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Abstract 
Nowadays the development of information technologies bring to cryptologists not only 
opportunities to solve the most difficult cryptography classical tasks, also they give capacity 
to hacked well-known cryptosystems. Therefore, applying other areas of mathematical for 
modifications of information security methods is relevant task of research in cryptography. 
The theory of automata was considered as an alternative model for creating high-speed 
cryptosystems. In this paper, we survey existing works and concepts of finite automata 
cryptosystems with open key, its background and general algorithm of encrypting and 
decrypting process. According to the research carried out, it can be noted that in existing 
cryptosystems, finite automata of various types are used: finite automata of a general form, 
structural automata, finite automata with input-output memory of a special type, finite 
automata with pseudo-memory of a special type. The authors of the article were interested in 
the pseudo-memory automata that were used in FAPKC4. For a better understanding of the 
application of this type of finite automata in cryptography, the authors demonstrated an 
example of their application for encryption and decryption of information.  
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1. Introduction 

Information technology has become an integral part of modern society life. The amount and value 
of information transmitted via the Internet increases every year, but the medium for data transfer is 
becoming more and more open, hence giving rise to the problem of protecting the information sent 
over unprotected communication channels. Today, the most reliable methods of protecting 
information are crypto-graphic methods [1]. The classic task of cryptographic methods is to hide the 
content of transmitted and stored data from unauthorized access. This problem is solved by data 
encryption, i.e. applying some mathematical transformations on the data, using a secret key, which is 
known only to the legitimate user. 

Currently, there are many widely known cryptographic methods that are successfully used in 
practice. Many of these techniques are very computationally efficient. However, the development of 
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quantum computers, which allow to solve most of the classically difficult tasks, as well as the 
continuous improvement of cryptanalysis, lead to the emergence of new algorithms for hacking 
classical cryptographic systems. For example, scientists from the USA, the Netherlands and Australia 
discovered a serious vulnerability in the cryptographic library implemented in GnuPG, which allowed 
them to crack the 1024-bit RSA encryption [2]. This trend is of interest to cryptologists in the use of 
alternative mathematical models for the development of new and more advanced information security 
systems. In this article, an alternative method for designing cryptosystems, i.e. the theory of automata 
is considered. On the basis of various types of automata, such as Mealy automata, cellular automata, 
L-systems and others, some cryptosystems were created. 

Automata theory, being a fundamental area of computer science, is engaged in the study of the 
recognition mechanisms of languages. The concept of an automaton can serve as a model object in a 
wide variety of problems, which makes it possible to apply the theory of automata in various scientific 
and applied research. This led to the wide use of the theory of automata in physics and cybernetics, 
chemistry and biology, economics and statistics, in cryptography and other sciences. 

2. Background 

The initiator of the use of finite automata in cryptography is a Chinese professor Tao Renji, who 
since the beginning of the 80s, together with Professor Chen Shihua, has been studying the theory of 
the invertibility of finite automata. This theory formed the basis of a new streaming cryptosystem with 
a public key, so in 1985 the finite automaton public-key cryptosystem, named Finite Automation 
Public Key Cryptosystems (FAPKC) was presented to the scientific world [3]. The first version of 
FAPKC0 [4], published in Chinese, uses linear components and was more demonstrative 
cryptoalgorithm.  Versions of FAPKC1 and FAPKC2 using linear and nonlinear finite automata were 
available in English [5].  

Ten years later, in 1995, some weaknesses in the open-text attacks, which were presented in [6] by 
Feng Bao, and Yoshihide Igarashi from Japan, were discovered in public-key cryptosystems FAPKC0 
and FAPKC1. In [7], the authors Dai et al. introduced another way to break the cryptosystem 
FAPKC0. After the proposed options for attacks on the FAPKC0, FAPKC1, FAPKC2 cryptosystems 
by the authors Tao et al. an advanced asymmetric cryptosystem called FAPKC3 was introduced [8]. 

However, this algorithm was also cracked by the Finnish cryptologist Meskanen [9], whom de-
scribed two methods for hacking some instances of the FAPKC3 cryptosystem, as well as ways to 
prevent these hacks. Finally, Tao and Chen presented a new version of the FAPKC4 public-key 
cryptosystem algorithm [10], which is crypto-resistant and still retains the advantages of the 
previously presented FAPKC, such as fast encrypting speed, a relatively short public key. This 
algorithm can be easily implemented, since it includes only logical operations. FAPKC4 was 
practically used in some local area networks in China [3]. 

In 2010, Chopuryan and Margarov proves that FAPKC3 is vulnerable to the against the chosen 
plaintext attack and to the exhaustive search attack as well. Therefore, modification version of 
FAPKC system was proposed in [11]. 

In 2011, a master student of De Montfort University, Leicester, UK, Sarshad Abubaker, under the 
direction of Dr. Kui Wu, offered his version of using finite automata in a cryptosystem, which is 
based on a 128-bit key using a DES-based key generation algorithm, known as DAFA (DES -
Augmented Finite Automaton cryptosystem) [12]. 

In 2012, a new cryptographic algorithms based on Mealy/Moore automata and recursive functions 
were proposed [13] by S. Sri Lakshmi as a PhD work at the University of Technology named after 
Jawaharlal Nehru, India under the leadership of Professor B. Krishna Gandhi. 

In 2016, Ivone de Fátima da Cruz Amorim published her doctoral thesis on “Linear Finite Trans-
formers (LFT)” [14], where all characteristics of linear finite transducers and their reversibility are 
studied, and various examples are given in order to illustrate the proposed methods and concepts. 
Later in 2017, under her supervision, a master's work of Joana Barão Vieira [15] was published, in 
which the features of the formalization of the injectivity testing procedure and the construction of 
inverse finite memory trans-formers (linear and quasilinear) were disclosed. 



In Russia, they also deal with the use of finite automata in cryptography. Agibalov [16] gives 
examples of using finite automata as cryptographic algorithms and their components, describes 
cellular automaton generators of pseudorandom sequences, cellular automaton hash functions, finite 
automaton symmetric and asymmetric ciphers, demonstrates functional equivalence of flow and 
automaton cryptosystems. 

