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Abstract

In this work we present a new method applied
to a novel task: Scene Segmentation. This work
is done in the context of the Shared Task on
Scene Segmentation (STSS). We propose the
Embedding Delta signal as a novel method for
both scene segmentation and topic segmenta-
tion. This delta signal represents the strength
of the current change in context at any given
point in a document. It is computed with a
sliding window method, comparing cluster as-
signments of word embeddings in both halves
of the sliding window using the cosine distance.
Scene changes are found by searching for local
maxima in the signal. We determine the type
of the scene with a simple SVM approach. Hy-
perparameter search and SVM training is done
on the 20 annotated German dime novels pro-
vided by the STSS organizers. The approach
is then evaluated using both the per-sentence
F1 score from the official STSS evaluation as
well as the intersection over union of predicted
and ground truth scenes. While showing low
F1 scores of 0.02 and 0.04 for the tracks, we
report an overlap of detected and ground truth
scenes of 38% in both tracks.

1 Introduction

Narrative texts can be divided into different scenes.
This task, called scene segmentation, is useful for
analyzing narrative texts. In addition to the existing
task of topic segmentation, scenes are internally
consistent not only with the topic or action; also
the story time and the discourse time during a scene
are similar, additionally the space and the character
constellation are internally consistent (Zehe et al.,
2021a). While there exist approaches for the related
field of topic segmentation, scene segmentation is
a novel task. In this work, we present a method to
approach this task in the scope of the Shared Task
on Scene Segmentation (STSS) (Zehe et al., 2021b).

In addition to the direct benefits of automatically
detecting scenes, which is of use for the analysis of
texts, we see the search for anomalies in a narrative
text as another application for scene segmentation.
Since anomalies can be seen as a deviation from
a homogenous context, the division of a narrative
text into scenes can be used to provide internally
homogeneous parts for the anomaly detection. One
example for such an anomaly detection method is
the MDI algorithm (Barz et al., 2019), which is
able to detect anomalous intervals which deviate
from the rest of the data in a given time series.

We present a method developed to provide a text
segmentation and a simple kernel SVM approach
to classify these segments as scenes or non-scenes.
The segmentation method is a signal which pro-
vides a numerical value that represents the strength
of the context change at any given sentence. It is
inspired by the ideas of Burrows’ Delta as well as
topic segmentation methods like TopicTiling and
TextTiling. We apply this method to the novel task
of scene segmentation. The training data provided
by the STSS organizers consists of 20 annotated
German dime novels. An overview of the method
is given in Figure 1.

2 Related Work

Scene segmentation is a novel task (Zehe et al.,
2021a). However, there exists literature on topic
segmentation and other related stylometric ap-
proaches, some of which are discussed below.
The basic idea of this work goes back to Bur-
row’s Delta (Burrows, 2002), where the authors use
frequency histograms of the most common words
in a corpus to compare documents. This approach
is common in the field of authorship attribution,
since it measures the over- and under-usage of cer-
tain common words in a given document. However,
since we want to measure the over- and under-usage
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Figure 1: Overview of the document segmenting pro-
cess.

not of certain words but instead of certain concepts,
we compare the cluster assignment histograms of
the word embeddings of a document instead. The
most promising distance function for the Burrows’
Delta is the cosine distance (Evert et al., 2017).

Another influence for our work was topic seg-
mentation, which is closely related to topic mod-
elling. A basic algorithm for topic segmentation is
TextTiling (Hearst, 1997), which is used to segment
a text into different pieces. Since term repetition
is a strong indicator of topic cohesion (Halliday
and Hasan, 1976), this algorithm compares adja-
cent paragraphs based on repetitions of contained
words. The similarity score is computed based on
the cosine distance between frequencies of previ-
ously detected items. In this, it shows similarities
to Burrows’ Delta.

In contrast to the more basic TextTiling, Topic-
Tiling makes use of an LDA topic modelling ap-
proach (Riedl and Biemann, 2012). This method
computes a coherence score between two adjacent
sentences, given two windows containing a num-
ber of sentences of a fixed window size before and
after the given sentence transition. The score is
computed based on the cosine distance between the
frequencies of the topics in the two windows.

