
A Bayesian Neural Model for Documents’ Relevance
Estimation

Alberto Purpura1, Gian Antonio Susto1

1Department of Information Engineering, University of Padova, Padova, Italy

Abstract
We propose QLFusion, an approach based on Quantification Learning (QL) to improve rank fusion performance in Information
Retrieval. We first introduce a QL model based on a Bayesian Neural Network to estimate the proportion of relevant documents
in a ranked list. The proposed model is trained using a probabilistic loss function formulated specifically for this QL task.
Next, we describe a rank fusion algorithm which leverages on this information to merge multiple ranked lists. We compare our
approach to various popular rank fusion baselines on multiple collections, showing how the proposed approach outperforms the
baselines in several evaluation measures.

Keywords
bayesian neural models, quantification learning, information retrieval

1. Introduction
Quantification Learning (QL) is a Machine Learning task
that can be defined as follows. Given a labeled training
set, induce a quantifier that takes an unlabelled test set
as input and returns its best estimate of the class distribu-
tion [1]. QL has been studied for prevalence estimation
in the medical domain (i.e., to estimate the number of
cases of a condition at a particular point in time) in [2],
in-text classification in [1], and for sentiment analysis
in [3] (more in Section 2).

However, the application of QL to traditional Informa-
tion Retrieval (IR) tasks is still very limited [4]. This is
likely due to the formulation of the ranking problem in
IR, and to the lack of large training annotated datasets –
which are starting to become available only recently with
the increasing interest towards Neural IR. In this paper,
we propose a QL Bayesian Neural Model (BNM) called
QLFusion for the rank fusion task in IR. This task con-
sists in combining items from multiple ranked lists into
one, maximizing the relevance of the documents at the
top. Over the years, other rank fusion strategies explored
different probabilistic solutions to the problem; however,
these solutions generally employ limited modeling strate-
gies [5] or methods not flexible enough to adapt to the
large variance introduced by the different query topics [6].
To overcome these limitations we propose to employ a
shallow BNM trained with a probabilistic loss function
which maximize the representation and generalization
power of the model, limiting the number of parameters

DESIRES 2021 – 2nd International Conference on Design of
Experimental Search Information REtrieval Systems, September
15–18, 2021, Padua, Italy
" purpuraa@dei.unipd.it (A. Purpura); sustogia@dei.unipd.it
(G. A. Susto)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

to be learnt and the need for large training datasets com-
pared to an equivalent traditional neural model. BNMs
are similar to traditional neural networks where the model
weights are probability distributions instead of scalar val-
ues [7]. For this reason, a BNM can be compared to
an ensemble of conventional neural networks in which
weights are sampled from the weights distributions that
our model learns [8]. We interpret the output of QLFu-
sion as a probability value 𝑝 indicating the likelihood of
sampling a relevant document from a ranking list after 𝑛
attempts. We then identify a Binomial distribution with
parameters 𝑝 and 𝑛, and train a QL model to minimize
the Kullback–Leibler (KL)-divergence between the distri-
bution identified by the QLFusion model output and the
correct probability value computed using the relevance
judgments – i.e., the ground truth. To minimize the need
for training data, our model employs a Bayesian Neural
Network (BNN) only as its output layer, i.e., a neural net-
work with a prior distribution on its weights [7]. The use
of these models in real-world scenarios has been recently
made possible thanks to the theoretical advancements
in the approximation of the sampling process from the
learned weights distributions, which is necessary to train
them [9, 10]. We then describe (Section 3) a rank fusion
algorithm that leverages the information provided by the
proposed model. In our evaluation (Section 4), we show
how a BNM is superior to a deterministic one and to other
more straightforward linear and non-linear machine learn-
ing models for the QL task at hand. Finally, we evaluate
the quality of the proposed QL approach, training objec-
tive, and rank fusion algorithm in the rank fusion task,
comparing it to other popular rank fusion algorithms such
as CombSum, CombMNZ [11], META [5] and variants of
our model on three different datasets – TREC-3 [12] and
TREC-5 [13] – widely-used for testing rank-fusion meth-
ods, and CLEF-2018 [14], a recent dataset whose goal is

mailto:purpuraa@dei.unipd.it
mailto:sustogia@dei.unipd.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

to maximize recall in the context of medical reviews.
The paper is organized as follows: Section 2 presents

related works, Section 3 describes the proposed QL model
and our rank fusion algorithm, Section 4 reports the ex-
perimental results and Section 5 concludes the paper.