In [17, 18], the hardware implementation of the FAPKC cryptosystem based on field-
programmable gate array (FPGA) was described, and the results of the study of the influence of the 
cryptosystem parameters on the dependence of the number of resources used and the performance of 
the FPGA were shown. 

In Kazakhstan, scientists from the Eurasian National University were engaged in this research, and 
they created the hardware implementation of a public-key automated-field cryptosystem [19]. 

 

Figure 1: History of research development in the field of finite automata cryptography 
 
According to Figure 1 it can be noted that with each decade, interest in the use of an alternative 

mathematical model in cryptosystems is increasing. This trend is due to the fact that in recent years 
the growth of information technologies has been significantly increased, which leads to the need to 
develop mechanisms for information protection. 

3. Preliminaries 

A finite automata (FA) is a mathematical abstract device that operates in discrete automata time. 
There are two types of automata: automata-recognizers and automata-transducers. We are only 
interested in automata-transducers, which convert the input sequence of words into an output 
sequence of the same length. In turn, the transforming automata can be divided into combinational 
finite automata (automata without memory) and sequential finite automata (automata with memory) 
[20]. This paper only considers the sequential finite automata. 

Sequential FA – is a deterministic finite automata with a finite sequence of internal states that in 
any state reads an input symbol from the set X, outputs an output symbol from the set Y, and goes to 
another state, denoted by the symbol from the set S. If the symbols denoting the internal states of the 
automaton are stored in its internal memory, then this automaton is sometimes called a finite state 
machine with memory [21, 5p]. The formal definition of a sequential finite automaton is as follows 
[9]: 

FA is a quintuple M =< X, Y, S, δ, λ >, where: Х = {x1, x2, … xn} – finite set of input symbols, Y =
{y1, y2, … , ym} – finite set of output symbols, S = {s1, s2, … sl}– finite set of internal states, δ: S ×
X →  S – next state function or transition; λ: S × X →  Y – output function. 

Let X n be the set containing all finite words of length n in the alphabet X, 
Xω be the set of words of infinite length in the alphabet X, and let ε be the empty word. Then the 
transition function δ: S × Xn  →  S and the output function λ: S × (Xn ∪ Xω)  →  Y can be expanded 
as: 

δ(s, ε)  =  s,  δ(s,αx)  =  δ(δ(s,α), x), 
λ(s, ε)  =  ε,  λ(s, xα′)  =  λ(s, x)λ(δ(s, x),α′), 

where s ∈  S, x ∈ X,α ∈ Xn and α′ ∈ Xn ∪  Xω. 



 
 

In other words, FA M, being in the initial state s(0) by reading the input sequence 
x(0)x(1). .. passes a sequence of states s(0)s(1). .. and produces an output sequence y(0)y(1). .. . The 
dependence between the input symbols, the states of the automaton M, and the output symbols in the 
discrete time i can be shown using the system of canonical equations: 

�
s(i + 1) = δ(s(i), x(i))

y(i) = λ(s(i), x(i))        i= 0,1, 2, … . 

where s(0) – initial state of the automaton, а x(0) =  ε and y(0)  =  ε. 
Let there be given two finite automata М =< X, Y, S, δ, λ > and  

М′ = < X, Y, S′,δ′, λ′ >. The FA М = < X, Y, S,δ, λ > is called weakly invertible with a delay τ, 
where τ is a nonnegative integer, if ∀s ∈  S and ∀ x i ∈  X, i = 0, 1, … , τ, x0  can be uniquely 
determined by the state s and the output function  λ(s, x0 … xτ). 

For ∀s ∈ S and ∀s′ ∈ S′, if ∀α ∈ Xω,∃α0 ∈  Xn:  
λ′(s′, λ(s,α))  =  α0α and |α0| = τ, 

then (s′, s) is a pair with a delay τ (τ − pair), or in other words, s′ corresponds to s with a delay τ.  
An automaton M′ is said to be inverse with a delay τ to the automaton M if 

 ∀s ∈  S,∃s′ ∈ S′  such that (s′, s)  is a τ − pair in М′ ×М. 
The finite-automaton model of a cryptosystem is based on the notion of a special form of weakly 

invertible finite automaton with a delay τ and composition of these automata. Will be given the 
following definitions, according to [22]: 

If the function φ: Y k ×  Xh+1  →  Y for some integers k, h ≥  0, and if FA 
М = < X, Y, Yk  ×  Xh+1,δ, λ > can be determined by 

y(i)  =  φ(y(i − 1), . . . , y(i − k), x(i), . . . , x(i − h)),       i =  0,1, . . ., 
i.e.  

δ(< y−1, … , y−k, x−1, … , x−h >, x0)  = < y0, … , y−k+1, x0, … , x−h+1 >, 
λ(< y−1, … , y−k, x−1, … , x−h >, x0)  =  y0, 
y0 = φ(y−1, … , y−k , x0, x−1, … , x−h), 

then М is called a (h, k) - order memory finite automaton and denoted by Мφ. Then h and k are 
called the input and output memory of the automaton M, respectively. In the case where k =  0, the 
automaton Мφ is called h-order input memory finite automaton. 

Let function f: Yk × Up+1 × Xh+1 → Y, and function g: Yk × Up+1 × Xh+1 → U for some integers 
k, h ≥  0, p ≥  −1 and if finite automata Mf,g =< X, Y, Yk × Up+1 × Xh,δ, λ >  can be determined 

y(i) = f�y(i − 1), … , y(i − k), u(i), … , u(i − p), x(i), … , x(i − h)�, 
u(i + 1) = g�y(i − 1), … , y(i − k), u(i), … , u(i − p), x(i), … , x(i − h)�,i = 0,1, … 
i.e. 

