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Abstract
Post hoc models are becoming popular as additional tools to evaluate the results of black-box models and
to provide explanations of the predictions they give. In this paper the main concerns that Local Induced
models raise in the pointwise explanation of heavily overparametrized black-box models are discussed
in depth, highlighting some vulnerabilities, some underrated issues and giving some warnings on the
potentially negative effect on user trust of this explainability framework.
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1. Introduction

The need for eXplainable Artificial Intelligence (XAI) has become an urgency due to the ease of
implementation and stunning performances of overparametrized black–box models, especially
Deep Neural Networks, that countless applications are testifying, often showing super-human
abilities and rising new ethic concerns [1]. While there is an open debate on what an explanation
should be, it can be reasonably assumed it requires a simple, transparent and understandable
for humans metamodel, that reproduces to a certain degree the behavior of the underlying
opaque oracle. Such metamodel can aim to either explain the predictions of the black-box
model, or the motivations behind these predictions, requiring a different approach: the former
more specifically focused with explaining a certain decision for a given input, the latter more
generally targeted to the logic behind the model. A recent survey of explainable models can be
found in [2].

In particular, given a black-box model, three problems can be considered [3]:

• themodel explanation aims to open the black-box, that is to provide a global explanation
of the model through a metamodel that is interpretable by the users.

• the outcome explanation aims to explain the correlation between the input data and
the decision. Given a black-box and a a specific input instance, without explaining the
whole underlying logic, it should provide an human-interpretable reason for the decision
on that particular instance.
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• the model inspection problem aims to provide a representation to understand some
specific properties of the black-box model or its predictions.

Model-agnostic are called the explainability models that are independent from the specific
model to be explained. Recently, these methods have flourished and are seeing an increase in
popularity due to their simplicity and fascinating “one fits all” promise. In the following the
outcome explanation problem is tackled, focusing on pitfalls of current Local Induced post hoc
models.

2. Global models

Given a problem 𝒫 with domain 𝐷 and a desired tolerance 𝜆, let 𝐶𝒫 (𝜆) ∶ 𝐷 → ℕ be the
complexity of the problem at hand, measured as the minimum number of free parameters or
independent dimensions required to properly represent 𝒫 (excluding the target variable): this
is the so-called Intrinsic Dimension (ID) of the problem. 𝐶(𝜆) is a monotonically decreasing
function, that is 𝜆1 ≤ 𝜆2 ⇒ 𝐶(𝜆1) ≥ 𝐶(𝜆2): the more fidelity is required from the model (lower
tolerance 𝜆), the more free parameters (or dimensions) are necessary and sufficient to reach it.
Let 𝐸𝑚 be the expressive power of a model 𝑚, measured as the number of free parameters or
independent dimensions of the model, to guarantee the tolerance 𝜆 it must hold that:

𝐸𝑚 ≥ 𝐶𝒫 (𝜆) (1)

There are infinite models with the same expressive power coming from different families that can
be used to model the problem 𝒫, each with his trade-offs in terms of bias-variance, effectiveness-
efficiency, exploration-exploitation, approximation-generalization, fidelity-interpretability, plasticity-
stability and so on. The choice of the model and the discussion of its pros and cons is precisely
the work of scientists and researchers, that hardly find consensus solutions, as the growing
scientific literature demonstrates. Traditionally researchers have fought first to estimate the
intrinsic dimension of a problem and then to find models that closely match this value, i.e. with
𝐸𝑚 = 𝐶𝒫 , or reversely they have tried to find from the beginning the simplest, least expressive,
model producing an acceptable value of 𝜆. The reason for the second choice is that even if a
well defined and transparent model actually exists and could be found, if the complexity of the
problem is very high, the model with 𝐸𝑚 = 𝐶𝒫 could be still too complex to be understood and
managed by humans. Going over tens of dimensions can easily produce models that are barely
intelligible, and it can be said that to be useful for humans 𝐸𝑚 must remain in the order of 102
or less. Dimensionality reduction techniques aims precisely to this, and on the positive side it
must be said that many problems show a very low intrinsic dimension and even aggressive
approximations produce good results.

