CEUR-WS.org/Vol-2895/paper02.pdf

Mathematical Formula Representation
via Tree Embeddings

Zichao Wang!, Andrew Lan?, and Richard Baraniuk!

'Rice University 2University of Massachusetts Amherst
{jzwang, richb}@rice.edu andrewlan@cs.umass.edu

Abstract. We propose a new framework for learning formula repre-
sentations using tree embeddings to facilitate search and similar content
retrieval in textbooks containing mathematical (and possibly other types
of) formula. By representing each symbolic formula (such as math equa-
tion) as an operator tree, we can explicitly capture its inherent structural
and semantic properties. Our framework consists of a tree encoder that
encodes the formula’s operator tree into a vector and a tree decoder that
generates a formula from a vector in operator tree format. To improve
the quality of formula tree generation, we develop a novel tree beam
search algorithm that is of independent scientific interest. We validate
our framework on a formula reconstruction task and a similar formula
retrieval task on a new real-world dataset of over 770k formulae collected
online. Our experimental results show that our framework significantly
outperforms various baselines.

1 Introduction

Recent years have seen increasing proliferation of mathematical language such
as equations and formulae. Table 1 shows a few examples of formulae not only
in mathematics but also in other scientific subjects that often appear in science,
technology, engineering, and math (STEM) textbooks.

A number of practical tasks have recently gained traction because of the
ubiquitous presence of mathematical language. For example, one common task is
similar formula retrieval, i.e., finding relevant formulae similar to a query formula
(e.g., [5]). This task arises in a wide range of scenarios, such as when students look
for relevant math content in a textbook when doing algebra homework. Another
common task is automatic formula generation, which arises in scenarios such as
formula auto-completion and math summary and headline generation [24]. Both
these tasks are potentially labor-intensive and time-consuming; an automatic
method that tackles these tasks would be of great benefit. In this work, we
focus on mathematical language processing (MLP), which involves the formula
representation problem, i.e., processing a formula into an appropriate format for
downstream tasks such as similar formula retrieval and formula generation.

Copyright (©) 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

2 Zichao Wang, Andrew Lan, and Richard Baraniuk

N = \‘05 _ 10g2 (Frequency of this item _)J (phySlCS)

Frequency of most common item

238U + SaNi — 3%2Ubn* — fission only (chemistry)

az® +br+c=0 (algebra)

Table 1: A few examples of mathematical language in our context.

formula operator tree list of nodes and positions node embeddings formula embedding

ORORQ@® -
o 9 9 9 9 00 m —
_ % —

b)
r=2r—4 —> -0,

0 n n i

(a) formula parsing

(c) one-hot encoding position embeddings

(b) depth first traversal (d) tree positional encoding

Fig. 1: Illustration of FORTE’s encoding process of a formula.

Existing research mostly focuses on either the retrieval or the generation task
but rarely both. In terms of formula retrieval, an emerging line of research ex-
plores the idea of symbolic tree representation. Indeed, mathematical formulae
are inherently hierarchical and tree structures are appropriate for organizing the
math symbols in a formula. Compared to representing a formula simply as a se-
quence of math symbols, the symbolic tree representation has the advantage to
encode both the semantics and the inherent hierarchical structure of a formula.
Similar to works in natural language processing (NLP) that leverage inherent
language structure (i.e., [20,16,22,12,18]), a number of recent works in formula
retrieval exploit formula’s unique structural properties, leading to improved re-
sults [5,28,11,27] compared to other formula representations, e.g., [6]. However,
none of the aforementioned works is capable of generating a formula.