δ�< y−1, … , y−k, u0, … , u−p, x−1, … , x−h >, x0� =< y0, … , y−k+1, u1, … , u−p+1, x0, … , x−h+1 >, 
λ�< y−1, … , y−k, u0, … , u−p, x−1, … , x−h >, x0� = y0, 
y0 = f(y−1, … , y−k, u0, … , u−p, x0, … , x−h), 
u1 = g(y−1, … , y−k, u0, … , u−p, x0, … , x−h), 

then М can be called (h, k, p) order pseudo-memory finite automata and denoted by  Mf,g.  
The automaton with memory in turn can be linear and nonlinear. If the functions defining the state 

machine are linear, then the state machine is linear. If any nonlinear function is added to the linear 
automaton, we obtain a nonlinear finite state machine with memory. 

4. Public key cryptosystem based on finite automata 

The basic concept of an asymmetric cryptosystem based on finite automaton is the use of a weakly 
invertible automaton with delay τ, which allows reproduction of an input sequence of characters by 
initial internal state and an output sequence of characters.  

In the FAPKC cryptosystem, the public key is the composition of weakly invertible finite 
automata, whereas the private key contains their inverse automata. This cryptosystem can be used not 
only to encrypt and decrypt information, but also to sign and authenticate transmitted messages. 



In the theory of numbers a large number can always be decomposed into simple factors, for which 
the order of their mutual arrangement in the product is not important. However in the theory of finite 
automata the order of arrangement of primitive automata in the composition is important. In other 
words, the composition of finite automata does not have the property of commutativity. Consequently, 
the problem of decomposition of compound finite automata into primitive components is as difficult 
as the factorization of the product of two large numbers. For that reason, this property allows creating 
ultra-reliable information security systems, which confirms the relevance and importance of creating 
cryptosystems based on finite automata [23].  

As mentioned above, there are several versions of the asymmetric FAPKC cryptosystem. All 
versions of FAPKC have one common algorithm of the cryptosystem, the differences between them 
are in the generation of different types of finite automata that is used to encrypt/decrypt information, 
as presented in more detail in [24]. Next, we describe a general algorithm for building a cryptosystem, 
and take a closer look at the type of automata used in the version of FAPKC4. 

In describing the general scheme of FAPKC we will rely on the work of [22], as follows: 
Suppose that two users A and B want to exchange secret information, for this user A needs to 

generate a public key, which he will send to user B through an open channel for encrypting 
information, and a secret key, with which user A will decrypt the encrypted text received from user B. 
The public and private key are generated according to the following algorithm: 

Two automata M0 and M1 are chosen randomly, for which it is easy (in polynomial time) to 
construct their inverse finite automata M0

∗ and M1
∗ with some delays τ0 and τ1, respectively. The 

composition of M1 и M0 - C′(M1, M0) automata is constructed. Then τ =  τ0  +  τ1 is determined. 
Select an arbitrary initial state of the automata C′(M1, M0), which will be used in the beginning of 
encryption. The parts necessary for decryption are determined: s1,d

out and s0,d
out. After the user's public 

key is composed, which consists of {C′(M1, M0), se, τ}. The user's private key consists of {M0
∗ , M1

∗, 
s1,d
out, s0,d

out, τ0, τ1}. 
Encryption: User B adds arbitrary characters of length xn+1 ⋯ xn+τ to the end of the given plaintext 

x0 ⋯ xn and calculates the cipher text using the public key, y0 ⋯ yn+τ = λ(se, x0 ⋯ xn+τ). Then sends 
it to user A. 

Decryption: User A receives the plain text in two steps. It first computes x0′ ⋯ xn+τ−τ0
′  using M0

∗ 
and s0,d

out and some part of se. Then finds x0 ⋯ xn using the automaton M1
∗ and  s1,d

out. 
The basic principles of encryption and decryption using a public key cryptosystem based on a state 

machine are shown in Fig 2 and Fig 3, respectively.  

 

Figure 2: The principle of encryption in FAPKC 

 

Figure 3: The principle of decryption in FAPKC 

FAPKC have some advantages over widely used asymmetric cryptosystems, for instance, their 
encrypting speed faster that RSA’s as their algorithm is based only on logical operations. In addition, 
the FAPKC cryptosystem can be attributed to stream encryption, which gives it an advantage in the 
encrypting and decrypting speed, because plaintext does not divided into blocks [4]. The 
disadvantages of the cryptosystem include the large size of the public key, as well as the problem of 



 
 
generating random and equally probable keys, since the key space of the FAPKC algorithm is 
specified by the description of the properties of its elements [25]. 

According to [16] in order to keep the size of the public key within acceptable limits, it is necessary 
that the parameters of the cryptosystem are very small, as can be seen from the following Table 1 
[26], where for some values of the parameters l, h0, h1 the corresponding sizes in bits N1 and N2 of 
the public key in FAPKC with τ1 ≤ h1, τ0 ≤ h0 and, respectively, with linear and nonlinear finite 
automata are demonstrated.  

 
Table 1:  
Size of keys FAPKC depends of parameters 

l 7 7 5 5 3 3 3 

(h1, h0) (1,14) (7,8) (1,19) (10,10) (1,34) (10,25) (17,18) 

N1 8281 32948 4075 20950 1593 8883 13041 

N2 105840 414512 29850 181725 5400 34560 51192 

5. Pseudo-memory automation for encryption/decryption information  

In this section special types of automata is discussed, i.e. pseudo-memory automata that are used in 
the FAPKC4 cryptosystem. All definitions will be given according to Tao R. notation [22].  