A more modern approach is to incorporate word
embeddings like Word2vec (Mikolov et al., 2013)
into the topic modelling. Esposito et al. (2016)
show that the use of word embeddings can improve
the topic modelling capabilities of a system.

3 System Description

In this section, we describe how our approach to
scene segmentation works. We propose a system to

23

find change points inside of a text. Change points
are points which divide a signal or other data in a
way, such that the data before the change point dif-
fers from the data after the change point according
to a defined criterion. In our task, we want to find
points where the frequency of different concepts
differs before and after the point. To achieve this,
we move a sliding window over the text and com-
pute the distance between representations of the
first and of the second half of the window. In our
application the window is defined for every point
between two sentences in the text as a fixed number
of sentences before and after this point. For every
point between two sentences a numerical value is
computed, which results in a signal indicating the
strength of the change at any given point. We then
search for peaks in this signal as those indicate
the points with the strongest change. Peaks in our
application means prominent local maxima in the
signal. These points should be located between two
scenes with different content. Afterwards, we use
an SVM to distinguish the proposed parts between
the peaks between scenes and non-scenes.

3.1 Embedding Delta Signal

The idea for the Embedding Delta signal is in-
spired by methods like the aforementioned Bur-
rows’ Delta, TextTiling, and TopicTiling. Instead
of histograms of frequent words we use a histogram
of word embedding cluster assignments to provide
the vectors for the Delta measure. A histogram in
our case is a vector, where each element of the vec-
tor represents the number of cluster assignments
for word embeddings occuring in a certain part of
a text.

The first step to create an Embedding Delta sig-
nal for a document is to compute the word em-
beddings (Bojanowski et al., 2017) for every word
in the document. Then we use the k-means algo-
rithm (Lloyd, 1982) to find clusters in the word
embeddings of the document. For normalization
in a later stage, we create a normalization vector
Unorm Dy computing the cluster assignment his-
togram hgocyment Of the word embeddings of every
word in the document, and normalize it by dividing
it by its L2 norm, as shown in Equation 1.

hdocument

Unorm =

ey

‘ |hdocument ‘ |

To generate the signal itself, we move a sliding
window over the document, such that for every sen-
tence ¢ the window is centered on the beginning of
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Figure 2: Sliding window generating the change signal.

the sentence. The sliding window contains a fixed
number of sentences before and after the current
position in its left and its right half. The number of
sentences is a hyperparameter that has to be chosen
for the application of the method. We then com-
pute the histogram of cluster assignments v, for
the word embeddings of both the content of the first
half and of the second half of the sliding window.
In the next step, we divide both histogram vectors
vy, by their L2 norm and substract the normaliza-
tion vector as defined in Equation 2. The resulting
vector is named w; for the left side of the sliding
window and w,. for the right side of the sliding win-
dow. In Equation 2 w can represent either w; or
Wy

Up,
w = —
[[onl|
We define the Embedding Delta signal A, as
the cosine distance between the normalized vectors

of the first half and the second half of the sliding
window as shown in Equation 3.

2)

— Unorm

Ae(i) = disteos(wi (i), wy(3)) 3)

Consequently, peaks in the Embedding Delta sig-
nal A, are considered scene changes. The peaks
can be chosen by two different methods: The first
way is to select all relative local maxima of the
score, using a value called order to determine the
number of points on either side of the potential
local maximum that will be considered for compar-
ison. The other way to select peaks is to use all
local maxima whose value is greater than a certain
threshold. The threshold for the second approach is
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p + 5 with 1 being the mean and o being the stan-
dard deviation of the signal, similar to TopicTiling
and TextTiling.

3.2 Scene Type SVM

Given the change points from the previous step,
we decide whether the part between two change
points belongs to the scene category or to the non-
scene category. For this, we train a Support Vector
Machine (SVM) with an RBF kernel on the training
data provided by the STSS. The features for the
SVM comprise the mean number of characters of
a sentence in a part, the standard deviation of the
number of characters of the sentences, the number
of characters in the whole part, and the number of
sentences in the scene.

