statements are

mentioned explicitly, while a more basic

concept such as sequencing is not. In addition,

no practices, such as debugging, are included.

Lye and Koh [10] found that research on

computational concepts dominated over

computational practices (e.g. how students

solve programming problems), which again

dominated over computational perspectives

(e.g. how students talk about what

programming means to them or the society).

Lye and Koh suggest that both teachers and

researchers should focus more on practices and

perspectives.

Interestingly, from a Nordic perspective,

there is little research on what concepts across

fields (including, but not limited to

mathematics, natural science, arts and crafts,

and music) that are suitable to combine with

programming, or whether the integration of

programming with these fields is more a

question of practice integration.

Modern programming pedagogy is

influenced by several, sometimes competing,

approaches to the topic of how programming

should be taught [2]. One of the main questions

is how to structure programming classes.

Sentance, Waite & Kallia [15] have identified

that one of the most common ways is through

traditional lecture style lessons, and also that

there are several issues with this teaching style.

Moving away from the lecture style approach

gives way for more student-active approaches,

where students can be encouraged to talk and

use other tools.

In the programming industry, using spoken

language to debug code was popularised under

the term “rubber-duck debugging” back in 2000

[16]. Little research has been done in this field

of “talking about code” and reading it aloud in

professional and educational settings. Based on

the premises of coding being a social activity

[9] and that language is one of the most

important tools for learning [8], this is a gap in

the literature. Some work has been done,

however, and several researchers point to the

importance of using spoken language to bridge

programming activities [10, 15, 17].

The few existing studies have promising

results. In their research on what they call code

phonology, Hermans, Swidan and Aivaloglou

[18] found that there was a correlation between

a student’s ability to read code consistently and

accurately out load and their general

programming knowledge. Kluge et al. [19]

found that students could present their own

code using screencasts and that the

presentations provided a more detailed

perspective of the students’ understanding than

the code would on its own.

Another student-active and interest driven

approach is the use of makerspace methodology

[20]. Makerspace methodology follows in the

line of Papert’s learning theory, where students

are thought to learn through the construction of

physical and digital objects.

Throughout the past decades, we have seen

several ideas about what students can learn

through programming. They include thinking

skills, subject specific and general skills, as

well as to teach students about our “digital

world”. However, most of the research on

programming is based on programming for the

sake of programming, i.e. to educate

professional developers. The Nordic approach

assumes that programming can contribute to the

learning of other subjects. As is the case with

many programming pedagogical topics in

school contexts, also the field of programming

for the subjects is “underinvestigated” [17, p.

42]. One of the most known cases of such

research is on Logo and mathematics [21], but

there are some more recent examples.

The project ScratchMaths has shown

promising results in using Scratch to teach

primary school children basic mathematics

skills [22]. In their approach, mathematical and

programming concepts were taught

“simultaneously”, using subtle colour coding to

help students differentiate between the two

subjects and help them see the connections.

This is an important point, as Mørch and

colleagues [20] found that students do not

automatically connect programming concepts

with the relevant school subject(s) if this is not

explicitly pointed out to them.

As presented in this section, the

programming literature has several interesting

lines of research. Since I am applying a

qualitative, explorative approach in this project,

and I am still at an early stage of my project, I

prefer to keep an open mind as to what lines I

will pursue later based on the affordances of my

data.

4. Research design and method

This qualitative research project is based on

data from two cases that represent different

approaches to programming in Norwegian

schools. See Table 1 for reference. Both cases

involve the empirical study of programming

interventions in Norwegian schools, and follow

design-based research methodology [23].

The first case is situated in the elective

programming subjects in Norwegian secondary

and upper secondary school, and the purpose of

the case to explore the first and main research

questions. We employed a digital tool called

Scrimba, which is an instructional tool, a code

editor, a screen recording tool, and a learning

management system, and, in our case, a

research data collection tool.

Students and teachers from six schools

participated in the intervention. We explore the

making and use of screencasts (screen

recordings) in different ways, for example to

structure lessons and in assessment. The

screencasts capture the students’ programming

activities as a process, including how the

students describe and discuss their code.