Let functions 𝑓𝑓0 and 𝑔𝑔0 single-valued mappings  𝑌𝑌𝑘𝑘0 × 𝑈𝑈𝑝𝑝0+1 × 𝑋𝑋ℎ0 → 𝑌𝑌 and  
𝑌𝑌𝑘𝑘0 × 𝑈𝑈𝑝𝑝0+1 × 𝑋𝑋ℎ0 → 𝑈𝑈, respectively, for some integers 𝑘𝑘0,ℎ0  ≥  0,𝑝𝑝 0 ≥  −1 defining automata                       
𝑀𝑀0 =< 𝑋𝑋,𝑌𝑌,𝑌𝑌𝑘𝑘0 × 𝑈𝑈𝑝𝑝0+1 × 𝑋𝑋ℎ0 ,𝛿𝛿0, 𝜆𝜆0 > with  (ℎ0,𝑘𝑘0,𝑝𝑝0) pseudo-memory order:  

𝑦𝑦(𝑖𝑖) = 𝑓𝑓0�𝑦𝑦(𝑖𝑖 − 1), … ,𝑦𝑦(𝑖𝑖 − 𝑘𝑘0),𝑢𝑢(𝑖𝑖), … ,𝑢𝑢(𝑖𝑖 − 𝑝𝑝0), 𝑥𝑥(𝑖𝑖), … , 𝑥𝑥(𝑖𝑖 − ℎ0)�, 
𝑢𝑢(𝑖𝑖 + 1) = 𝑔𝑔0�𝑦𝑦(𝑖𝑖 − 1), … ,𝑦𝑦(𝑖𝑖 − 𝑘𝑘0),𝑢𝑢(𝑖𝑖), … ,𝑢𝑢(𝑖𝑖 − 𝑝𝑝0),𝑥𝑥(𝑖𝑖), … , 𝑥𝑥(𝑖𝑖 − ℎ0)�,i= 0,1, … 

i.e. 
𝛿𝛿0�< 𝑦𝑦−1, … ,𝑦𝑦−𝑘𝑘0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 , 𝑥𝑥−1, … , 𝑥𝑥−ℎ0 >,𝑥𝑥0� =    

                                                           < 𝑦𝑦0, … ,𝑦𝑦−𝑘𝑘0+1,𝑢𝑢1, … ,𝑢𝑢−𝑝𝑝0+1,𝑥𝑥0, … , 𝑥𝑥−ℎ0+1 >, 
𝜆𝜆0�< 𝑦𝑦−1, … ,𝑦𝑦−𝑘𝑘0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 ,𝑥𝑥−1, … , 𝑥𝑥−ℎ0 >, 𝑥𝑥0� = 𝑦𝑦0, 
𝑦𝑦0 = 𝑓𝑓0(𝑦𝑦−1, … ,𝑦𝑦−𝑘𝑘0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 ,𝑥𝑥0, … , 𝑥𝑥−ℎ0), 
𝑢𝑢1 = 𝑔𝑔0(𝑦𝑦−1, … ,𝑦𝑦−𝑘𝑘0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 ,𝑥𝑥0, … , 𝑥𝑥−ℎ0). 

𝑀𝑀0
∗ =< 𝑌𝑌,𝑋𝑋,𝑋𝑋ℎ0 × 𝑈𝑈𝑝𝑝0+1 × 𝑌𝑌𝜏𝜏0+𝑘𝑘0 ,𝛿𝛿0∗, 𝜆𝜆0∗ > - finite automata with pseudo-memory order                 

(𝜏𝜏0 + 𝑘𝑘0,ℎ0,𝑝𝑝0) has the following form: 
𝑥𝑥(𝑖𝑖) = 𝑓𝑓0∗�𝑥𝑥(𝑖𝑖 − 1), … , 𝑥𝑥(𝑖𝑖 − ℎ0),𝑢𝑢(𝑖𝑖), … ,𝑢𝑢(𝑖𝑖 − 𝑝𝑝0),𝑦𝑦(𝑖𝑖), … ,𝑦𝑦(𝑖𝑖 − 𝜏𝜏0 − 𝑘𝑘0)�, 

𝑢𝑢(𝑖𝑖 + 1) = 𝑔𝑔0�𝑦𝑦(𝑖𝑖 − 𝜏𝜏0 − 1), … ,𝑦𝑦(𝑖𝑖 − 𝜏𝜏0−𝑘𝑘0),𝑢𝑢(𝑖𝑖), … ,𝑢𝑢(𝑖𝑖 − 𝑝𝑝0), 𝑥𝑥(𝑖𝑖), … , 𝑥𝑥(𝑖𝑖 − ℎ0)�,i=0,1, … 
i.е. 

𝛿𝛿0∗�< 𝑥𝑥−1, … , 𝑥𝑥−ℎ0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 ,𝑦𝑦−1, … ,𝑦𝑦−𝜏𝜏−𝑘𝑘0 >,𝑦𝑦0� = 
                                                  < 𝑥𝑥0, … , 𝑥𝑥−ℎ0+1,𝑢𝑢1, … ,𝑢𝑢−𝑝𝑝0+1,𝑦𝑦0, … ,𝑦𝑦−𝜏𝜏−𝑘𝑘0+1 >, 

𝜆𝜆0∗�< 𝑥𝑥−1, … , 𝑥𝑥−ℎ0 ,𝑢𝑢0, … , 𝑢𝑢−𝑝𝑝0 ,𝑦𝑦−1, … ,𝑦𝑦−𝜏𝜏−𝑘𝑘0 >,𝑦𝑦0� = 𝑥𝑥0, 
𝑥𝑥0 = 𝑓𝑓0∗(𝑥𝑥−1, … , 𝑥𝑥−ℎ0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 ,𝑦𝑦−1, … ,𝑦𝑦−𝜏𝜏−𝑘𝑘0), 
𝑢𝑢1 = 𝑔𝑔0(𝑦𝑦−𝜏𝜏0−1, … ,𝑦𝑦−𝜏𝜏0−𝑘𝑘0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 ,𝑥𝑥0, … , 𝑥𝑥−ℎ0). 