The recent explosion of popularity of Deep Neural Networks (DNN) created a somewhat
unprecedented situation: the temptation for prêt-à-porter accuracy has spread models with
millions of parameters even when the intrinsic dimension of a problem is small: instead of
looking for the model with the closest possible expressive power to the intrinsic dimension, or
for the least expressive admissible representation, model overparametrization has become the
norm. The extreme situation where the number of dimensions 𝑝 exceeds even the number of



training samples 𝑛 is no more a taboo. In this case it holds:

𝐸𝑚 >> 𝐶𝒫 (𝜆) and 𝑂𝑚 =
𝐸𝑚

𝐶𝒫 (𝜆)
(2)

Where 𝑂𝑚 > > 1 is the overparametrization ratio for the chosen model. While DNN show
stunning performances in terms of crude accuracy, they heavy overparametrize the problem,
lack in transparency and generalization, are sensitive to adversarial attacks and ultimately do not
provide a clear explanation of the motivation behind the results they give. It must be reminded
that each new parameter/dimension increases exponentially the space of configurations to be
explored.

3. Local models

A Local Model, called 𝑙𝑚, is a model that approximates locally the model 𝑚 on the problem 𝒫 .
Local models make sense because even if a problem has complexity 𝐶𝒫 (𝜆) on its full domain,
there may be, and usually there are, subdomains where the complexity drops and simpler models
are enough powerful to guarantee 𝜆.

If 𝑑𝑖 is a subdomain of the problem domain 𝐷, let 𝐶𝒫 𝑖 (𝜆) ∶ 𝑑𝑖 → ℕ be the complexity
of the considered problem in 𝑑𝑖, measured as the minimum number of free parameters or
independent dimensions required to properly represent 𝒫 locally: this is the so-called Local
Intrinsic Dimension (LID) of the problem in 𝑑𝑖. This complexity is neither monotonic, nor
constant along any direction, and again the expressive power of the chosen local model should
dominate it. In formulae:

𝐸𝑙𝑚𝑖 ≥ 𝐶𝒫 𝑖 (𝜆) ∀𝑖 and 𝐸𝑚 ≥ max
𝑖

(𝐸𝑙𝑚𝑖) (3)

Many local models are required to approximate the global one, and much like a piece-wise
linear function can approximate any curve in the euclidean plane within a given tolerance if
sufficiently small intervals are considered, any local model can approximate any global model
to a given degree of tolerance 𝜆 if sufficiently small regions are considered. There is a positive
correlation between the width of the regions (subdomains) and the minimum 𝜆 that can be
guaranteed. In critical regions where the model shows an irregular pattern, locality should be
increased and more local models, each valid for smaller subregions, are required.

4. Induced models for XAI

An Induced Model, called 𝑖𝑚, is a more interpretable, simpler and transparent model that approx-
imates locally the model 𝑚. It follows from these requirements that:

𝐸𝑖𝑚 << 𝐸𝑚 and 𝐸𝑖𝑚 ≤ 𝐸𝑙𝑚 ∀𝑑𝑖 (4)

whereas there is not a clear relation between the expressive power of the induced model and the
LID, with the risk of not being able to guarantee 𝜆 in 𝑑𝑖 if 𝐸𝑖𝑚𝑖 < 𝐶𝒫 𝑖 (𝜆) for some 𝑖. Hence 𝑖𝑚
not only cannot properly model 𝒫 on its full domain, but can even break the 𝜆 constraint locally,



and the more complex the original model is, the more likely the latter hypothesis becomes. To
avoid loosing tolerance guarantees in the regions where 𝐸𝑖𝑚𝑖 < 𝐶𝒫 𝑖 (𝜆) , the positive correlation
between the width of the regions and the minimum 𝜆 should be exploited, splitting them in
one or more subregions where one or more further local models have to be considered. In the
worst case a model with a very low expressive power could only approximate an hugely more
complex model in regions so small that degenerate into a single point.