The second case involves underachieving

gifted/talented students attending a natural

science class intervention where they

incorporate programming and making in

science. The aim of this case is to explore the

second and main research questions. Potential

participants are tested using the Wechsler

Intelligence Scale for Children (WISC) test, to

identify students who can be defined as

underachieving gifted/talented students, but

this is not emphasised in my PhD project.

During the intervention, the students are

invited to make digital and physical

programmed artefacts with the aim of

developing understanding of natural science

concepts. Approximately 40 students

participated in the first iteration, and more are

recruited for the second iteration, which is

starting during the autumn of 2021.

As both research projects are design based

projects, I aim to contribute to both theory

development and the development of

pedagogical practices that are more “hands on”

useful for the practice community.

Table 1
Case comparison

 Case 1 Case 2

Student age 13-19 12-16

Programming
rationale

Programming
as subject

Programming
as learning
tool

Context
Elective
course in
school

Elective
course for
gifted
students
across schools

Main
pedagogical
tools

Interactive
screencast
technology

Makerspace
technology

Data
collection

Video/audio
recordings in
classrooms,
semi-
structured
interviews,
screencasts
from
screencasting
software

Video/audio
recordings in
classrooms,
semi-
structures
interviews,
screen
recordings
from digital
classroom
environment

N (students) 134 ~200

4.1. Data collection

Data from both cases is/was collected using

participant observation, screen recordings and

interviews. Observations are collected using

field notes (meta-data), video cameras,

microphones, and screen recording software.

This will enable me to capture both what the

students are saying, with whom they are

talking, how they use their bodies/gestures to

communicate, what digital and physical objects

they are interacting with as well as what they

are constructing. It is vital that the students are

encouraged to interact and work together in

order to capture these conversations. The

student assignments are designed for working

in pairs to assure that I may collect interaction

data, but in the first case, there are also students

who have worked alone and have recorded their

own, individual screencast explanations.

In both cases, we used (or intend to use) a

voice- and tool-focused approach to video

recordings, informed by our theoretical

perspective. This is achieved by a particular

focus on the relative placement of video and

audio recording hardware in the classroom,

where cameras are placed so that we capture

events on the students’ screens and the shared

physical space between the students and their

persons, enabling us to capture e.g. gestures and

how the students potentially move the shared

laptop computer or other physical tools

between them. A table microphone ensures

good quality voice recordings.

Interviews held individually and/or in

groups using a semi-structured approach, may

provide a meta-cognitive perspective.

The first case is formally concluded,

meaning no more data is collected. Data

collection in the second case started during the

autumn of 2020, and there is available data

from the pilot project that is relevant [20].

Because of the Covid-19 pandemic, the

2020/2021 academic year interventions in the

second case were conducted digitally,

providing considerable challenges forcing all

case participants to adapt. This has also affected

my project and research questions. We have

started conducting the next iteration in a

physically co-located classroom, which may

provide opportunities for comparing the

iterations and cases on even more conceptual

levels, which I have not started exploring as of

now.

4.2. Data analysis

The data will be analysed using a qualitative

approach. I will look at interactions themselves

(i.e. the contents and organisation of

conversations and other social acts) using

interaction analysis (IA) [24]. Typically, this

means to look for recurring and/or exceptional

“episodes” and sequences of turn taking

contributing to meaning making, and

organising them into themes that conceptualise

the events in the episode [25]. However, as the

students are interacting with digital and

physical tools and may be using gestures (both

physically and digitally) to communicate, these

actions are also considered parts of the

interaction to analyse. This is in line with a

Vygotskyan view on mediational tools as

essential parts of learning processes.

The primary data therefore consists of the

video observations and screen recordings, as

these best capture the complex processes we are

studying. The interviews are a secondary data

source that may support or challenge what we

observe in the classrooms.

As the two cases include relatively large

amounts of data (tens of hours of video data), it

will be necessary to reduce the data to those that

are most relevant for the research questions.

This means that I will focus on data were the

students are actively engaged in programming,

over episodes that are e.g. mainly teacher

oriented or where the students are engaged in

other types of activities.

Both the cases are parts of larger research

projects where other researchers employ

several analytical tools and data sources to

answer different research questions. My project

differs in that I employ the same analytical tools

across the two cases.

4.3. Research quality

Although there is some overlap, the cases

have distinct takes on programming in school.