Next, we give the definition of the automata with the input memory: 
Let there be functions 𝑓𝑓1 and 𝑔𝑔1 single-valued mappings  𝑊𝑊𝑝𝑝1+1 × 𝑋𝑋ℎ1 → 𝑌𝑌  and 

𝑊𝑊𝑝𝑝1+1 × 𝑋𝑋ℎ1 → 𝑈𝑈, respectively, for some integers  ℎ1  ≥  0,𝑝𝑝1  ≥  −1 then the automaton                  
𝑀𝑀1 =< 𝑋𝑋,𝑌𝑌,𝑊𝑊𝑝𝑝1+1 × 𝑋𝑋ℎ1 ,𝛿𝛿1, 𝜆𝜆1 > with a pseudo-memory of order (h1,0,p1) can be defined as:   

𝑦𝑦(𝑖𝑖) = 𝑓𝑓1�𝑤𝑤(𝑖𝑖), … ,𝑤𝑤(𝑖𝑖 − 𝑝𝑝1),𝑥𝑥(𝑖𝑖), … , 𝑥𝑥(𝑖𝑖 − ℎ1)�, 
𝑤𝑤(𝑖𝑖 + 1) = 𝑔𝑔1�𝑤𝑤(𝑖𝑖), … ,𝑤𝑤(𝑖𝑖 − 𝑝𝑝1), 𝑥𝑥(𝑖𝑖), … , 𝑥𝑥(𝑖𝑖 − ℎ1)�,i = 0,1, … 

i.е. 



𝛿𝛿1�< 𝑤𝑤0, … ,𝑤𝑤−𝑝𝑝1 ,𝑥𝑥−1, … , 𝑥𝑥−ℎ1 >, 𝑥𝑥0� =< 𝑤𝑤1, … ,𝑤𝑤−𝑝𝑝1+1,𝑥𝑥0, … , 𝑥𝑥−ℎ1+1 >, 
𝜆𝜆1�< 𝑤𝑤0, … ,𝑤𝑤−𝑝𝑝1 ,𝑥𝑥−1, … , 𝑥𝑥−ℎ1 >, 𝑥𝑥0� = 𝑦𝑦0, 
𝑦𝑦0 = 𝑓𝑓1(𝑤𝑤0, … ,𝑤𝑤−𝑝𝑝1 , 𝑥𝑥0, … , 𝑥𝑥−ℎ1), 
𝑤𝑤1 = 𝑔𝑔1(𝑤𝑤0, … ,𝑤𝑤−𝑝𝑝1 , 𝑥𝑥0, … , 𝑥𝑥−ℎ1), 

The automaton inverse to it is 𝑀𝑀1
∗ =< 𝑌𝑌,𝑋𝑋,𝑋𝑋ℎ1 × 𝑊𝑊𝑝𝑝1+1 × 𝑌𝑌𝜏𝜏1 ,𝛿𝛿1∗, 𝜆𝜆1∗ >  with a pseudo-memory 

of order (𝜏𝜏1,ℎ1,𝑝𝑝1)  has the following form: 
𝑥𝑥(𝑖𝑖) = 𝑓𝑓1∗(𝑥𝑥(𝑖𝑖 − 1), … , 𝑥𝑥(𝑖𝑖 − ℎ1),𝑤𝑤(𝑖𝑖), … ,𝑤𝑤(𝑖𝑖 − 𝑝𝑝1),𝑦𝑦(𝑖𝑖), … ,𝑦𝑦(𝑖𝑖 − 𝜏𝜏1)), 

𝑤𝑤(𝑖𝑖 + 1) = 𝑔𝑔1�𝑤𝑤(𝑖𝑖), … ,𝑤𝑤(𝑖𝑖 − 𝑝𝑝1), 𝑥𝑥(𝑖𝑖), … , 𝑥𝑥(𝑖𝑖 − ℎ1)�,i = 0,1, … 
i.е. 

𝛿𝛿1∗�< 𝑥𝑥−1, … , 𝑥𝑥−ℎ1𝑤𝑤0, … ,𝑤𝑤−𝑝𝑝1 ,𝑦𝑦−1, … ,𝑦𝑦−𝜏𝜏 >,𝑦𝑦0� = 
                                                              < 𝑥𝑥0, … , 𝑥𝑥−ℎ1+1,𝑤𝑤1, … ,𝑤𝑤−𝑝𝑝1+1,𝑦𝑦0, … ,𝑦𝑦−𝜏𝜏+1 >, 

𝜆𝜆�< 𝑤𝑤0, … ,𝑤𝑤−𝑝𝑝1 , 𝑥𝑥−1, … , 𝑥𝑥−ℎ1 >,𝑦𝑦0� = 𝑥𝑥0, 
𝑥𝑥0 = 𝑓𝑓1∗�𝑥𝑥0, … , 𝑥𝑥−ℎ1 ,𝑤𝑤0, … ,𝑤𝑤−𝑝𝑝1 ,𝑦𝑦0, … ,𝑦𝑦−𝜏𝜏1�, 
𝑤𝑤1 = 𝑔𝑔1(𝑤𝑤0, … ,𝑤𝑤−𝑝𝑝1 ,𝑥𝑥0, … , 𝑥𝑥−ℎ1), 

Then the composition of two automata 𝑓𝑓1:𝑊𝑊𝑝𝑝1+1 × 𝑋𝑋ℎ1 → 𝑌𝑌 and 𝑓𝑓0:𝑌𝑌𝑘𝑘0 × 𝑈𝑈𝑝𝑝0+1 × 𝑋𝑋ℎ0 → 𝑌𝑌 can 
be represented as a finite automaton 𝐶𝐶′(𝑀𝑀1,𝑀𝑀0) where the output of the automaton 𝑀𝑀1  is the input of 
the automaton 𝑀𝑀0: 

𝑓𝑓1°𝑓𝑓0:𝑌𝑌𝑘𝑘0 × 𝑈𝑈𝑝𝑝0+1 × 𝑊𝑊ℎ0+𝑝𝑝1+1 × 𝑋𝑋ℎ0+ℎ1 → 𝑌𝑌 
Substituting the values of the automaton M1 into the automaton M0, we obtain the following:  

