
LIGON – Link Discovery with Noisy Oracles

Mohamed Ahmed Sherif1,2, Kevin Dreßler2, and Axel-Cyrille Ngonga Ngomo1,2

1 Paderborn University, Data Science Group, Technologiepark 6, 33100 Paderborn,
Germany

E-mail: {firstname.lastname}@upb.de
2 Department of Computer Science, University of Leipzig, 04109 Leipzig, Germany

E-mail: {lastname}@informatik.uni-leipzig.de

Abstract. Link discovery plays a key role in the integration and use
of data across RDF knowledge graphs. Active learning approaches are a
common family of solutions to address the problem of learning how to
compute links from users. So far, only active learning from perfect ora-
cles has been considered in the literature. However, real oracles are often
far from perfect (e.g., in crowdsourcing). We hence study the problem
of learning how to compute links across knowledge graphs from noisy
oracles, i.e., oracles that are not guaranteed to return correct classifica-
tion results. We present a novel approach for link discovery based on a
probabilistic model, with which we estimate the joint odds of the oracles’
guesses. We combine this approach with an iterative learning approach
based on refinements. The resulting method, Ligon, is evaluated on 11
benchmark datasets. Our results suggest that Ligon achieves more than
95% of the F-measure achieved by state-of-the-art algorithms trained
with a perfect oracle.

1 Introduction

The provision of links between knowledge graphs in RDF3 is of central im-
portance for numerous tasks on the Semantic Web, including federated queries,
question answering and data fusion. While links can be created manually for
small knowledge bases, the sheer size and number of knowledge bases commonly
used in modern applications (e.g., DBpedia with more than 3 × 106 resources)
demands the use of automated link discovery mechanisms. In this work, we focus
on active learning for link discovery. State-of-the-art approaches that rely on ac-
tive learning [3, 12, 8] assume that the oracle they rely upon is perfect. Formally,
this means that given an oracle ω, the probability of the oracle returning a wrong
result (i.e., returning false when an example is to be classified as true) is ex-
actly 0. While these approaches show pertinent results in evaluation scenarios,
within which the need for a perfect oracle can be fulfilled, this need is difficult if

Copyright 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).”

3 See https://www.w3.org/RDF/.

not impossible to uphold in real-world settings (e.g., when crowdsourcing train-
ing data). No previous work has addressed link discovery based on oracles that
are not perfect.

We address this research gap by presenting a novel approach for learning
link specifications (LS) from noisy oracles, i.e., oracles that are not guaranteed
to return correct classifications. This approach is motivated by the problem of
learning LS using crowdsourcing. Previous works have shown that agents in real
crowdsourcing scenarios are often not fully reliable (e.g., [19]). We model these
agents as noisy oracles, which provides erroneous answers to questions with a
fixed probability. We address the problem of learning from such oracles by using
a probabilistic model, which approximates the odds of the answer of a set of
oracles being correct. Our approach, dubbed Ligon, assumes that the underlying
oracles are independent, i.e., that the probability distributions underlying oracles
are pairwise independent. Moreover, we assume that the oracles have a static
behavior, i.e., that the probability of them generating correct/incorrect answers
is constant over time.

The contributions of this paper are as follows: (1) We present a formalization
of the problem of learning LS from noisy oracles. We derive a probabilistic model
for learning from such oracles. (2) We develop the first learning algorithm dedi-
cated to learning LS from noisy data. The approach combines iterative operators
for LS with an entropy-based approach for selecting most informative training
examples. In addition, it uses cumulative evidence to approximate the probabil-
ity distribution underlying the noisy oracles that provide it with training data.
Finally, (3) we present a thorough evaluation of Ligon and show that it is ro-
bust against noise, scales well and converges with 10 learning iterations to more
than 95% of the average F-measure achieved by Wombat—a state-of-the-art
approach for learning LS—provided with a perfect oracle.