In terms of formula generation, existing research usually combines processing
mathematical and natural language. For example, [23] trains a topic model on
scientific documents and learns the keywords (topics) of a formula. [24] generates
a headline from mathematical questions. However, these works treat formulae
as sequences of math symbols and thus neither leverage formula’s inherent tree
structure. Some other works focus on solving math problems, i.e., generating a
solution for an input formula [9,15]. However, these works are fully supervised,
i.e., they rely on large, labeled datasets that are difficult to collect. To overcome
the data issue, these works design methods to artificially generate formulae.
However, such synthetic data is simple and does not cover many complicated
formulae in practice (e.g., matrices), limiting the generalization capability of
models trained on such data.

Contributions. We propose FORTE, a novel unsupervised framework for Math-
ematical FOrmula Representation learning via Tree Embeddings. Our frame-
work fully exploits the tree structure of math formulae to enable both effective
formula encoding and formula generation. FORTE consists of 2 key components.

Mathematical Formula Representation via Tree Embeddings 3

encoder input tree decoder target tree

(a) Input and output formula tree.

[node, #children, position]

decoder
| decoder | @ o an

ceeEEED © o .

0 0 0 0 @ 1 0

0 0
generated nodes and positions updated stack updated partial tree

oM

formula emb. ! next node

(b) The decoding process.

Fig.2: (2a) lustration of FORTE’s input and output operator tree of the same for-
mula. The “E” nodes represents the special “end” node attached as the last child to
every node. (2b) Ilustration of FORTE’s decoding process at a particular time step.
First, the position of the next node to be generated is computed (dark blue). Next, the
next node (light blue) is generated by the decoder using already generated nodes and
positions and the newly computed position. Finally, the partial tree and the stack are
updated.

First, a tree encoder encodes a formula tree into an embedding that can benefit
various downstream tasks, i.e., formula retrieval. Second, a tree decoder gen-
erates a formula tree from an embedding. We also propose a novel tree beam
search algorithm that extends the beam search in sequence-to-sequence mod-
els (e.g., [19,1]) to improve the generation quality for tree-structured data. To
evaluate our framework, we have collected a dataset of over 770k formulae, the
largest to date to our knowledge, from professional, real-world sources such as
Wikipedia and arXiv articles. On a formula autoencoding task and a formula re-
trieval task, we show that our framework (sometimes significantly) outperforms
existing methods.

2 The FORTE Framework

We now present our FORTE framework. We first describe the tree representation
of a formula (operator tree), which forms the foundation of our framework. We
then set up the MLP problem and introduce the various FORTE components,
including the tree encoder, tree decoder, and tree beam search. Figures 1-77
together provide a high-level overview of our framework.

4 Zichao Wang, Andrew Lan, and Richard Baraniuk

2.1 Formulae As Operator Trees

Every formula X is inherently tree structured [26,5] and can be represented as
a symbolic operator tree (OT):

X=U~<), uwelU, UCV (1)

where u is a math symbol (a node in OT),! U is the set of math symbols in the
operator tree X, and V is the “vocabulary”, i.e., all unique math symbols in the
data set. < represents partial binary parent-child relation Vu € U [8]. Procedure
(a) in Fig. 1 illustrates the conversion from a formula to its OT. Intuitively, the
OT organizes the math symbols in a formula, such as operators, variables, and
numerical values, as nodes in an explicit, hierarchical tree structure. We choose
OT because of its intuitive interpretation and rich semantics. We emphasize that
our FORTE framework is agnostic to the underlying tree representation; other
tree representations such as symbol layout tree [5] can also be used.

Math Symbol Vocabulary. The size of the math symbol vocabulary V may be
unbounded (e.g., every element in the real number set R, which is uncountably
infinite, could be an element in V'); however, most symbols rarely appear. We
thus propose the following truncation method in order to work with a finite
vocabulary in practice. First, we partition the vocabulary V into five disjoint
sub-vocabulary according to symbol types, including numeric Vyum, (numbers,
decimals), functional V4, (multiplication, subtraction etc.), variable Vi, tex-
tual Vit and others V. We do so because different types of math symbols carry
different semantic meanings. Then, we retain only the most frequent K symbols
in each sub-vocabulary and convert others to an “unknown” symbol specific to
each type. This setup guarantees that the semantics of symbols that do not occur
frequently are preserved.