𝑦𝑦(𝑖𝑖) = 𝑓𝑓0�𝑦𝑦(𝑖𝑖 − 1), … ,𝑦𝑦(𝑖𝑖 − 𝑘𝑘0),𝑢𝑢(𝑖𝑖), … ,𝑢𝑢(𝑖𝑖 − 𝑝𝑝0),
𝑓𝑓1�𝑤𝑤(𝑖𝑖), … ,𝑤𝑤(𝑖𝑖 − 𝑝𝑝1), 𝑥𝑥(𝑖𝑖), … , 𝑥𝑥(𝑖𝑖−ℎ1)�, … ,
      𝑓𝑓1(𝑤𝑤(𝑖𝑖 − ℎ0), … ,𝑤𝑤(𝑖𝑖 − ℎ0 − 𝑝𝑝1),𝑥𝑥(𝑖𝑖 − ℎ0), … , 𝑥𝑥(𝑖𝑖−ℎ0−ℎ1))�, 

𝑢𝑢(𝑖𝑖 + 1) = 𝑔𝑔0 �𝑦𝑦(𝑖𝑖 − 1), … , 𝑦𝑦(𝑖𝑖 − 𝑘𝑘0),𝑢𝑢(𝑖𝑖), … ,𝑢𝑢(𝑖𝑖 − 𝑝𝑝0),

𝑓𝑓1�𝑤𝑤(𝑖𝑖), … ,𝑤𝑤(𝑖𝑖 − 𝑝𝑝1), 𝑥𝑥(𝑖𝑖), … , 𝑥𝑥(𝑖𝑖 − ℎ1)�, … ,
 

 𝑓𝑓1�𝑤𝑤(𝑖𝑖 − ℎ0), … ,𝑤𝑤(𝑖𝑖   

− ℎ0 − 𝑝𝑝1), 𝑥𝑥(𝑖𝑖 − ℎ0), … , 𝑥𝑥(𝑖𝑖 − ℎ0 − ℎ1)��, 

𝑤𝑤(𝑖𝑖 + 1) = 𝑤𝑤1�𝑤𝑤(𝑖𝑖), … ,𝑤𝑤(𝑖𝑖 − 𝑝𝑝1), 𝑥𝑥(𝑖𝑖), … , 𝑥𝑥(𝑖𝑖 − ℎ1)�,i = 0,1, … 
i.е. 

𝛿𝛿�< 𝑦𝑦−1, … ,𝑦𝑦−𝑘𝑘0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 ,𝑤𝑤0, … ,𝑤𝑤−ℎ0−𝑝𝑝1 ,𝑥𝑥−1, … , 𝑥𝑥−ℎ0−ℎ1 >, 𝑥𝑥0� = 
                     < 𝑦𝑦0, … ,𝑦𝑦−𝑘𝑘0+1,𝑢𝑢1, … ,𝑢𝑢−𝑝𝑝0+1,𝑤𝑤1, … ,𝑤𝑤−ℎ0−𝑝𝑝1+1𝑥𝑥0, … , 𝑥𝑥−ℎ0−ℎ1+1 >, 

𝜆𝜆�< 𝑦𝑦−1, … ,𝑦𝑦−𝑘𝑘0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 ,𝑤𝑤0, … ,𝑤𝑤−ℎ0−𝑝𝑝1 ,𝑥𝑥−1, … , 𝑥𝑥−ℎ0−ℎ1 >, 𝑥𝑥0� = 𝑦𝑦0, 
𝑦𝑦0 = 𝑓𝑓0(𝑦𝑦−1, … ,𝑦𝑦−𝑘𝑘0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 ,𝑤𝑤0, … ,𝑤𝑤−ℎ0−𝑝𝑝1 ,𝑥𝑥−1, … , 𝑥𝑥−ℎ0−ℎ1), 
𝑢𝑢1 = 𝑔𝑔0 �𝑦𝑦−1, … ,𝑦𝑦−𝑘𝑘0 ,𝑢𝑢0, … ,𝑢𝑢−𝑝𝑝0 ,𝑓𝑓1�𝑤𝑤0, … ,𝑤𝑤−𝑝𝑝1 , 𝑥𝑥0, … , 𝑥𝑥−ℎ1�,

… ,𝑓𝑓1�𝑤𝑤−ℎ0 , … ,𝑤𝑤−ℎ0−𝑝𝑝1 ,𝑥𝑥−ℎ0 , … , 𝑥𝑥−ℎ0−ℎ1��, 
𝑤𝑤1 = 𝑤𝑤1�𝑤𝑤0, … ,𝑤𝑤−𝑝𝑝1 , 𝑥𝑥0, … , 𝑥𝑥−ℎ1�, 
Considering this type of automaton, we can see that the function that determines the pseudo-

memory of the automaton is not subjected to modifications when constructing the inverse automaton. 
Next, consider the example of the automata with pseudo-memory in the encryption and decryption of 
information. 

We will further illustrate an example on how to apply pseudo-memory automata on encryption and 
decryption process. Take two linear pseudo-memory automata over a finite field F (F=GF(2)), and 
take the parameters m, l, n = 3, in which 𝑊𝑊 = 𝐹𝐹𝑚𝑚,𝑋𝑋 = 𝐹𝐹𝑙𝑙 ,𝑌𝑌 = 𝐹𝐹𝑛𝑛 are the vector columns of 
dimension m, l, n =3, respectively 

Let 𝑀𝑀1 =< 𝑋𝑋,𝑌𝑌,𝑊𝑊𝑝𝑝1+1 × 𝑋𝑋ℎ1 ,𝛿𝛿1, 𝜆𝜆1 > be a liner automata with pseudo-memory of order (4,0,0) 
with delay 𝜏𝜏0 =1 and 𝑀𝑀0 =< 𝑌𝑌,𝑍𝑍,𝑍𝑍𝑘𝑘0 × 𝑈𝑈𝑝𝑝0+1 × 𝑌𝑌ℎ0 ,𝛿𝛿0, 𝜆𝜆0 > be a linear automata with pseudo-
memory of order (1,1,0) with delay 𝜏𝜏1 =1. 𝑀𝑀0 and 𝑀𝑀1 are defined as follows: 



 
 