2 Preliminaries

Knowledge graphs (also called knowledge bases) in RDF are defined as sets of
triples K ⊆ (R∪B)×P× (R∪B∪L), where R is the set of all resources, i.e., of
all objects in the domain of discourse (e.g., persons and publications); P ⊆ R is
the set of all predicates, i.e., of binary relations (e.g., author); B is the set of all
blank nodes, which basically stand for resources whose existence is known but
whose identity is not relevant to the model and L is the set of all literals, i.e., of
values associated to datatypes (e.g., integers).4 The elements of K are referred
to as facts or triples. We call the elements of R entities or resources.

The link discovery task on RDF knowledge graphs is defined as follows: Let
S and T be two sets of resources, i.e., S ⊆ R and T ⊆ R. Moreover, let r ∈ P be
a predicate. The aim of link discovery is to compute the set M = {(s, t) ∈ S×T :
r(s, t)}. We call M a mapping. In many cases, M cannot be computed directly
and is thus approximated by a mapping M ′. To find the set M ′, declarative

4 See https://www.w3.org/RDF/ for more details.

2

Fig. 1: Complex LS example. The
filter nodes are rectangles while
the operator nodes are circles.

f(jaccard(:description, :name), 0.59)

f(cosine(:title, :name), 0.48)t

Table 1: Link Specification Syntax and
Semantics

LS [[LS]]M

f(m, θ) {(s, t)|(s, t) ∈M ∧m(s, t) ≥ θ}
L1 u L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∈ [[L2]]M}
L1 t L2 {(s, t)|(s, t) ∈ [[L1]]M ∨ (s, t) ∈ [[L2]]M}
L1\L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) /∈ [[L2]]M}

link discovery frameworks rely on link specifications (LS), which describe the
conditions under which r(s, t) can be assumed to hold for a pair (s, t) ∈ S × T .
Several formal models have been used for describing LS in previous works [8].
We adopt a formal approach derived from [17] and first describe the syntax and
then the semantics of LS.

LS consist of two types of atomic components: similarity measures m, which
allow the comparing of property values of input resources and operators op, which
can be used to combine LS to more complex LS. Without loss of generality, we
define a similarity measure m as a function m : S × P × T × P → [0, 1]. An
example of a similarity measure is the edit similarity dubbed edit5 which allows
computing the similarity of a pair (s, t) ∈ S × T w.r.t. the values of a pair of
properties (ps, pt) for s resp. t. An atomic LS is a pair (m, θ). A complex LS
is the result of combining two LS L1 and L2 through an operator that allows
merging the results of L1 and L2. Here, we use the operators u, t and \ as they
are complete w.r.t. the Boolean algebra and frequently used to define LS. An
example of a complex LS is given in Figure 1.

We define the semantics [[L]]µ of a LS L w.r.t. a mapping µ as given in
Table 1. The mapping [[L]] of a LS L w.r.t. S × T contains the link candidates
generated by L. A LS L is subsumed by L′, denoted by L v L′, if for all mappings
µ, we have [[L]]µ ⊆ [[L′]]µ. Two LS are equivalent, denoted by L ≡ L′ iff L v L′
and L′ v L. Subsumption (v) is a partial order over the set of LS, denoted L.

3 Noisy Oracles

We model oracles Ω for r as black boxes with a characteristic function ω :
S × T → {true, false}. The characteristic function ωi of the oracle Ωi returns
true iff the oracle Ωi assumes that r(s, t) holds. Otherwise, it returns false.
For ease of notation, we define LC = S × T and call the elements of LC link
candidates. For l ∈ LC, we write l ≡ > to signify that r(l) holds, i.e., r(s, t)
is true for l = (s, t). Otherwise, we write l ≡ ⊥. We now assume a learning
situation typical for crowdsourcing, where n oracles are presented with a link
candidate l and asked whether l ≡ > holds. We can describe each oracle Ωi by
the following four probabilities: 1 p(ωi(l) = true|l ≡ >), i.e., the probability
of the oracle Ωi generating true positives. This value is exactly 1 for a perfect

5 We define the edit similarity of two strings s and t as (1 + lev(s, t))−1, where lev is
the Levenshtein distance.

3

oracle. 2 p(ωi(l) = false|l ≡ >), the probability of false negatives (0 for a
perfect oracle). 3 p(ωi(l) = true|l ≡ ⊥), i.e., the probability of false positives,
(0 for a perfect oracle), and 4 p(ωi(l) = false|l ≡ ⊥), the probability of true
negatives (1 for a perfect oracle). Given that p(A|B) + p(¬A|B) = 1, the sum of
the first two and last two probabilities is always 1.