2.2 The MLP Problem Formulation

We set up the MLP problem as an unsupervised “autoencoding” task (see e.g.,
Ch.14 in [7]), motivated by the downstream tasks that we envision our framework
will perform. Specifically, our framework aims to reconstruct the input formula
in its OT representation through an encoder-decoder bottleneck model design.
This problem setup allows us to use the latent embedding from the encoder
output for many downstream tasks, i.e., formula retrieval, and the generated
formula from the decoder output for generation-related tasks.
Concretely, the training objective of our framework is

N
£00,6) =~ S Pu(X) o FalF (X3 0):) @
1=1

! We will refer to “math symbol” and “node” interchangeably depending on context.

Mathematical Formula Representation via Tree Embeddings 5

where N is the number of formulae, f. is the encoder function with parameter
0, fq is the decoder function with parameter ¢ and P, is the empirical data
distribution. Xi(z) and Xéi)t are the input and output representations of the i-th
formula tree in our new dataset, which we will introduce in Sec. 3. We will drop

the data point index ¢ in the remainder of the paper for simplicity of exposition.

2.3 Formula Tree Encoder

Our tree encoder takes a formula tree as input and outputs an embedding of
this formula. The key idea is to properly encode all information underlying
the formula tree. To this end, we use two methods including tree traversal,
which extracts content (node) information, and tree positional encoding, which
extracts structural (relative positions of nodes) information. Figure 1 provides
an overview of our formula tree encoder.

Formula Tree Traversal and Node Embedding. To obtain the content in a formula
tree, we employ tree traversal, which visits each node in the tree in a particular
order and extracts its content. Process (b) in Fig. 1 illustrates this process.
In this work, we consider traversal using depth-first search (DFS), although
other traversal orders can also be used. This step returns a DFS-ordered list
of nodes {u;}1_, where t is the position of node u in the DFS order and T is
the number of nodes in the formula tree. Each node is then represented as a
trainable embedding z; € R™ with dimension M.

Tree Positional Embedding. To extract the structure of a formula tree, we pro-
pose a two-step method that first retains and then embeds the relative positions
of nodes in the tree. First, we recursively encode the position ¢ of node u as
q: € R% where ¢, = 0,...,T is the depth of node u in the tree. ¢ is composed of
the node’s parent’s position appended with its relative positions to its siblings.
gt = [0] for the root node. The formula tree in Fig. 1 illustrates this step. For
example, the position [0, 1, 1] of the numeric node “4” is composed of [0, 1] which
is its parent’s position and [1] because it is the second child of its parent. Second,
we propose a binary tree positional embedding to convert the encoded position
¢ of each node to a fixed-dimensional vector p; € RP where

i [[10g2(C)1: Mo () 1+ ogalarl31)1 | =bin(ac[]) (3)
Vi=0,....0.

C' is the maximum degree (i.e., number of children) of all trees in the dataset,
[-] is the ceiling function, bin(+) is the binarization operator (e.g., bin(5) = 101)
and pq[j] selects the j-th index of the vector p;. The resulting dimension of the
tree positional embedding p, is D = Llog,(C) where L is the maximum depth
of all trees in the dataset.

6 Zichao Wang, Andrew Lan, and Richard Baraniuk

Formula Tree Embedding. To transform the formula tree into its embedding, we
utilize an embedding function f, : RM+DPIXT _y RK where K is the dimension
of the formula tree embedding and T is the total number of nodes in the formula
tree. Because M is not necessarily the same as D, we concatenate the node and
tree positional embeddings. Concretely, the formula tree embedding is computed
as

h=f{a}l;0), =[] . (4)

There are many options for instantiating the embedding function f. because,
thanks to our node and tree positional embedding methods, the tree content
and structure are fully preserved in the encoded input sequence. In this work,
we use the gated recurrent unit network (GRU) [4] for f., but one can freely
choose other appropriate models.