Instead of viewing this as mainly a challenge,

the cases provide an opportunity to investigate

contrasting approaches to programming

pedagogy.

One challenge, particularly about

generalisation to the general population of

students who are expected to learn

programming within the mandatory subjects

following the new curriculum, is that the

participants do not represent “typical students”

in the Norwegian school, as they have all opted

in to take part in the elective programming

subjects. Furthermore, all the students in the

second case belong to the group of

underachieving gifted/talented students. This

brings about some methodological challenges,

but also the opportunity to study programming

with students that are likely to be motivated. It

is possible to assume the challenges we might

experience with the participants can be even

bigger when programming is implemented in

mandatory education for everyone.

In the second case, the coronavirus

pandemic had a big impact on the first iteration

of the interventions. This has provided an

opportunity to study the learning of science

concepts using digital tools such as “Microbits”

and programming, in a digital classroom, but

there are challenges on how the data from the

digital iteration will compare with the second

round.

One way we ensure the research quality in

the complex case contexts, is by developing

codes and then viewing data separately as

researchers to ensure a level of inter-coder

reliability.

5. Preliminary results and
discussion

In this section, I will briefly describe my

preliminary findings and discuss these and the

current state of the project. I will frame this

discussion using the research questions, starting

with the sub-questions and moving on to the

main research question.

Sub-question 1: How does interactive

screencast technology support digital and

social learning practices in computer

programming classes?

In the first case, we are exploring

affordances of different modes of using

integrated screencast technology [19]. The

most promising results include how making

screencast code presentations may create new

learning opportunities for the students, as

presented in our short-paper [26]. We have

observed episodes where students work

collaboratively on developing code and how

switching to a screencast recording “mode” of

working, e.g. creating a screencast as cultural

tool, changed how they talked, edited and tested

code. Recording a screencast is not simply a

representation of a learning process, but is

connected to particular cultural practices. This

interrelationship between activity framing, talk,

code changes and other development actions

will be explored further, and is especially

interesting for comparison with the case where

another level of abstraction is added, namely

the explicit goal of subject learning through

programming.

Sub-question 2: How are learning processes

supported by programming as an intermediate

tool between physical making and conceptual

knowledge in a digital science classroom?

Although the digital classroom of the Covid-

19 pandemic has caused several problems such

as technical difficulties, students dropping out,

and changes to the activities in the intervention,

we have seen signs of how programming may

be a bridge between the individual, concrete,

physical artefacts the students made, and the

social and digital classrooms where interactions

and teaching took place. The students could not

manipulate other students’ physical artefacts or

work together on creating common physical

artefacts as they would in a physical classroom,

but they could share and manipulate code in the

online classroom environment [27]. I will

continue to explore the role of programming

and screen sharing practices as tools for

supporting the students’ learning.

Main research question: How do computer

programming classes and integrated

subject/programming classes compare as

learning arenas?

With this research question, I intend to

compare the two approaches to programming

(traditional approach, and Nordic approach),

and explore in what ways they differ and how

the interdisciplinarity of the Nordic approach is

expressed through the students’ learning

processes, and how this differs from the

traditional approach.

In some respects, the pandemic made the

cases more similar, as the collaboration

activities in both cases were, in large, mediated

by what the students saw and did on the screen.

Currently, data from the two cases are being

analysed separately, but I intend to do a

comparative analysis once I am more familiar

with the separate data sets.

Preliminary findings are mostly empirical,

but with deeper analysis, I hope to develop

these into more refined models or theories, that

may contribute both to the research field of

learning to program and programming to learn,

but also the practice of how and why.

6. References

[1] Norwegian directorate of Education, the,

Nye læreplaner – grunnskolen og

gjennomgående fag vgo, 2019. URL:

https://www.udir.no/laring-og-

trivsel/lareplanverket/Nye-lareplaner-i-

grunnskolen-og-gjennomgaende-fag-vgo.

[2] J. Waite, Pedagogy in teaching Computer

Science in Schools: A Literature Review,

2018. URL:

https://royalsociety.org/~/media/policy/pr

ojects/computing-education/literature-

review-pedagogy-in-teaching.pdf

[3] S. Papert, Mindstorms: Children,

computers, and powerful ideas. Basic

Books Inc, 1980.