2. Related Work
QL addresses the problem of estimating the number of pos-
itives in a set of data points, given a training set to learn to
distinguish positives from negatives [4, 1]. However, this
estimation is not computed by a classic classification-and-
count approach, but relies on a model trained to predict
the count skipping the classification step. This solution is
particularly useful when: (i) the distribution of positives in
the training set is different from the one in the test set, (ii)
when acquiring training data is expensive, or (iii) when
there are too few positive examples to learn an accurate
classification model [1]. This is often the case in ad-hoc
retrieval, where the problem of sparsity in the training
data often limits the performance of machine learning ap-
proaches [15, 16]. For this reason, we investigate on how
we can benefit from learning a model able to only quantify
the number of relevant documents to a particular query in
a collection without learning an accurate relevance model.
The IR task that we choose is rank fusion, where the goal
is to merge multiple ranked lists into one, maximizing the
relevance of the documents at the top. We compare our
approach to two classic and still competitive baselines:
CombSum and CombMNZ [11]. Under CombSum, a
document’s score is calculated by adding the normalized
scores returned by the individual input models. Regarding
CombMNZ, a document’s score is found by multiplying
its CombSum score by the number of non-zero relevance
scores that it received in the ranked lists to fuse. Our
QLFusion approach is inspired from previous works in
the rank fusion domain such as the linear combination
model proposed by [17], where document scores are re-
scaled before being combined using different coefficients
for each query. Our probabilistic approach to this prob-
lem is also shared by previous works in the rank fusion
domain. For instance, [5] shows how documents’ rele-
vance scores associated to a query can be modeled with
known distributions. Their main contribution is to show
how Gaussian or Exponential distributions can fit the dis-
tribution of relevance scores of relevant and non-relevant
documents, respectively. They then use this information
to compute the relevance probability of each item in a
ranked list and use it to combine the documents through
a rank fusion algorithm (META). With a similar goal in
mind but employing the quantification learning paradigm,
the proposed QLFusion model directly computes these
coefficients and then uses them to fuse multiple ranking
lists into one.

3. Proposed Approach
In this section, we describe the BNM, the training objec-
tive and rank fusion algorithm that we propose. After-
wards, we will show how the proposed QL model can be
employed to perform rank fusion and to this end we will
present our QLFusion algorithm.

Quantification Learning Model. Given a user
query and a document ranking returned by a retrieval
model, the proposed QLFusion algorithm predicts the
proportion of relevant documents in it considering their
relevance scores. Indeed, the sequence of scores assigned
to different documents by a retrieval model can be a proxy
for the number/proportion of relevant documents retrieved.
In Figure 1, we report the sequence of normalized rele-
vance scores associated to the top 25 documents in three
random topics by one of the runs submitted to TREC-3
achieving the best MAP. As observed by [6] and [5], the
distribution of relevant documents in a ranked list can be
estimated from the entire set of relevance scores. How-
ever, the number of retrieved relevant documents varies
widely from topic to topic. For this reason, to estimate
the proportion of relevant documents in different ranked
lists we need a model able to adapt to each retrieval model
that computed them and to the different characteristics of
each topic. Following these observations, we developed
a QL model to estimate the quality of a ranked list in
terms of the proportion of relevant documents contained
in its top-𝑘 positions. Our QL approach consists of a
shallow neural model with one feed-forward hidden layer
and a Bayesian neural output layer. Before feeding the
data into the hidden layer of our model, we first rescale
them within each batch to normalize the feature values
independently [18]. Following [18], the transformation
that we apply to each feature 𝑖 is 𝑥𝑖̂ =

𝑔𝑖
𝜎𝑖
(𝑥𝑖 − 𝜇𝑖) + 𝑏𝑖,

where 𝑥𝑖 are the features of the inputs to the normalization
layer for each item in the input batch, 𝑔𝑖, 𝜎𝑖, 𝜇𝑖 and 𝑏𝑖
are respectively the gain term, standard deviation, mean
and bias of the layer, out of which 𝑔𝑖 and 𝑏𝑖 are parame-
ters learned by the model. After feeding the inputs to the
hidden layer, we apply a sigmoid activation function to
the layer outputs. The output layer that we employ is a
Bayesian Neural Layer (BNL) [19]. A BNL is similar to
a traditional neural network, where the weights of each
layer are probability distributions instead of scalar values.
We realized this layer employing the flipout technique,
an efficient method for decorrelating the gradients within
a mini-batch by implicitly sampling pseudo-independent
weight perturbations for each example [20]. The em-
ployed weights priors are Gaussian. During inference
and training, we sample a value for each of the network
weights and we use it to compute the final output of the
network. More precisely, if we represent the last layer of
our model as the function 𝑓(𝑥,𝑊) – which receives an