Example 1. A noisy oracle can have the following description: p(ωi(l)=true|l≡
>)=0.7, p(ωi(l)=true|l≡⊥)=0.5, p(ωi(l)=false|l≡>)=0.3, p(ωi(l)=false|l≡⊥)=
0.5.

For compactness, we use the following vector notation in the rest of the for-
mal model: −→ω refers to the vector of characteristic functions over all oracles.
We write −→ω (l) = −→x to signify that the ith oracle returned the xi for the link
candidate l. Let us assume that the probabilities underlying all oracles Ωi are
known (we discuss ways to initialize and update these probabilities in the sub-
sequent section). Recalling that we assume that our oracles are independent, we
can now approximate the probability that l ≡ y (with y ∈ {>,⊥}) for any given
link candidate l using the following Bayesian model:

p(l=y|−→w=−→x)=

∏n
i=1 p(ωi=xi|l≡y)∏n
i=1 p(ωi=xi)

p(l≡y) (1)

Recall that the odds of an eventA occurring are defined as odds(A) = p(A)/P (¬A).
For example, the odds of any link candidate being a correct link (denoted o+)
are given by

o+ =
p(l ≡ >)

p(l ≡ ⊥)
for any l ∈ LC. (2)

o+ is independent of l and stands for the odds that an element of LC chosen
randomly would be a link. Given feedback from our oracles, we can approximate
the odds of a link candidate l being a correct link by computing the following:

odds(l≡>|−→w=−→x)=

(
n∏
i=1

p(ωi=xi|l≡>)

p(ωi=xi|l≡⊥)

)
p(l≡>)

p(l≡⊥)
=

(
n∏
i=1

p(ωi=xi|l≡>)

p(ωi=xi|l≡⊥)

)
o+. (3)

A key idea behind our model is that a link candidate l can be considered to be
a correct link if odds(l ≡ >|−→w = −→x) ≥ k with k > 1. A link candidate is assumed
to not be a link if odds(l|−→w = −→x) ≤ 1/k. All other link candidates remain
unclassified. Computing the odds for a link now boils down to (1) approximating
the four probabilities which characterize our oracles and (2) computing o+. As
known from previous works on probabilistic models [7], o+ is hard to compute
directly as it requires knowing the set of links M , which is exactly what we are
trying to compute. Several strategies can be used to approximate o+. In this
work, we consider the following three:

1. Ignore strategy: We can assume the probabilities p(l = >) and p(l = ⊥) to
be equally unknown and hence use o+ = 1 . This reduces Equation 3 to

odds(l=>|−→w=−→x)=

n∏
i=1

p(ωi=xi|l≡>)

p(ωi=xi|l≡⊥)
. (4)

4

Algorithm 1: Ligon Learning Algorithm

Input: Set of positive examples E0 ⊆ LC; Oracles Ω1 . . . Ωn; Odds parameter k
1 j ←− 0 ;
2 foreach oracle Ωi do
3 Initialize confusion matrix Ci with 1

2
;

4 repeat
5 foreach oracle Ωi do
6 Gather ωi(l) for each l ∈ Ej ;
7 Update the confusion matrix Ci ;
8 Update the characteristic matrix Di;

9 Train Active Learner (Wombat by default) using
⋃j

i=0Ei;
10 Compute the set of the most informative unlabeled examples E∗;
11 foreach link candidate l ∈ E∗ do
12 Get the oracle result vector −→x for l;