Further differences between local models 𝑙𝑚 and induced models 𝑖𝑚 are that the former use
the original features of the problem 𝒫 and the original data in 𝐷 for training, while the latter
do not necessarily use the same features (they need more interpretability) and use as training
data the predictions of model 𝑚. The induced model tries to model 𝑚, not 𝒫 , mimicking its
behavior in an arbitrarily small region.

4.1. Interpretable feature spaces

Given a data matrix 𝑋 ∈ 𝐷 of size 𝑛 × (𝑝 + 𝑞), be 𝑝 + 𝑞 the original features, 𝑞 the subset of the
original features that can be considered interpretable and be 𝐹 a set of 𝑟 disjoint (𝐷 ∩ 𝐹 = ∅
) interpretable features measurable on the instances 𝑖. If according to the data analyst the
interpretation requires features 𝐹, they should be measured on the raw data for each single
instance before the analysis begin, so to produce a new data matrix 𝑋 ∈ 𝐸with domain 𝐸 = 𝐷∪𝐹
of size 𝑛 × (𝑝 + 𝑞 + 𝑟). In theory features 𝐹 could also be derived from the original features, but
feature extraction techniques hinder precisely the interpretability of the original features, and
build new features dependent from the original, so this option will not be considered in the
following.

• Case 1: if the required interpretable features are disjoint from the original features, then
𝑞 = 0 and the induced model should be built on the matrix 𝑋 ∈ 𝐹 of size 𝑛 × 𝑟;

• Case 2: if the required interpretable features overlap with the original features, then the
induced model should be built on the matrix 𝑋 ⊂ 𝐸 of size 𝑛 × (𝑞 + 𝑟);

• Case 3: if the required interpretable features are a subset of the original features, then the
induced model should be built on the matrix 𝑋 ⊂ 𝐷 of size 𝑛 × 𝑞.

• Case 4: if the required interpretable features coincide with the original features, then the
induced model should be built on the matrix 𝑋 ∈ 𝐷 of size 𝑛 × (𝑝 + 𝑞).

Only in the last two cases the raw data should not be processed again, and when they are not
available, only the last two cases are viable.

In case 1, let 𝑥𝑖 be a single instance of the domain 𝐷 to be explained, 𝜋(𝑥𝑖) its neighborhood in
𝐷 and 𝑙𝑖 the prediction that model 𝑚 assigns to it, given a disjoint set of interpretable features 𝐹,
𝑓𝑖 be the value that instance 𝑥𝑖 has in the interpretable feature space and 𝜌(𝑓𝑖) its neighborhood
in this feature space. As there is not an explicit mapping between 𝐷 and 𝐹, and much less a
continuous linear mapping, closeness is not preserved and 𝜋𝑥𝑖 does not correspond to 𝜌(𝑓𝑖), in
other terms the set of neighbors of instance 𝑖 in 𝐷 does not match the set of its neighbors in
𝐹. The local behavior of any model around 𝑓𝑖 will be unrelated to the behavior of any model
around 𝑥𝑖, as the set of neighbors is different.

In case 2, the set of actual neighbors is determined by the dominating components between
the 𝑞 original interpretable features and the 𝑟 added interpretable features. In case 3, the problem



remains in its original domain but reduced in the interpretable feature space. In case 4, no
simplification has been operated.

4.2. Local Induced models

One of the popular model-agnostic explainability models that uses a local induced model 𝑖𝑚 is
called LIME [4] and has spawned many variations [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. What
LIME and its variations produce is a pointwise explanation, that is an explanation that is valid
for the prediction of a single instance 𝑖 from model 𝑚.