Figure 1: Normalized relevance scores for the top-ranked 25 documents of three random topics of three random runs
submitted to TREC-3. Highlighted, the scores associated to relevant documents in the ranked lists.

input 𝑥 and is parametrized by the weights in 𝑊 – our
model samples the values of 𝑊 from a distribution 𝑞𝜃
parametrized by 𝜃. The network is trained to minimize the
expected loss E(𝑥,𝑦)∼𝐷, 𝑊∼𝑞𝜃 [ℒ(𝑓(𝑥,𝑊), 𝑦], where 𝐷
indicates the data distribution and ℒ our loss function.
The distribution of 𝑞𝜃 can be represented in terms of per-
turbations: 𝑊 = 𝑊+∆𝑊 , where 𝑊 indicates the mean
of the layer weights and ∆𝑊 is a stochastic perturbation.
In our case, the stochastic perturbation follows a Gaussian
distribution 𝑊𝑖𝑗 ∼ 𝒩 (𝑊𝑖,𝑗 , 𝜎

2
𝑖,𝑗) [20]. Thanks to these

unique characteristics, a BNM can be considered equiv-
alent to an ensemble of neural models where the weight
of each model are sampled from our learned distributions.
Hence, we leverage on the generalization power of ensem-
ble approaches while at the same time improving training
time and efficiency. We also apply a sigmoid activation
function to the outputs of this layer to keep them in the
[0-1] range. We train the proposed model in a supervised
fashion by minimizing the KL-divergence between the
Binomial distribution with probability equal to the model
output 𝑝̂ and the “true” proportion of relevant documents
– interpreted as a Binomial distribution as well – in the
input ranked list. The loss function formulation originates
from the idea to interpret the output of a QL model as the
proportion of successful attempts at sampling a relevant
document from an input ranking list of length 𝑛. Hence,
we train the model to minimize the KL-divergence be-
tween the Binomial distributions outputted by the model
and the correct probability value. Formally, if we con-
sider the true probability 𝑝 to sample a relevant document
from the input ranking list of length 𝑛 and our model
prediction 𝑝̂, we can identify two Binomial distributions:
𝑃 ∼ 𝐵(𝑝, 𝑛) and 𝑄 ∼ 𝐵(𝑝̂, 𝑛), respectively. The formu-
lation of the loss function follows from the definition of
KL-divergence between two discrete Binomial probability
distributions:

ℒ = 𝐷𝐾𝐿(𝑃 ||𝑄) =
∑︁
𝑥∈𝒟

𝑃 (𝑥) log

(︂
𝑃 (𝑥)

𝑄(𝑥)

)︂
(1)

=
𝑛∑︁

𝑘=0

(︃
𝑛

𝑘

)︃
𝑝𝑘(1− 𝑝)𝑛−𝑘 log

(︂
𝑝𝑘(1− 𝑝)𝑛−𝑘

𝑝̂𝑘(1− 𝑝̂)𝑛−𝑘

)︂
,

(2)

= log

(︂
𝑝

𝑝̂

)︂
𝑛𝑝+ log

(︂
1− 𝑝

1− 𝑝̂

)︂
𝑛(1− 𝑝). (3)

where the last equation follows from the definition of ex-
pected value of Binomial distributions with parameters
𝑝 and (1 − 𝑝). The loss function ℒ is differentiable be-
cause it is the sum of two differentiable and continuous
functions for 𝑝 and 𝑝̂ in the open (0, 1) interval. Note that
this training strategy is different from the intuition of [5],
who propose to fit a Gaussian distribution on the set of
relevance scores of relevant documents. Our goal is not to
learn how to fit the distribution of relevance scores but to
estimate the number of relevant documents using it as an
input. Our training objective allows the model to learn to
better generalize the information from the training data.
Indeed, the training labels are interpreted as a seed to com-
pute a Binomial distribution which is in turn compared
to the distribution obtained from the model outputs. Con-
sidering distributions instead of fixed ground truth labels
gives our model some slack during the training process
which should lead to an improvement of the performance
and a decrease of the model’s overfitting.