13 Compute the set E+ of positive examples with odds(l = >|−→w = −→x) ≥ k ;
14 Compute the set E− of negative examples with odds(l = >|−→w = −→x) ≤ 1

k
;

15 j ←− j + 1 ;
16 Ej ←− E+ ∪ E−;

17 until termination criterion holds;
18 return best link specification;

2. Equivalence strategy: If r is an equivalence relation (e.g., owl:sameAs), then
the set of all possible candidates has the size |S||T |. There can be at most
min(|S|, |T |) links between S and T as no two pairs (s, t) and (s, t′) can be
linked if t 6= t′ and vice-versa (see [13]). Hence,

o+ ≈ min(|S|, |T |)
|S||T | −min(|S|, |T |)

. (5)

3. Approximate strategy: We approximate o+ by using our learning approach.
We select the mapping [[L∗]] computed using the best specification L∗ learned
by Ligon (see the subsequent Section) as our best current approximation of
the mapping we are trying to learn. o+ is then computed as follows:

o+ ≈ |[[L∗]]|
|S||T | − |[[L∗]]|

. (6)

We quantify the effect of these strategies on our learning algorithm in our ex-
periments.

4 The LIGON approach

Ligon is an active learning algorithm designed to learn LS from noisy oracles.
An overview of the approach is given in Algorithm 1 and explained in the sections
below.

5

Confusion Matrices. We begin by assuming that we are given an initial set
E0 ⊆ LC of positive and negative examples for links. In the first step, we aim
to compute the initial approximations of the conditional probabilities which
describe each of the oracles Ωi. To this end, each oracle is assigned a confusion
matrix Ci of dimension 2 × 2 (see lines 2-3 of Algorithm 1). Each entry of the
matrix is initialized with 1

2 to account for potential sampling biases due to high
disparities between conditional probabilities. The first and second row of each Ci
contains counts for links where the oracle returned true resp. false. The first
and second column of Ci contain counts for positive resp. negative examples.
Hence, C11 basically contains counts for positive examples that were rightly
classified as > by the oracle. In each learning iteration, we update the confusion
matrix by presenting the oracle with unseen link candidates and incrementing
the entries of C (see lines 4-8 of Algorithm 1). We discuss the computation of
the training examples in the subsequent section. Based on the confusion matrix,
we can approximate all conditional probabilities necessary to describe the oracle
by computing the 2 × 2 matrix D with dij = cij/(c1j + c2j). For example,
d11 ≈ p(ωi(l) = true|l ≡ >). We call D the characteristic matrix of Ω.

Example 2. Imagine an oracle were presented with a set of 5 positive and 5
negative training examples, of which he classified 4 resp. 3 correctly. We get

C =

[
9
2

5
2

3
2

7
2

]
and D =

[
9
12

5
12

3
12

7
12

]
.

Updating the Characteristic Matrices. Updating the probabilities is done via the
confusion matrices. In each learning iteration, we present all oracles with the link
candidates deemed to be most informative. Based on the answers of the oracles,
we compute the odds for each of these link candidates. Link candidates l with
odds in [0, 1/k] and [k,+∞[are considered to be false respectively true. The
new classifications are subsequently used to update the counts in the confusion
matrices and therewith also the characteristic matrix of each of the oracles.

Active Learning Approach. So far, we have assumed the existence of an active
learning solution for link discovery. Several active learning approaches have been
developed over recent years [8]. Of these approaches, solely those based on genetic
programming can generate specifications of arbitrary complexity. However, ge-
netic programming approaches are not deterministic and are thus difficult to use
in practical applications. Newer approaches based on iterative operators such as
Wombat [17] have been shown to perform well in classical link discovery tasks.
Therefore, we implemented a generic interface to apply Ligon to several active
learning algorithms, where we used the Wombat algorithm as the default ac-
tive learning algorithm for Ligon. See our last set of experiments for results of
applying Ligon to other state-of-the-art active learning approaches.