Called 𝑁𝑖 the set of neighbors of instance 𝑖 in the interpretable feature space and 𝑛𝑗 ∈ 𝑁𝑖
its generic neighbor, LIME trains a local model 𝑖𝑚 such that the training data are the pairs
(𝑛𝑗, 𝑙𝑗), 𝑛𝑗 ∈ 𝑁𝑖, where labels 𝑙𝑗 are obtained from 𝑚. Labels are necessarily obtained passing to 𝑚
the original and complete data vector 𝑥𝑗, but four cases should be distinguished:

• Case 1: if the required interpretable features are disjoint from the original features, there
is not an unique, easy or efficient way to find the 𝑥𝑗 corresponding to the 𝑛𝑗 neighbors.
This is doable only if the raw data are available and processed beforehand so that a new
data matrix 𝑋 ⊂ 𝐸 of size 𝑛 × 𝑟 is built on the same instances 𝑖 represented in 𝑋.

• Case 2: if the required interpretable features overlap with the original features, then again
raw data should be available and need preprocessing in order to have a new data matrix
𝑋 ⊂ 𝐸 of size 𝑛 × (𝑝 + 𝑟) is built on the same instances 𝑖 represented in 𝑋

• Case 3: if the required interpretable features are a subset of the original features or
coincide with them, then raw data are not required, they need no preprocessing and labels
are obtained from the complete 𝑥𝑗.

• Case 4: if the required interpretable features coincide with the original features, then raw
data are not required, they need no preprocessing and labels are obtained straightforwardly
from the 𝑥𝑗.

In LIME the explanations are binary vectors that represent the presence/absence of inter-
pretable features, the neighbors are found by random perturbation of 𝑥𝑖, and the considered
family of models is sparse linear models of limited complexity. In case 3 and 4, LIME reduces to
a pointwise feature selection technique, giving as explanations the best scoring input features
that determined prediction 𝑙𝑗.

5. Trust and post-hoc local models

An human evaluator would not understand or accept a model that gives divergent explanations
for very close instances in 𝐷, or different explanations for the same instance 𝑥𝑖; he would be
fooled by plausibility instead of faithfulness, and would look for oversimplification even when
it is not possible because the problem requires necessarily a complex model. The authors in [4]
actually warn the readers about its unsuitability in difficult regions or with very hard problems,
but that’s exactly the realm of deep learning, where explainability is required the most.

A serious conundrum is the validation of an explanation in absence of a ground truth [17].
As there is not a “true” explanation to be targeted, the validation of the model can only be based



on the coherence of the explanation itself, on its local extension and on other common-sense
related properties. A panel of human experts cannot be the solution and and cannot be invoked
every time an explanation is needed. As the final purpose of explainability concerns gaining
trust, the stability and a certain extended local validity of an induced model (not pointwise) is
to be considered the most desirable property of an explanation. Called this robustness (there is
no agreement on term definitions in the literature), is its lack that seriously hinders the trust of
humans.

5.1. Some remarks on drawbacks of local explanations

First of all, the choice of the interpretable features is highly subjective: it depends on the context,
the domain, the targeted experts, the purpose of the model and the time available to review the
explanation. It is easy to imagine different explanations for the same instance 𝑥𝑖 and model 𝑚
choosing a different set of features 𝐹. In this new Interpretable Feature Selection (IFS) problem —
where features are scored for interpretability instead of importance and where the criterium to
measure a feature interpretability is both qualitative and subjective — the neglected risk is that
the most appealing and credible features may be preferred to the most faithful and accurate ones.
As human judgment is necessarily biased, a model designer will necessarily choose explainable
features favoring his points of views and ultimately propagating his biases. Even worse, the
risk that misleading explanation can be built by purpose by an attacker following the bias of an
human evaluator to stole his trust in the model and pilot his decisions must be seriously taken
into account [18].