Quantification Learning-Based Rank Fusion
The rank fusion approach that we propose is an exten-
sion of the popular CombSum algorithm [11] whose input
is the set of document relevance scores assigned by dif-
ferent retrieval models. Then, given the relevance score 𝑠
associated to each document and the predicted proportion
of relevant documents in the ranked list 𝑝, we compute its
new score 𝑤 in the ranked list as: 𝑤 = 𝑠 · 𝑝. We experi-
mented with different ways of combining the information
provided by the QL model in the rank fusion algorithm
– such as convex combination of the QL coefficient and
the normalized document score or adopting the same strat-
egy as CombMNZ – but the differences were negligible
and we preferred the simpler formulation. Finally, we
combine the new document scores summing them.

Model P@5 Recall@5 nDCG@5 P@10 Recall@10 nDCG@10 P@20 Recall@20 nDCG@20

TREC-3

CombSum 0.8120 0.0429 0.8053 0.7680 0.0775 0.7774 0.7030 0.1331 0.7297
CombMNZ 0.8120 0.0429 0.8053 0.7680 0.0775 0.7774 0.7030 0.1331 0.7297
META 0.7600 0.0393 0.7652 0.7400 0.0718 0.7500 0.6810 0.1276 0.7056
QLFusion (LR) 0.6440 0.0325 0.6540 0.6060 0.0611 0.6236 0.5800 0.1082 0.6011
QLFusion (RF) 0.7960 0.0419 0.7917 0.7720 0.0795 0.7778 0.7040 0.1330 0.7287
QLFusion (proposed) 0.8160 0.0430 0.8090 0.7680 0.0772 0.7784 0.7050 0.1332 0.7316
QLFusion (det.) 0.8040 0.0426 0.8008 0.7660 0.0765 0.7764 0.7040 0.1331 0.7308

TREC-5

CombSum 0.6600 0.1251 0.6912 0.5720 0.1726 0.6377 0.4780 0.2240 0.5824
CombMNZ 0.6640 0.1252 0.6938 0.5740 0.1727 0.6393 0.4780 0.2227 0.5826
META 0.6360 0.1022 0.6546 0.5520 0.1406 0.6064 0.4970 0.2202 0.5837
QLFusion (LR) 0.3440 0.0303 0.3542 0.3020 0.0486 0.3230 0.2780 0.0782 0.3085
QLFusion (RF) 0.6520 0.1049 0.6942 0.5840 0.1535 0.6495 0.4830 0.2324 0.5928
QLFusion (proposed) 0.6720 0.1254 0.7143 0.5780 0.1730 0.6537 0.4870 0.2255 0.5969
QLFusion (det.) 0.6560 0.1250 0.6939 0.5740 0.1724 0.6426 0.4850 0.2254 0.5896

CLEF-2018

CombSum 0.6467 0.0673 0.6501 0.6367 0.1241 0.6418 0.6033 0.2305 0.6373
CombMNZ 0.6467 0.0673 0.6501 0.6367 0.1241 0.6418 0.6033 0.2305 0.6373
META 0.6467 0.0673 0.6501 0.6367 0.1241 0.6417 0.6067 0.2310 0.6394
QLFusion (LR) 0.6333 0.0667 0.6335 0.6167 0.1224 0.6213 0.5933 0.2285 0.6240
QLFusion (RF) 0.6333 0.0667 0.6456 0.6233 0.1255 0.6344 0.5967 0.2264 0.6328
QLFusion (proposed) 0.6667 0.0711 0.6628 0.6333 0.1205 0.6403 0.6033 0.2284 0.6368
QLFusion (det.) 0.6467 0.0673 0.6511 0.6367 0.1241 0.6426 0.6067 0.2307 0.6400

Table 1
Evaluation of QLFusion on different collections. We consider as baselines CombSum and CombMNZ and the
proposed fusion algorithm relying on the predictions of a Linear Regression model (LR), a Random Forest (RF) or of
a deterministic version of the proposed neural model (det.).