[4] S. Bocconi, A. Chioccariello, J. Earp, The

Nordic approach to introducing

Computational Thinking and

programming in compulsory education.

Report prepared for the Nordic@

BETT2018 Steering Group (2018)

doi:10.17471/54007.

[5] N. C. Brown, S. Sentance, T. Crick, S.

Humphreys, Restart: The resurgence of

computer science in UK schools. ACM

Transactions on Computing Education 14

(2014): 1–22.

[6] J. M. Wing, Computational thinking.

Communications of the ACM 49 (2006):

33–35.

[7] A. V. Aho. Computation and

Computational Thinking. Ubiquity

symposium (2011) doi:

https://doi.org/10.1145/1922681.1922682

[8] L. S. Vygotsky, Mind in society: The

development of higher psychological

processes. Harvard university press, 1980.

[9] K. Nygaard, Program development as a

social activity. In IFIP Congress (1986):

189–198.

[10] S. Y. Lye, J. H. L. Koh, Review on

teaching and learning of computational

thinking through programming: What is

next for K-12?. Computers in Human

Behavior, 41 (2014): 51–61.

[11] I. E. Harel, S. E. Papert, Constructionism.

Ablex Publishing, 1991.

[12] R. E. Mayer, J. L. Dyck, W. Vilberg,

Learning to program and learning to think:

what's the connection?. Communications

of the ACM 29 (1986): 605–610.

[13] M. Resnick, Lifelong kindergarten:

Cultivating creativity through projects,

passion, peers, and play. MIT press, 2017.

[14] F. J. García-Peñalvo, J. Hughes, A. Rees,

I. Jormanainen, T. Toivonen, D. Reimann,

M. Tuul, M. Virnes, Evaluation of existing

resources (study/analysis). Belgium:

TACCLE3 Consortium. 2016

doi:10.5281/zenodo.163112

[15] S. Sentance, J. Waite, M. Kallia, Teaching

computer programming with PRIMM: a

sociocultural perspective. Computer

Science Education 29 (2019): 136–176.

[16] A. Hunt, D. Thomas, The Pragmatic

Programmer. Boston: Addison-Wesley,

2000.

[17] S. Grover, R. Pea, Computational thinking

in K–12: A review of the state of the field.

Educational researcher 42 (2013): 38–43.

[18] F. Hermans, A. Swidan, E. Aivaloglou,

Code Phonology: an exploration into the

vocalization of code, in: Proceedings of

the 26th Conference on Program

Comprehension, 2018, pp. 308–311.

ACM.

[19] A. Kluge, K. T. Litherland, P. H. Borgen,

G. O. Langslet, Combining programming

with audio explanations, in: Proceedings

of the 11th International Conference on

Education Technology and Computers,

2019, pp. 155–159.

[20] A. I. Mørch, K. T. Litherland, R.

Andersen, End-User Development Goes to

School: Collaborative Learning with

Makerspaces in Subject Areas. In

International Symposium on End User

Development, 2019, pp. 200–208.

[21] I. E. Harel, S. E. Papert, Software design

as a learning environment, Interactive

learning environments 1 (1990): 1–32.

[22] L. Benton, P. Saunders, I. Kalas, C.

Hoyles, R. Noss, Designing for learning

mathematics through programming: A

case study of pupils engaging with place

value. International journal of child-

computer interaction 16 (2018): 68–76.

[23] S. Barab, K. Squire, Design-based

research: Putting a stake in the

ground. The journal of the learning

sciences 13 (2004): 1–14.

[24] B. Jordan, A. Henderson, Interaction

analysis: Foundations and practice, The

journal of the learning sciences 4 (1995):

39–103.

[25] V. Braun, V. Clarke, Using thematic

analysis in psychology. Qualitative

research in psychology 3 (2006): 77–101.

[26] K. Litherland, A. Kluge, A. I. Mørch,

Interactive Screencasts as Learning Tools

in Introductory Programming, in:

Proceedings of the 16th European

Conference on Technology Enhanced

Learning, 2021, pp. 342–346.

[27] R. Andersen, A.I. Mørch, K. T. Litherland,

Learning Domain Knowledge using

Block-Based Programming: Design-Based

Collaborative Learning, in: Proceedings of

the 8th International Symposium on End-

User Development, 2021, pp. 119–135.