3.3 Additional Evaluation

The official STSS evaluation calculates the F1
scores for all correctly detected labels on a per-
sentence basis: Scene-Scene, Scene-Nonscene, and
Nonscene-Scene. This implies that a result where
every part detection would be off by one sentence,
the approach would have a F1 score of 0, even if
most of the ground truth parts and detected parts
overlap.

However, when scene segmentation is applied to
the field of anomaly detection, also scene predic-
tions are interesting, where the ground truth seg-
ments and the predicted segments mostly overlap,
even if the borders are not exactly at the same place.
To evaluate this, we also compute the intersection
over union (loU).

For every ground truth part we find the detected
part with the biggest overlap and assign it to the



ground truth part if it has not been assigned yet. We
then add the length of all the overlapping regions
and normalize them by the total length of the text,
resulting in an intersection over union score value
for the document. This score reaches its highest
possible value when the ground truth parts and
detected parts align perfectly. However, it does not
take the distinction into scenes and non-scenes into
account.

4 Experiments

In this section, we describe the exact experiments
we carried out. We programmed them in python,
using the packages numpy (Harris et al., 2020),
scipy (Virtanen et al., 2020), scikit-learn (Pe-
dregosa et al., 2011), and spaCy (Honnibal et al.,
2020). The word vectors were obtained with the
de_core_news_lg model from spaCy. The training
and hyperparameter search was done on the 20 Ger-
man annotated dime novels provided by the STSS
organizers. We provide the source code' for the
experiments.

4.1 Hyperparameter Search By F1 Score

Firstly, we searched for the parameters which re-
sulted in the best F1 score for the STSS training
data using the STSS evaluation script. For this, we
tried window sizes of 15, 25, 35, and 50 sentences
for both of the window halves. Since previous eval-
uations showed the best results in this magnitude,
we tried a number of 500 and /000 clusters for the
k-means model. The model was fitted with a maxi-
mum of 500 iterations to ensure convergence. The
tested filter sizes for the smoothing were 5, 10, 20,
30, 40, and 50. As order for the search for relative
maxima we tried /, 10, 20, 30, 40, and 50 points.
In this step, all parts between detected peaks were
considered as scenes.

Table 1 shows the hyperparameter configurations
that resulted in the best F1 scores. The 15 men-
tioned configurations all had an F1 score of 0.02,
while all other combinations had scores of 0.01 or
0. Since these results were non-conclusive, we con-
ducted an additional experiment with a different
evaluation approach.

4.2 Final Hyperparameter Selection By IoU

After the pre-selection of hyperparameters using
the F1 score, the best hyperparameter set was cho-

"https://github.com/cviena/
embedding-delta
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window size | clusters | kernel size | order
15 500 5 0
35 500 5 10
50 500 10 0
25 1000 10 0
25 1000 5 20
15 500 20 0
25 500 5 20
15 1000 10 0
50 500 5 20
25 1000 10 0
25 500 5 10
50 500 5 10
50 500 5 0
25 1000 10 10
35 500 5 0

Table 1: This table shows the best parameters from the
hyperparameter search. They all result in an F1 score
of 0.02. An order value of 0 represents the search non-
relative maxima in the score.

sen by computing the intersection over union. The
bold line in Table 1 shows the hyperparameter set
with the highest IoU of 0.42.

Figure 3 shows an example Embedding Delta
signal with the ground truth changes marked. We
created this signal with the chosen hyperparame-
ters from the previous step. It can be seen that the
changes are in many cases at the peaks of the signal
or close to them. However, for the per-sentence-
evaluation of scene changes, the peaks must be
at the exact locations of the ground truth scene
changes. It can also be noticed that there are a
few prominent peaks which do not have a corre-
sponding ground truth scene change, and that some
scene changes only have a relatively low score and
even lie at local minima. If two adjacent text seg-
ments have very similar content and differ only in,
e.g., the time, this method will produce a low Em-
bedding Delta signal value and cannot distinguish
between the segments.