Relation to Prior Work. Our tree encoder design differs from existing approaches
in 2 regards. First, compared to [20,3], which perform tree traversal during train-
ing and thus only allow a single data point per iteration, our encoder performs
traversal before training, which enables mini-batch processing during training.
As a result, our approach removes this computationally expensive traversal step
from the training process and significantly speeds up training. Second, compared
to [17], which uses a onehot-style tree positional embedding, our encoder employs
a different binary tree positional embedding which reduces the space complexity
from O(LC) to O(Llog,(C)). This reduction is especially significant for trees
with a large degree.

2.4 Formula Tree Decoder

The decoder takes a formula embedding vector, i.e., the output from our tree
encoder, as input and generates a formula tree as output. We face two main
challenges when we design the decoder. First, the terminating condition of tree
generation is unclear because the formula tree can have multiple leaf nodes, each
of which terminates the generation in a single branch but not necessarily the
entire tree. Second, the order of generation, i.e., which node to generate next,
is unclear because there are at least two directions at each node: its siblings
(horizontal) and its children (vertical).

We now present our decoder, which tackles these two challenges by modifying
the decoder target from the encoder input (recall that in a usual autoencoding
task, the input and target are exactly the same) and generating by traversing
the tree. We also present our novel tree beam search generation algorithm, which
improves formula tree generation quality during test time.

Modified Decoder Target Tree. To address the challenge of unclear generation
termination condition, we propose to slightly modify the decoder target from
the input formula tree by attaching an additional special “end” node to each
node as its last child. Doing so informs the decoder when a node has no more

Mathematical Formula Representation via Tree Embeddings 7

Methods ACC top-1 1 ACC top-51 TED-structural | TED-overall |
seq2seqRNIN 92.60% (0.19%) 95.56% (0.07%) 0.084 (0.004) 0.176 (0.003)
tree2treeRNN (3] 71.73% (0.91%) - 0.507 (0.055) 0.709 (0.055)
tree2treeTF [17] 77.20% (3.30%) - 0.476 (0.069) 0.507 (0.069)
FORTE (binary, greedy) 94.51% (0.13%) - 0.053 (0.004) 0.125 (0.008)

FORTE (binary, beam) 94.67% (0.13%) 97.38% (0.14%) 0.048 (0.004) 0.116 (0.007)
FORTE (onehot, greedy) 94.28% (0.18%) - 0.058 (0.005) 0.130 (0.008)
FORTE (onehot, beam) ~ 94.42% (0.17%) 97.22% (0.05%) 0.054 (0.006) 0.124 (0.009)

Table 2: Formula reconstruction results. FORTE outperforms all other methods.

children to generate and provides a clear generation termination signal for each
node. Figure 2a compares the encoder’s input and decoder’s target of the same
formula tree.

Generation Via Tree Traversal. To address the challenge of the unclear gen-
eration order, we propose to traverse the tree during generation in the same
order as the encoder. A data structure is required to track the traversal process.
Therefore, for an encoder using DFS traversal, We propose to use a stack which
maintains nodes whose generation is unfinished in the DFS order. In addition to
the node itself, the stack also maintains the number of children and the position
of each node in the stack.

During generation, we use the current node’s embedding &; together with the
next node’s position p;1; to generate the next node. We do so because a node
can have multiple children; therefore, we use the next node’s position to inform
the model which node to generate next. This is a major difference from typical
sequence generation models, i.e., Transformers, in which the input position is
the input token’s position itself. Concretely, the next node is generated as

Uy 1 = argmax softmax(fq({x,}._1;9)), (5)
ueV
s=1,...,t and w; = [Zs; Ps+1; h],

where we also concatenate the formula tree embedding h to the decoder’s input
at each generation step. The next node’s position psiq is computed using the
number of children and the position of the current input node; see Section 2.3 for
details. When a node’s generation finishes, as signaled by the generation of an
“end” node, this node is removed from the stack. The “end” node itself is never
added to the stack. The entire tree generation is finished when the stack is empty,
i.e., no more nodes to expand further. We use a special “start” token to mark the
beginning of the generation process. Figure 2b illustrates the generation process.