4. Experimental Results
We conduct our experiments on two widely-used ad-hoc
TREC collections in the rank fusion domain TREC-3 [12],
TREC-5 [13] and on the CLEF-2018 Technologically As-
sisted Reviews in Empirical Medicine (TAR) [14]. In
particular, the CLEF-2018 TAR task focused on maxi-
mizing recall. We consider the 6 runs with the highest
MAP submitted to each track and all of their topics. The
evaluation measures that we report in our experiments
are: P@{5, 10, 20}, Recall@{5, 10, 20} and nDCG@{5,
10, 20}. Also, since most of the relevant documents in a
ranked list will likely be at the top of it – as we can also
observe from the charts in Figure 1 – we only consider
the top 100 documents in each ranked list. We employ
10-Fold cross validation to train and evaluate our model,
reporting the averaged results over the 10 folds , i.e. we
divide the set of topics into 10 groups, train our model on
8 of them leaving one set for validation, and evaluate our
approach on the remaining one, we repeat this process 10
times. All the measures we report are averaged over the
10 folds after training a different model for each collection
and retrieval model. The learning rate and hidden layer
size used to train our model were 0.0005 and 32, for all
collections. The batch size was optimized automatically
according to the average performance of the model on the
validation sets of each collection considering values in the
range: [1, 2, 4, 8, 16]. We train our model for a maximum
of 500 epochs with early stopping with patience 20, and
evaluate it after each epoch on the validation set. For each
fold, we keep the model with the minimum mean absolute
error obtained on the validation set. Our implementation

of the model is publicly available online. 1

Rank Fusion. For this task, we merge the documents
from different ranked lists employing QLFusion, which
rescales the relevance scores of documents according to
the proportion of relevant documents predicted for each
ranking. The baselines that we consider are CombSum
and CombMNZ – two popular and still highly competitive
rank fusion approaches – META – a similar probabilistic
approach for rank fusion that we reimplemented – and
three variants of our QLFusion approach relying on dif-
ferent regression models such as a Linear Regressor (LR),
a Random Forest (RF) a standard neural model with the
same architecture and feature normalization strategy of
the proposed Bayesian neural one but using only deter-
ministic neural layers and the mean squared error as loss
function (det.). From the results in Table 1, we observe
that the proposed QLFusion algorithm combined with the
probabilistic QL model outperforms all the other baselines
in the majority of the evaluation measures on the TREC
experimental collections, while the deterministic variant
of our QLFusion approach is the best one overall on the
CLEF-2018 dataset. Interestingly, the performance of all
QLFusion variants on the CLEF-2018 collection is much
higher than on TREC ones – especially considering the
measures focusing on the top 5 and 10 items. We also
observe that the META algorithm is more competitive on
CLEF-2018 than on the other collections. This is likely
due to the different characteristics of the runs to merge,
which goal was to maximize recall instead of other rank-
ing metrics and therefore makes them more similar to our

1Link to the online repository: https://github.com/
albpurpura/QLFusion.

https://github.com/albpurpura/QLFusion
https://github.com/albpurpura/QLFusion

QLFusion model.

Collection Model Loss P@5 Recall@5 nDCG@5

TREC-3

QLFusion prob. proposed 0.8160 0.0430 0.8090
QLFusion det. proposed 0.8040 0.0426 0.8008
QLFusion prob. MSE 0.8160 0.0430 0.8090
QLFusion det. MSE 0.8040 0.0426 0.8008

TREC-5

QLFusion prob. proposed 0.6720 0.1254 0.7143
QLFusion det. proposed 0.6520 0.1248 0.6951
QLFusion prob. MSE 0.6640 0.1251 0.7134
QLFusion det. MSE 0.6560 0.1250 0.6939

CLEF-2018

QLFusion prob. proposed 0.6667 0.0711 0.6628
QLFusion det. proposed 0.6467 0.0673 0.6511
QLFusion prob. MSE 0.6667 0.0711 0.6628
QLFusion det. MSE 0.6467 0.0673 0.6511

Table 2
Evaluation of QLFusion with probabilistic and determinis-
tic variants of the model and loss function.

Model Optimization. From the results reported in Ta-
ble 2, we observe how the probabilistic neural model
(QLFusion prob.) outperforms, in most cases, its deter-
ministic variant (QLFusion det.) regardless of the chosen
loss function. However, the proposed probabilistic loss
gives the probabilistic model a sizeable advantage over its
variant trained with the MSE loss, especially on the TREC
collections. Also, the effect of the proposed loss function
on the deterministic QLFusion model is not as large as
on its probabilistic variant. Differently from the other
experiments, on the CLEF-2018 dataset we observe that
the effect of the different loss function used is negligible
across the model variants. If we consider the variance of
the models predictions – an indicator of how much our
models overfit or underfit the data – of the probabilistic
and deterministic QLFusion models with the two previous
loss functions variants, we notice that the probabilistic
loss favors a larger variance in the model’s predictions –
closer to the variance of the true proportions of relevant
documents in different queries – decreasing the tendency
to underfit the training data that we observed with the
deterministic model and/or MSE loss functions.