Second, a point-wise explanation, only valid for a single instance 𝑥𝑖, does not generalize. An
human evaluator may well find obnoxious and confusing that two arbitrarily close point in 𝐷
may end up with completely different explanations in 𝐹. This can be due to 𝑥𝑖 being actually
close to the boundary of a class, or can be due to local variability of the induced model in a
tangled area. Even if LIME takes into account locality in 𝐷 weighting the instances 𝑛𝑗 by the
closeness of their corresponding 𝑥𝑗 to 𝑥𝑖 in 𝐷, it is 𝜌(𝑓𝑖) that is being explored, not 𝜋(𝑥𝑖). It must
be stressed that the closeness relation is not kept changing the feature space and even if the
model is locally faithful in 𝜌(𝑓𝑖), it is not a local model at all with respect to 𝐷, if the interpretable
features are not a subset of the original ones. If they are, then it reduces to a pointwise feature
selection. By consequence, uniformly sampling 𝜌(𝑓𝑖) not only does not guarantees an uniform
coverage of 𝜋(𝑥𝑖) in general, but it can even create an imbalanced training set (𝑛𝑗, 𝑙𝑗), 𝑛 ∈ 𝑁,
with all the nefarious consequences on training it implies. The variable density of data among
regions can produce some model estimates based on very few actual neighbors and hence highly
unreliable. The less dense is the region, the most unreliable is the explanation. The uncertainty
of explanations, the inference of causal relationship among explanations and the dependence
among interpretable features remain largely unaddressed issues [19, 20].

Third, the 𝑙𝑗 come from model 𝑚, they are predicted values, and hence they are not 100% sure.
This means that in regions where the model is less accurate the explanation for an instance may
be plausible but referred to a wrongly labeled instance (explanation for wrongly labeled data);
or the explanation may be wrong because the induced model is trained on wrongly labeled data
surrounding a correctly labeled instance (wrong explanation); or both (wrong explanation for
wrongly labeled data). The hardest is the instance to classify, the most unreliable (and sought



after) is its explanation.
Fourth, stability. Being based on random perturbations or sampling, LIME is not deterministic

and the explanation generated running consecutively two or more times the algorithm are
different. A minimum amount of variability is to be considered normal, but slightly more is
enough to undermines the trust on the explanation by the human evaluator. The authors in [5]
addressed this issue, but increasing the risk unreliable explanations in low density neighborhoods
(only the original data are sampled). Authors in [16] utilizes a hypothesis testing framework to
determine the number of synthetic data that guarantees stability of the resulting explanation
and use synthetic data to obtain better explanations. In general the stability issue is the most
discussed in the literature [5, 9, 20, 21, 22].

Fifth, spuriousness. The general risk in the construction of an induced model with signifi-
cantly minor expressive power to figure out the behavior of a more complex model is that the
explanations could be completely spurious and have no real connection to the model. Having
by chance matching subclasses on the explainable features in training data, for examples all
socks are red, and all trousers are blue, the explanation that the sea is a trouser because it
is blue may appear perfectly plausible and there is no formal method to discard it. It is like
trying to approximate a 𝑝-dimensional hyperplane with a bunch of lines in a different space,
where the lines are drawn with sparse random sampling on predicted data, and calling this lines
”explanations”. Please see [23] for an insight.

The side effect of all these issues is loosing trust. Unfortunately the boundary regions are
likely to contain the most difficult and interesting instances to explain, the ones where the
explanations are needed the most. Their explanations come from induced models trained on
the most uncertain and variable data predictions, with the most unstable, hardly generalizable,
subjective and unreliable results.

6. Conclusions

Post hoc local models are becoming popular as additional tools to evaluate the results of black-box
models and to provide explanations of the predictions they give. Notwithstanding some success
in producing plausible explanations, the lack of expressive power and generalization ability
of the induced local models, together with the pointwise, uncertain, unstable, unreliable and
possibly unfaithful nature of the generated explanations, not neglecting the bias in the choice of
the features to be considered as valid, engender serious concerns about the suitability of post hoc
local models in case of deep or heavily overparametrized complex models. While a step forward
would certainly be to use fuzzy variables and trying to learn non-local hierarchical cause-effect
relationships, the key to understand at first glance if simplification is really obtainable cannot
skip the evaluation of the Intrinsic Dimension of the problem.
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