Tree Beam Search for Tree Generation. The above generation process is a greedy
algorithm which may be sub-optimal. To improve tree generation quality, we
propose the tree beam search (TBS). The idea is to maintain a stack for each
beam, which records the node generation order. During the generation process,
the decoder generates the top B most probable next nodes from the current

8 Zichao Wang, Andrew Lan, and Richard Baraniuk

generated tree of each beam, resulting in a total of B? candidate trees to expand.
We then select B most probable candidate trees to expand further. This process
continues until B trees finish generation or until a preset maximum number of
steps have been reached.

TBS extends beam search in NLP (e.g., in [19,1]) which only concerns sequen-
tial data and is incapable of generating tree-structured data. Similar to beam
search in NLP, by expands the search space of candidate trees by a factor of
B, TBS enables more flexible and higher quality generation during the decoding
process compared to greedy generation.

Relation to Prior Work. To our knowledge, this is the first beam search al-
gorithm for generating tree structured data. Our work differs from [29] which
proposed a tree beam search algorithm for recommender systems that treats
the entire dataset as a tree, where each node is a data point (user, item); in
our work, we treat each data point (formula) as a tree. Our work also differs
from [17] which specifies the number of children each node must have in the
tree, significantly constrains the generation process, unnecessarily increases the
node vocabulary and leads to worse generation quality; in our work, there are
no constraints on the number of children that each node must have, resulting in
flexible and varied generated formula tree.

3 Experiments

We conduct two experiments to validate FORTE. In the first experiment, we
demonstrate the advantage of FORTE compared to other tree and sequence
generation methods for formulae in the formula reconstruction task. In the sec-
ond experiment, we demonstrate an application of FORTE in the context of the
formula retrieval task and show the advantage of FORTE over existing formula
retrieval systems. For our framework in all experiments, we use a 2-layer bidirec-
tional GRU for the encoder and a 2-layer unidirectional GRU for the decoder.

Dataset. We collected a large real-world dataset of more than 770k formulae
from a subset of articles on Wikipedia and arXiv. We extracted formulae from
these articles and processed them into OT representations.

3.1 Formula Reconstruction

In this experiment, we test FORTE’s ability to reconstruct a formula. Because
some baselines only works on binary trees [3,17], we select a subset of 170k
formulae whose operator trees are binary.

Baselines. We consider the following baselines: seq2seqRNN which implements
the same encoder and decoder as our framework but processes formulae as se-
quences of math symbols; tree2treeRNN [3] which is an RNN-based method
capable of encoding and decoding only binary trees; treeTransformer [17]

Mathematical Formula Representation via Tree Embeddings 9

which is a Transformer-based method that shows success only on binary trees.
The latter two baselines were originally developed and evaluated on a very differ-
ent task (program translation) than MLP. We also include four variants of our
framework to evaluate the utility of (1) binary against onehot tree positional
embedding and (2) TBS against greedy search for tree generation. We construct
training, validation, and test sets by splitting the 170k dataset 80%-10%-10%.
We train each model 5 times for 50 epochs, record the model with the best per-
formance on the validation set. We then perform formula reconstruction on the
test set using beam size B = 10 for applicable methods and report the average
values of the following metrics on the test set.

FEvaluation Metrics. We use two groups of metrics. The first group of metrics
measures the reconstruction accuracy, i.e., the percentage of the generated for-
mulae that are exactly the same as the ground-truth. We compute both ACC
top-1, using only the most probable generated formulae, and ACC top-5, using
the five most probable generated formulae. The second group of metrics mea-
sures how much the generated formula tree differs from the ground truth formula
tree. We use tree edit distance (TED) which measures the distance of two trees
by computing the minimum number of operations needed, including changing
nodes and node connections, to convert one tree to the other. See [14,13] for an
overview of the TED algorithm. We compute both TED-overall which considers
both node and connection editing and TED-structural which only considers
connection editing.