Selecting the Most Informative Examples. Given an active learning algorithm, we
denote the set of the m best LS generated in a given iteration i as Bi. The most
informative examples are those link candidates l, which maximize the decision

6

entropy across the elements of Bi [12]. Formally, let [[Bi]] be the union of the set
of link candidates generated by all LS b ∈ Bi. Then, the most informative link
candidates are the l ∈ Bi which maximize the entropy function e(l, Bi), which is
defined as follows: Let p(l, Bi) be the probability that a link candidate belongs
to [[b]] for b ∈ Bi. Then, e(l, Bi) = −p(l, Bi) log2 p(l, Bi).

Example 3. Let us assume |Bi| = 4. A link candidate l returned by two of the LS
in Bi would have a probability p(l, Bi) = 0.5. Hence, it would have an entropy
e(l, Bi) = 0.5.

Termination Criterion. Ligon terminates after a set number of iterations has
been achieved or if a link specification learned by Wombat achieves an F-
measure of 1 on the training data.

5 Experiments and Results

We aimed to answer 6 research questions with our experimental evaluation:
Q1. Which combination of strategies for computing odds and the threshold k
leads to the best performance?, Q2. How does Ligon behave when provided
with an increasing number of noisy oracles?, Q3. How well does Ligon learn
from noisy oracles?, Q4. How well does Ligon scale?, Q5. How well does Ligon
perform compare to batch learning approaches trained with a similar number of
examples? and Q6. How general is Ligon, i.e., can Ligon be applied to problems
outside the link discovery domain? and does Ligon depend on the underlying
active learning algorithm?

Experimantal Setup. All experiments were carried out on a 64-core 2.3
GHz PC running OpenJDK 64-Bit Server 1.8.0 151 on Ubuntu 16.04.3 LTS. Each
experiment was assigned 20 GB RAM. We evaluated Ligon using 8 link discov-
ery benchmark datasets. Five of these benchmarks were real-world datasets [6]
while three were synthetic from the OAEI 2010 benchmark.6 We used the paradigm
proposed by [5] and measured the performance of algorithms using the best F-
measure they achieved. As this measure fails to capture the average behaviour
of algorithm over several iterations, we also report the normalized average area
under the F-measure curve, which we denote AUC. We initialized Ligon with
10 positive examples (ergo, |E0| = 10). We fixed the number of the most infor-
mative examples to be labeled by the noisy oracles at each iteration to 10. For
labeling the most informative examples, we use n = 2, 4, 8 and 16 noisy oracles
which were all initialized with random confusion matrices. We set the size of
B to 10. All experiments were repeated 10 times and we report average values.
The characteristic matrices C of our noisy oracles were generated at random. To
this end we generated the true positive and true negative probabilities using a
uniform distribution between 0.5 and 1, i.e. p(ωi(l) = true|l ≡ >) ∈ [0.5, 1] and
p(ωi(l) = true|l ≡ >) ∈ [0.5, 1]. The other probabilities were set accordingly, as
they are complementary to the former two.

6 http://oaei.ontologymatching.org/2010

7

Fig. 2: Average AUC heatmap of
Ligon. using 2, 4, 8 and 16 noisy or-
acles and the perfect oracle.

Dataset / # oracles 2 4 8 16 Perfect

Person 1 0.97 0.93 0.93 0.93 0.99

Person 2 0.98 0.98 0.98 0.98 0.99

Restaurants 0.97 0.97 0.97 0.97 0.97

ABT–Buy 0.89 0.88 0.88 0.88 0.97

Amazon–GoogleProducts 0.72 0.71 0.72 0.72 0.73

DBLP–ACM 0.70 0.71 0.70 0.71 0.76

DBpedia–LinkedMDB 0.89 0.88 0.88 0.88 0.97

DBLP–GoogleScholar 0.81 0.79 0.78 0.78 0.92

Average 0.86 0.86 0.85 0.86 0.91

Standard deviation 0.11 0.11 0.11 0.11 0.11

Table 2: Average learning iteration
runtime analysis (in seconds).