𝑀𝑀0: 𝑧𝑧(𝑖𝑖) = �
1 1 0
0 0 1
0 1 0

� 𝑧𝑧(𝑖𝑖 − 1) + �
0 1 0
1 0 0
0 0 1

� 𝑢𝑢(𝑖𝑖 − 1) + �
1 0 0
0 0 0
0 0 0

� 𝑦𝑦(𝑖𝑖) + �
0 1 0
0 1 0
0 0 1

� 

𝑦𝑦(𝑖𝑖 − 1) 
𝑢𝑢(𝑖𝑖 − 1)= 𝑔𝑔0�𝑧𝑧(𝑖𝑖 − 1), 𝑧𝑧(𝑖𝑖 − 2)� = 𝑧𝑧(𝑖𝑖 − 1) ∙ 𝑧𝑧(𝑖𝑖 − 2)  

𝑀𝑀1:𝑦𝑦(𝑖𝑖) = �
1 0 1
0 1 1
1 0 0

� 𝑤𝑤(𝑖𝑖 − 3) + �
1 1 0
0 1 0
1 0 0

� 𝑥𝑥(𝑖𝑖) + �
1 0 0
0 1 0
1 1 1

� 𝑥𝑥(𝑖𝑖 − 1) + �
1 0 0
0 1 0
1 0 1

� 

𝑥𝑥(𝑖𝑖 − 2)  
where 𝐵𝐵3 and 𝐵𝐵4 – the zero matrix, i = 0,1,2,3       
𝑤𝑤(𝑖𝑖 − 3)= 𝑔𝑔1�𝑥𝑥(𝑖𝑖 − 3), 𝑥𝑥(𝑖𝑖 − 4)� = 𝑥𝑥(𝑖𝑖 − 3) ∙ 𝑥𝑥(𝑖𝑖 − 4) 
For functions 𝑢𝑢 and 𝑤𝑤, operation (∙) means componentwise multiplication of vector elements, i.e.  
 [𝑎𝑎2,𝑎𝑎1,𝑎𝑎0] 𝑇𝑇& [𝑏𝑏2,𝑏𝑏1,𝑏𝑏0]𝑇𝑇 = [𝑎𝑎2&𝑏𝑏2,𝑎𝑎1&𝑏𝑏1,𝑎𝑎0&𝑏𝑏0] 𝑇𝑇, where 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 ∈ 𝐺𝐺𝐹𝐹(2) . 
 
Construct the composition of these two automata 𝐶𝐶′(𝑀𝑀1,𝑀𝑀0) with delay 𝜏𝜏 = 𝜏𝜏0 + 𝜏𝜏1 = 2 : 

𝑧𝑧(𝑖𝑖) = �
1 1 0
0 0 1
0 1 0

� 𝑧𝑧(𝑖𝑖 − 1) + �
0 1 0
1 0 0
0 0 1

� 𝑢𝑢(𝑖𝑖 − 1) + �
1 1 0
0 0 0
0 0 0

� 𝑥𝑥(𝑖𝑖) + �
0 1 0
1 1 0
1 0 0

� 𝑥𝑥(𝑖𝑖 − 1) + 

�
0 0 1
1 0 1
1 1 1

� 𝑥𝑥(𝑖𝑖 − 2) + �
1 1 1
1 1 1
1 0 1

� 𝑥𝑥(𝑖𝑖 − 3) + �
1 0 1
0 0 0
0 0 0

� 𝑤𝑤(𝑖𝑖 − 3) + �
1 1 1
1 1 1
1 0 0

� 𝑤𝑤(𝑖𝑖 − 4) 

 
Then, the public key is 𝐶𝐶′(𝑀𝑀1,𝑀𝑀0) and some initial state s, for example, 
𝑠𝑠 =< 𝑧𝑧−1, 𝑧𝑧−2,𝑢𝑢−1,𝑤𝑤−3,𝑤𝑤−4,𝑥𝑥−1,𝑥𝑥−2,𝑥𝑥−3,𝑥𝑥−4,𝑥𝑥−5 >=                                                                      

< �
1
0
1
� , �

0
0
1
� , �

0
0
1
� , �

1
0
0
� , �

0
1
0
� , �

0
1
0
� , �

1
0
1
� , �

1
1
0
� , �

0
1
1
� > 

Where 𝑢𝑢−1 = 𝑧𝑧−1 ∙ 𝑧𝑧−2,𝑤𝑤−3 = 𝑥𝑥−3 ∙ 𝑥𝑥−2,𝑤𝑤−4 = 𝑥𝑥−4 ∙ 𝑥𝑥−5  

For example, to encrypt 𝛼𝛼 = 𝑥𝑥0𝑥𝑥1𝑥𝑥2 = �
1
0
1
� �

1
1
0
� �

1
1
1
�.  

But, since the automata 𝐶𝐶′(𝑀𝑀1,𝑀𝑀0)  has delay 2, we need to append the plaintext with two 

arbitrarily chosen symbols, say 𝛾𝛾 = 𝑥𝑥3𝑥𝑥4 = �
0
0
0
� �

1
0
0
�, and calculate the ciphertext 

 𝜆𝜆(𝑠𝑠,𝛼𝛼𝛾𝛾) =  �
0
1
1
� �

0
1
1
� �

1
0
0
� �

0
1
1
� �

0
1
1
�. 