Results. Table 2 presents the formula reconstruction results comparing our
framework with baselines. Comparing to the two tree2tree baselines that strug-
gle at this task, the encoder and decoder designs in FORTE enable near-perfect
formulae reconstruction. Comparing to the seq2seqRNN baseline, FORTE shows
improvement when processing formulae as OT against as sequences. Moreover,
the results from the 4 FORTE variants clearly demonstrates the benefits of bi-
nary tree positional embedding and TBS, leading to improvements in all 4 met-
rics compared to onehot tree positional embedding and greedy search, respec-
tively. We repeat this experiment on the full dataset comparing only seq2seqRNN
and FORTE since the tree-based baselines cannot process non-binary trees.
FORTE achieves 85.87% compared to seq2seqRNN’s 84.30% on the TOP-1 ACC
and 90.30% compared to seq2seqRNN’s 88.52% on TOP-5 ACC, respectively.
These results further show the benefits of representing formulae as OT against
as sequences.

3.2 Formula Retrieval

In this qualitative experiment, we evaluate FORTE’s capabilities in a formula
retrieval application. Given an input formula (query), a retrieval method aims
to return the top relevant formulae (retrievals) from a collection of formulae.
We use the entire 770k formula dataset to train our framework and then use
the trained encoder to obtain an embedding for each formula. For each query,

10 Zichao Wang, Andrew Lan, and Richard Baraniuk

Methods Metrics
map bpref

ApproachO 0.486 0.507
Tangent-S 0.461 0.472
TangentCFT 0.462 0.464

FORTE 0.475 0.485
FORTE-App 0.509 0.513

Table 3: Formula retrieval results.

we compute the cosine similarity between its embedding and the embedding of
each formula in the dataset. Finally, we choose the formulae with the highest
similarity scores as the retrievals. We use the queries from the NTCIR-12 formula
retrieval task [25]. Table 1 shows a few examples of the queries.

Model and Baselines. We consider three state-of-the-art baselines designed specif-
ically for the formula retrieval task including Tangent-CFT [11], which is one
of the few data-driven formula retrieval systems to date, and Tangent-S [5] and
ApproachO [28], both of which are based on symbolic sub-tree matching and
are data independent. We train Tangent-CFT on the same dataset as FORTE.

Evaluation Metrics. Because it is difficult to algorithmically judge the relevance
of a retrieval to a query, we perform a human evaluation for this task as follows.
First, for each method and each query, we choose the top 25 retrieved formulae
and mix them into a single pool of retrievals. Second, for each query, three
human evaluators independently provide a ternary rating for each retrieval in
the pool, i.e., whether the retrieval is relevant, half-relevant, or irrelevant to
the query. The above evaluation procedure is consistent with [25], including
the number of evaluators involved. We then use the mean average precision
(MAP) [21] and bpref [2] as the evaluation metrics. Compared to other retrieval
evaluation metrics, Both MAP and bpref are easy to interpret and appropriate
for evaluating multiple queries and for comparing multiple retrieval systems.

Results. Table 3 presents the quantitative evaluation results, averaged over the
three evaluators’ scores. Both metrics indicate that our framework achieves su-
perior performance than the other data-driven baseline, TangentCF'T, and one
of the data-independent baselines, Tangent-S. Our method falls slightly behind
ApproachQ. This may be caused by the fact that ApproachO uses a more explicit
symbolic matching using directly subtrees whereas we rely on the more abstract
vector representations of formulae which may lose information during similar-
ity computation. This result is consistent with existing literature [11]. We then
propose a new model, FORTE-App that combines the strengths of FORTE and
ApproachQ. The last row of Table 3 shows that the combined method achieves
new state-of-the-art performance on the formula retrieval experiment. In partic-
ular; the bpref score implies that, on average, in FORTE’s retrieved formulae,

Mathematical Formula Representation via Tree Embeddings 11

relevant formulae (as judged by evaluators) rank higher than irrelevant ones
more often than in those retrieved by baselines.