Datasets Ligon Wombat

Persons 1 2.415 2.412
Persons 2 0.946 0.942
Restaurants 0.261 0.258
ABT–Buy 4.277 4.273
Amazon–GoogleProd 2.848 2.844
DBLP–ACM 4.277 4.273
DBpedia–LinkedMDB 6.158 6.154
DBLP–GoogleScholar 16.072 16.067

Parameter Estimation. Our first series of experiments aimed to answerQ1.
We ran Ligon with k = 2, 4, 8 and 16. These settings were used in combination
with all three strategies for computing o+ aforementioned. A first observation
is that the AUC achieved by Ligon does not depend much on the value of k
nor on the strategy used. This is a highly positive feature of our algorithm as it
suggests that our approach is robust w.r.t. to how it is initialized. Interestingly,
this experiment already suggests that Ligon achieves more than 95% of the
performance of the original Wombat algorithm trained with a perfect oracle.

We chose to run the remainder of our experiments with the setting k = 16
combined with the equivalent strategy as this combination achieved the highest
average F-measure of 0.86.

Comparison with Perfect Oracle. In our second set of experiments, we
answered Q2 by measuring how well Ligon performed when provided with an
increasing number of oracles. In this series of experiments, we used 2, 4, 8,
and 16 oracles which were initialized randomly. k was set to 16 and we used
the Equivalent strategy. Once more, the robustness of our approach became
evident as its performance was not majorly perturbed by a variation in the
number of oracles. In all settings Ligon achieves an average AUC close to 0.86
with no statistical difference. We can hence conclude that the performance of
our approach depends mostly on the initial set of examples E0 being accurate,
which leads to our prior—i.e., the evaluation of the initial confusion matrix of the
oracles—being sufficient. This sufficient approximation means that our Bayesian
model is able to distinguish between erroneous classifications well enough to find
most informative examples accurately and generalize over them. In other words,
even a small balanced set containing 5 positive and 5 negative examples seems
sufficient to approximate the confusion matrix of the oracles sufficiently well to
detect positive and negative examples consistently in the subsequent steps. This
answers Q2. Figures 2 and 3 show the detailed results of running Ligon for 10
iterations for each of our 8 benchmark datasets.

To answer Q3, we also ran our approach in combination with a perfect oracle
(i.e., an oracle which knew and returned the perfect classification for all pairs

8

0.96

0.97

0.98

0.99

1.00

1 2 3 4 5 6 7 8 9 10

(a) Persons 1

0.88

0.92

0.96

1.00

1 2 3 4 5 6 7 8 9 10

(b) Persons 2

0.94

0.96

0.98

1.00

1 2 3 4 5 6 7 8 9 10

(c) Restaurants

0.78

0.82

0.86

0.90

0.94

1 2 3 4 5 6 7 8 9 10

(d) ABT–Buy

0.68

0.70

0.72

1 2 3 4 5 6 7 8 9 10

(e) Amazon–GoogleProd

0.60

0.65

0.70

0.75

0.80

1 2 3 4 5 6 7 8 9 10

(f) DBLP–ACM

0.88

0.92

0.96

1.00

1 2 3 4 5 6 7 8 9 10

(g) DBpedia–LMDB

0.65

0.75

0.85

0.95

1 2 3 4 5 6 7 8 9 10

(h) DBLP–GoogleScholar

Fig. 3: F-measure results of Ligon. x-axes show the iteration number while the
y-axes show the F-measure. Note that, the y-axes show different value for better
legibility. Gray bars represent the F-measure of Ligon with the perfect oracle
while the F-measure achieved by the 2, 4, 8 and 16 noisy oracles are represented
by red, blue, orange and green lines respectively.

from (S, T)). The detailed results are provided in Figures 3 and 2. Combining
our approach with a perfect oracle can be regarded as providing an upper bound
to our learning algorithm. Over all datasets, Ligon achieved 95% of the AUC
achieved with the perfect oracle (min = 88% on DBpedia-LMDB, max = 100%
on Restaurants) of the AUC achieved with the perfect oracle. This answers Q3

and demonstrates that Ligon can learn LS with an accuracy close to that of an
approach provided with perfect answers.