5. Conclusions
In this work, we proposed a Quantification Learning-
based approach for rank fusion (QLFusion). The model
relies on a Bayesian Neural Network (BNN) to predict
the number or relevant documents in a ranking list, an in-
formation that is then used to rescale the relevance scores
of documents in different ranked lists and fuse them. We
trained the proposed BNN using a custom probabilistic
loss function which allowed us to improve the general-
ization power of the model. The proposed approach out-
performed the considered baselines on three experimental
collections. In the future, we plan to investigate on new
features to add to our QLFusion approach to further im-
prove its performance.

Acknowledgments
Work supported by the ExaMode project, as part of the Eu-
ropean Union Horizon 2020 program under Grant Agree-
ment no. 825292.

References
[1] G. Forman, Counting positives accurately despite

inaccurate classification, in: Proc. of ECIR 2005,
Springer, 2005, pp. 564–575.

[2] A. Moreo, F. Sebastiani, Tutorial: Supervised Learn-
ing for Prevalence Estimation, in: Proc. of the 13th
International Conference on Flexible Query Answer-
ing Systems FQAS 2019, volume 11529 of Lecture
Notes in Computer Science, Springer, 2019, pp. 13–
17.

[3] W. Gao, F. Sebastiani, Tweet Sentiment: From Clas-
sification to Quantification, in: Proc. of the 2015
IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, ASONAM
’15, ACM, New York, NY, USA, 2015, pp. 97–104.

[4] P. González, A. Castaño, N. Chawla, J. Coz, A
review on quantification learning, ACM Computing
Surveys (CSUR) 50 (2017) 74.

[5] R. Manmatha, T. Rath, F. Feng, Modeling score
distributions for combining the outputs of search
engines, in: In Proc. of the 24th annual international
ACM SIGIR conference on Research and develop-
ment in information retrieval, 2001, pp. 267–275.

[6] D. Lillis, F. Toolan, R. Collier, J. Dunnion, Probfuse:
a probabilistic approach to data fusion, in: Proc. of
SIGIR 2006, 2006, pp. 139–146.

[7] R. Neal, Bayesian learning for neural networks, vol-
ume 118, Springer Science & Business Media, 2012.

[8] C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wier-
stra, Weight uncertainty in neural networks, arXiv
preprint arXiv:1505.05424 (2015).

[9] A. Balan, V. Rathod, K. Murphy, M. Welling,
Bayesian dark knowledge, in: Advances in Neural
Information Processing Systems, 2015, pp. 3438–
3446.

[10] A. Graves, Practical variational inference for neu-
ral networks, in: Advances in neural information
processing systems, 2011, pp. 2348–2356.

[11] J. Shaw, E. Fox, Combination of multiple searches,
in: Proc. TREC 1994, 1994, pp. 105–108.

[12] D. Harman, Overview of the third text retrieval con-
ference (TREC-3), 500, DIANE Publishing, 1995.

[13] D. Harman, Overview of the fifth text retrieval con-
ference (TREC-5), 1997.

[14] K. Evangelos, A. L. Li, D., R. Spijker, CLEF
2018 technologically assisted reviews in empirical

medicine overview, in: CEUR Workshop Proceed-
ings, volume 2125, 2018.

[15] J. Guo, Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani,
C. Wu, W. Croft, X. Cheng, A deep look into neural
ranking models for information retrieval, Informa-
tion Processing & Management (2019) 102067.

[16] S. Marchesin, A. Purpura, G. Silvello, Focal el-
ements of neural information retrieval models. an
outlook through a reproducibility study, Information
Processing & Management (2019) 102109.

[17] L. Si, J. Callan, Using sampled data and regression
to merge search engine results, in: Proc. of SIGIR
2002, 2002, pp. 19–26.

[18] J. Lei Ba, J. Kiros, G. Hinton, Layer normalization,
arXiv preprint arXiv:1607.06450 (2016).

[19] Y. Gal, Z. Ghahramani, Bayesian convolutional neu-
ral networks with bernoulli approximate variational
inference, arXiv preprint arXiv:1506.02158 (2015).

[20] Y. Wen, P. Vicol, J. Ba, D. Tran, R. Grosse, Flipout:
Efficient pseudo-independent weight perturbations
on mini-batches, arXiv preprint arXiv:1803.04386
(2018).

	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experimental Results
	5 Conclusions