4 Conclusions and Future Work

In this work, we propose FORTE, a novel, unsupervised mathematical language
processing framework by leveraging tree embeddings. By encoding formulae as
operator trees, we can explicitly capture the inherent structure and semantics
of a formula. We propose an encoder and a decoder capable of embedding and
generating formula trees, respectively, and a novel tree beam search algorithm
to improve generation quality at test time. We evaluate our framework on for-
mula reconstruction and demonstrate our framework’s superior performance in
both experiments compared to baselines. There are many avenues of future work.
One direction is to combine our framework’s dedicated capability to encode and
generate formulae with state-of-the-art NLP methods to enable cross-modality
applications that involve both mathematical and natural language. For example,
our framework can serve as a drop-in replacement for the formulae processing
part in a number of existing works to potentially improve performance, i.e.,
in [23] for joint text and math retrieval, in [24] for math headline generation,
in [10] for grading students’ math homework solutions, and in [15,9] for neural
math reasoning. We also look forward to conducting a thorough human evalua-
tion for relevant formula retrieval.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly Learn-
ing to Align and Translate. arXiv e-prints (Sep 2014)

2. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In:
Prof. Intl. ACM SIGIR Conf. Res. Develop. Info. Retrieval. p. 25-32. SIGIR 04
(2004)

3. Chen, X., Liu, C., Song, D.: Tree-to-tree neural networks for program translation.
In: Proc. Intl. Conf. Neural Info. Process. Syst. p. 2552-2562 (2018)

4. Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder—decoder for
statistical machine translation. In: Proc. Conf. Empirical Methods Natural Lang.
Process. pp. 1724-1734 (Oct 2014)

5. Davila, K., Zanibbi, R.: Layout and semantics: Combining representations for
mathematical formula search. In: Prof. Intl. ACM SIGIR Conf. Res. Develop. Info.
Retrieval. p. 1165-1168 (2017)

6. Gao, L., Jiang, Z., Yin, Y., Yuan, K., Yan, Z., Tang, Z.: Preliminary Exploration
of Formula Embedding for Mathematical Information Retrieval: can mathematical
formulae be embedded like a natural language? arXiv e-prints (Jul 2017)

7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

8. Kunen, K.: Set theory - an introduction to independence proofs, Studies in logic
and the foundations of mathematics, vol. 102. North-Holland (1983)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Zichao Wang, Andrew Lan, and Richard Baraniuk

Lample, G., Charton, F.: Deep learning for symbolic mathematics. In: Proc.
Intl. Conf. Learn. Representations (2020), https://openreview.net/forum?id=
SleZYeHFDS

Lan, A.S., Vats, D., Waters, A.E., Baraniuk, R.G.: Mathematical language process-
ing: Automatic grading and feedback for open response mathematical questions.
In: Proc. ACM Conf. Learn. @ Scale. p. 167-176 (2015)

Mansouri, B., Rohatgi, S., Oard, D.W., Wu, J., Giles, C.L., Zanibbi, R.: Tangent-
cft: An embedding model for mathematical formulas. In: Proc. Intl. ACM SIGIR
Conf. Res. Develop. Info. Retrieval. p. 11-18 (2019)

Nguyen, X.P., Joty, S., Hoi, S., Socher, R.: Tree-structured attention with hier-
archical accumulation. In: Proc. Intl. Conf. Learn. Representations (2020), https:
/ /openreview.net/forum?id=HJxK5pEYvr