4.3 SVM training

While the main part of our approach is the detec-
tion of change points and thus boundaries of scenes
or scene-like parts in a document, we also wanted
to approach the problem of distinguishing between
the labels of scene and non-scene. As described
above, we used a kernel SVM to detect the segment
type. We used a 10-fold crossvalidation to deter-
mine the best C hyperparamter with the highest
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Figure 3: An example of the generated Embedding Delta signal. The scene changes are marked in yellow.

‘ micro avg. F1 score ‘ IoU
track 1 0.02 0.38 £0.02
track 2 0.04 0.38 £0.01

Table 2: Results table for the test tracks. Intersection
over union (IoU) is presented with the standard devia-
tion over the documents.

F1 score. We tested 0.001, 0.1, 1, 10, 100, 1,000,
10,000, and 100,000 as values for regularization pa-
rameter C and they all resulted in an accuracy score
of 0.96 or 0.97 for this binary classification task.
We chose 100000 as value for C. While the score
for this value was only 0.96, since all values had
a similar score, we instead observed how well it
could separate the classes when fitted and tested on
the whole data. With a minimal worsening of scene
accuracy from 1.0 to 0.997 for this parameter, an
improvement in accuracy from 0.0 to 0.508 for the
non-scene class was observed for this C value. The
resulting SVM model was then used in the official
evaluation.

4.4 Results

The official STSS evaluation was done on the de-
scribed system. The system was tested on two
different tasks: Task 1 consists of 4 annotated dime
novels, task 2 consists of 2 annotated high litera-
ture texts. Additionally to the official evaluation,
we computed the intersection over union for the
provided results. Table 2 shows the results of the
evaluation. While the F1 scores of both tracks dif-
fer, the IoU values are similar to each other.
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5 Conclusion

In this work, we present an approach to the novel
task of scene segmentation. The approach is influ-
enced by methods from both the fields of author-
ship attribution as well as topic segmentation. We
use a sliding window approach based on clusters of
word embeddings to compute the cosine distance of
the sentences surrounding a certain point. Thus, we
generate a signal and from that a score to find scene
changes. We can then group these found parts into
scenes and non-scenes using a kernel SVM.

The results show on the one hand that the general
approach is feasible to find the rough scene bound-
aries, as indicated by the high intersection over
union. On the other hand, we see that the sentence-
level F1 scores are still very low. This shows that
even when the general position and lengths of parts
of a documents are known, the exact locations of
the boundaries are hard to find with our method.

However, the information that can be extracted
with our method can still be useful for the analysis
of narrative texts, as it holds data about the length
and number of scenes in a text. Also for appli-
cations where only a rough knowledge of scene
boundaries is important, the scenes detected by our
method can be of use. One example for this can be
the field of anomaly detection.

6 Further Work

There are multiple possibilities to further improve
the approach described in this work. First, the
creation of the two vectors in the sliding windows
can be improved upon. One possibility would be
to use fisher vector encoding (Sanchez et al., 2013)



instead of cluster assignments, which can include
more information than a simple histogram.

Our current approach also does not use named
entity recognition or similar methods. We have
not found a useful way to incorporate this into
our approach, but the presence of different named
entities like persons or locations can on the one
hand indicate a change point in the text, and on
the other hand prove useful to determine whether
a part is a scene or a non-scene. Another useful
addition to the vectors could be features based on
the verb tenses or the amount of direct speech.

Since our approach is based on a form of change
point detection, also other methods from this field
can be used. While we employ a sliding window
approach, other change point detection methods
like binary segmentation or bottom-up segmenta-
tion are also possible approaches (Truong et al.,
2020). These search functions can be used with
various cost functions besides the cosine distance,
e.g., probability-based maximum likelihood esti-
mations.

Finally, the main part of our approach - the Em-
bedding Delta signal - is an unsupervised approach
once hyperparameters have been chosen. However,
the signal represents extracted information from the
text which could in itself be used in an supervised
model, like a conditional random field approach
or another model from the field of machine learn-
ing/deep learning.
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