For the decryption process, it is necessary to compute the inverses of the automata 𝑀𝑀0 and 𝑀𝑀1, 
which will be the private key. Inverse automata 𝑀𝑀0 and 𝑀𝑀1 are constructed according to the rules of 
Ra/Rb transformations [22]. The inverse transducers are defined by: 

 

𝑀𝑀0
∗: 𝑦𝑦(𝑖𝑖) = �

0 1 0
0 0 0
0 0 0

� 𝑦𝑦(𝑖𝑖 − 1) +�
0 0 0
1 0 1
0 0 1

� 𝑢𝑢(𝑖𝑖 − 1) + �
0 1 1
0 0 0
0 0 0

� 𝑢𝑢(𝑖𝑖 − 2) + �
0 0 0
0 1 1
0 0 1

� 

𝑧𝑧(𝑖𝑖) +     �
1 0 1
0 1 1
0 1 0

� 𝑧𝑧(𝑖𝑖 − 1)+�
1 0 0
0 0 0
0 0 0

� 𝑧𝑧(𝑖𝑖 − 2) 

 

𝑢𝑢(𝑖𝑖 − 1)= 𝑔𝑔0�𝑧𝑧(𝑖𝑖 − 1), 𝑧𝑧(𝑖𝑖 − 2)� = 𝑧𝑧(𝑖𝑖 − 1) ∙ 𝑧𝑧(𝑖𝑖 − 2) 
𝑢𝑢(𝑖𝑖 − 2)= 𝑔𝑔0�𝑧𝑧(𝑖𝑖 − 2), 𝑧𝑧(𝑖𝑖 − 3)� = 𝑧𝑧(𝑖𝑖 − 2) ∙ 𝑧𝑧(𝑖𝑖 − 3) 

𝑀𝑀1
∗: 𝑥𝑥(𝑖𝑖) = �

1 1 0
0 1 0
0 1 1

� 𝑥𝑥(𝑖𝑖 − 1) +�
1 1 0
0 1 0
0 0 0

� 𝑥𝑥(𝑖𝑖 − 2) + �
0 0 0
0 0 0
0 1 0

� 𝑤𝑤(𝑖𝑖 − 2) +  �
1 1 0
0 1 1
0 0 0

� 

𝑤𝑤(𝑖𝑖 − 3) +     �
0 0 0
0 0 0
1 1 1

� 𝑦𝑦(𝑖𝑖)+�
1 1 0
0 1 0
0 0 0

� 𝑦𝑦(𝑖𝑖 − 1) 



𝑤𝑤(𝑖𝑖 − 2)= 𝑤𝑤1�𝑥𝑥(𝑖𝑖 − 2),𝑥𝑥(𝑖𝑖 − 3)� = 𝑥𝑥(𝑖𝑖 − 2) ∙ 𝑥𝑥(𝑖𝑖 − 3) 
𝑤𝑤(𝑖𝑖 − 3)= 𝑤𝑤1�𝑥𝑥(𝑖𝑖 − 3),𝑥𝑥(𝑖𝑖 − 4)� = 𝑥𝑥(𝑖𝑖 − 3) ∙ 𝑥𝑥(𝑖𝑖 − 4) 
 
In the first step of decryption we use 𝑀𝑀0

∗ and 𝑠𝑠0,𝑑𝑑
𝑜𝑜𝑜𝑜𝑜𝑜 .  

 
Calculate 𝑦𝑦0𝑦𝑦1𝑦𝑦2𝑦𝑦3= 𝜆𝜆0∗ (< 𝑦𝑦−1,𝑢𝑢−1,𝑢𝑢−2, 𝑧𝑧0, 𝑧𝑧−1 >, 𝑧𝑧1𝑧𝑧2𝑧𝑧3𝑧𝑧4). 
 

Where  𝑦𝑦−1 = 𝜆𝜆1(< 𝑤𝑤−1,𝑥𝑥−2,𝑥𝑥−3 >, 𝑥𝑥−1) = �
1
0
0
�,   𝑤𝑤−1 = 𝑥𝑥−4 ∙ 𝑥𝑥−5 = �

1
1
0
� ∙ �

0
1
1
� = �

0
1
0
� 

 𝑢𝑢−1 = 𝑧𝑧0 ∙ 𝑧𝑧−1 = �
1
1
1
� ∙ �

1
0
1
� = �

1
0
1
� , 𝑢𝑢−2 = 𝑧𝑧−1 ∙ 𝑧𝑧−2 = �

1
0
1
� ∙ �

1
0
0
� = �

1
0
0
�  

𝑦𝑦0𝑦𝑦1𝑦𝑦2𝑦𝑦3 = �
1
1
1
� �

1
1
0
� �

0
0
1
� �

0
0
0
�. 

In the second step of decryption we use 𝑀𝑀1
∗ and  𝑠𝑠1,𝑑𝑑

𝑜𝑜𝑜𝑜𝑜𝑜. 
Calculate 𝑥𝑥0𝑥𝑥1𝑥𝑥2 = 𝜆𝜆1∗(< 𝑥𝑥−1,𝑥𝑥−2,𝑥𝑥−3,𝑥𝑥−4,𝑤𝑤−2,𝑤𝑤−3,𝑦𝑦0 >,𝑦𝑦1𝑦𝑦2𝑦𝑦3𝑦𝑦4). 
 

After which we will get plaint text: �
1
0
1
� �

1
1
0
� �

1
1
1
�. 

The above example is given to illustrate the operation of the pseudo-memory machine. Obviously, in 
practice, FA is much more complicated. Automatic linear or non-linear automata are used depending on 
how it is built. In a nonlinear finite state machine, the degree of the polynomial constituting FA is greater 
than one. For more information on how to build such types of automata, refer to work [22]. 

6. Conclusion  

This paper considered applying classical automaton-theoretical models to cryptography problems. 
The basic principle of constructing a finite-automaton cryptosystem with public keys and the history 
of the development of this direction are considered, an example of the use of pseudo-memory 
automata in information encryption is demonstrated. Summing up, it can be noted that the use of high-
speed automata allows creating a strong asymmetric cryptosystem based on finite automata with high 
encrypting speed. However, using big parameters in cryptosystem will increase the size of public 
keys. Thereby finite-automaton cryptosystem with size of the public key within acceptable limits, 
could be used as part of a combination cryptosystem, which consists of several encryption algorithms 
and models. An approach to designing a cryptographic algorithm using finite automata with pseudo-
memory is analyzed, which, in contrast to existing algorithms, makes it possible to increase the 
security of the designed asymmetric cryptosystem based on finite automata. In the future, it is planned 
to develop software modules for generating pairs of cryptographic keys for an asymmetric 
cryptosystem based on finite automata with pseudo-memory. 
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