Pawlik, M., Augsten, N.: Efficient computation of the tree edit distance. ACM
Trans. Database Syst. 40(1) (Mar 2015)

Pawlik, M., Augsten, N.: Tree edit distance: Robust and memory-efficient. Info.
Syst. 56, 157 — 173 (2016)

Saxton, D., Grefenstette, E., Hill, F., Kohli, P.: Analysing mathematical reasoning
abilities of neural models. In: Proc. Intl. Conf. Learn. Representations (2019),
https://openreview.net/forum?id=H1gR5iR5FX

Shen, Y., Tan, S., Sordoni, A., Courville, A.: Ordered neurons: Integrating tree
structures into recurrent neural networks. In: Proc. Intl. Conf. Learn. Representa-
tions (2019), https://openreview.net/forum?id=B116qiR5F7

Shiv, V., Quirk, C.: Novel positional encodings to enable tree-based transformers.
In: Proc. Intl. Conf. Neural Info. Process. Syst. pp. 12081-12091 (2019)

Sun, J., Han, P., Cheng, Z., Wu, E., Wang, W.: Transformer based multi-grained
attention network for aspect-based sentiment analysis. IEEE Access 8, 211152—
211163 (2020)

Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Proc. Intl. Conf. Neural Info. Process. Syst. p. 3104-3112 (2014)
Tai, K.S., Socher, R., Manning, C.D.: Improved Semantic Representations From
Tree-Structured Long Short-Term Memory Networks. arXiv e-prints (Feb 2015)
Voorhees, E.M., Harman, D.K., et al.: TREC: Experiment and evaluation in infor-
mation retrieval, vol. 63. MIT press Cambridge (2005)

Wang, Y., Lee, H.Y., Chen, Y.N.: Tree transformer: Integrating tree structures
into self-attention. In: Proc. Conf. Empirical Methods Natural Lang. Process. and
Intl. Joint Conf. Natural Lang. Process. pp. 1061-1070 (Nov 2019)

Yasunaga, M., Lafferty, J.: TopicEq: A Joint Topic and Mathematical Equation
Model for Scientific Texts. In: Proc. AAAI conf. Artificial Intell. (2019)

Yuan, K., He, D., Jiang, Z., Gao, L., Tang, Z., Giles, C.L.: Automatic generation
of headlines for online math questions. In: Proc. AAAI conf. Artificial Intell. pp.
9490-9497 (2020)

Zanibbi, R., Aizawa, A., Kohlhase, M., Ounis, I., Topic, G., Davila, K.: Ntcir-12
mathir task overview. In: Proc. NTCIR Conf. Eval. Info. Access (2016)

Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical expressions.
Intl. J. Document Anal. Recognit. 15(4), 331-357 (Dec 2012)

Zhong, W., Rohatgi, S., Wu, J., Giles, C., Zanibbi, R.: Accelerating substructure
similarity search for formula retrieval. In: Proc. European Conf. Info. Retrieval.
pp. 714-727 (2020)

Zhong, W., Zanibbi, R.: Structural similarity search for formulas using leaf-root
paths in operator subtrees. In: Azzopardi, L., Stein, B., Fuhr, N.; Mayr, P., Hauff,

https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=HJxK5pEYvr
https://openreview.net/forum?id=HJxK5pEYvr
https://openreview.net/forum?id=H1gR5iR5FX
https://openreview.net/forum?id=B1l6qiR5F7

Mathematical Formula Representation via Tree Embeddings 13

C., Hiemstra, D. (eds.) Proc. Intl. Conf. Neural Info. Process. Syst. pp. 116-129
(2019)

29. Zhuo, J., Xu, Z., Dai, W., Zhu, H., Li, H., Xu, J., Gai, K.: Learning optimal
tree models under beam search. In: Proc. Intl. Conf. Mach. Learn. vol. 119, pp.
11650-11659 (13-18 Jul 2020)

	Mathematical Formula Representation via Tree Embeddings