Runtime. In our third set of experiments, we were interested in knowing
how well our approach scales. To this end, we measured the runtime of our al-
gorithm while running the experiments carried out to answer Q2 and Q3. In
our experiments, Wombat, the machine learning approach used within Ligon,
makes up for more than 99% of Ligon’s runtime. for more detailed results see
Table 2. This shows that the Bayesian framework used to re-evaluate the char-
acteristic matrices of the oracles is clearly fast enough to be used in interactive
scenarios, which answers Q4. Our approach completes a learning iteration in less
than 10 seconds on most datasets, which we consider acceptable even for interac-

9

Dataset Pessimistic Reweighted Simple Complete Ligon

DBLP-ACM 0.93 0.95 0.94 0.94 0.73
Amazon-GoogleProduct 0.39 0.43 0.53 0.45 0.71
ABT-Buy 0.36 0.37 0.37 0.36 0.93

Average 0.77 0.78 0.77 0.74 0.89

Table 3: F-Measure achieved by Ligon vs. State of the art from [5] and [17].

tive scenarios. The longer runtime on DBLP-GoogleScholar (roughly 16 seconds
per iteration on average) is due to the large size of this dataset. Here, a parallel
version of the Wombat algorithm would help improving the interaction with
the user. The implementation of a parallel version of Wombat goes beyond the
work presented here.

Comparison with Batch Learning. While active learning commonly re-
quires a small number of training examples to achieve good F-measures, other
techniques such as pessimistic and re-weighted batch learning have also been de-
signed to achieve this goal [5]. In addition, the positive-only learning algorithm
Wombat has also been shown to perform well with a small number of train-
ing examples. In our final set of experiments, we compared the best F-measure
achieved by Ligon when trained with 16 noisy oracles, k = 16 and the equiva-
lent strategy with the pessimistic and re-weighted models proposed in [5] as well
as the two versions of the Wombat approach [17]. All approaches were trained
with 2% of the reference data (i.e., with a perfect oracle) as suggested by [5].
The results of these experiments are shown in Table 3. Note that, we did not
consider the datasets Persons 1, Persons 2 and Restaurant because 2% of the
training data accounts to less than 10 examples, which Ligon requires as ini-
tial training dataset E0. Our results answer Q5 clearly by showing that Ligon
outperforms previous batch learning algorithms even when trained with noisy
oracles. On average, Ligon is more than 40% better in F-measure. This clearly
demonstrates that our active learning strategy for selecting training examples is
superior to batch learning.

Generalization of Ligon. In our last set of experiment, we implemented a
generalization of Ligon for binary classification tasks behind link discovery. We
thus used the active learning framework JCLAL [15] to wrap WEKA [2] classi-
fiers and implemented Ligon as a custom oracle. We selected three well known
binary classification datasets (i.e., Diabetes, breast-cancer and Ionosphere) from
the WEKA distribution on which we applied two state-of-the-art classification
algorithms, namely GBDT and Random Forests [20]. Based on our previous
experiments, we used 4 noisy oracles, k was set to 16 and we used the Ignore
strategy, since all the other strategies are specific to the link discovery domain.
We executed two sets of experiments for noisy oracles with true positive/negative
probabilities drawn from the two uniform distributions in [0.5, 1] and [0.75, 1].
On average, Ligon achieves 75% and 89% of the learning accuracy for noisy
oracles drawn from [0.5, 1] and [0.75, 1] respectively. These results indicate that

10

Ligon is not only applicable to problems outside the link discovery domain but
also independent from the underlying active learning algorithm is able to achieve
F-measures near to the ones scored using a perfect oracle, which answers Q6.

6 Related Work

Link Discovery for RDF knowledge graphs has been an active research area for
nearly a decade, with the first frameworks for link discovery [4, 9] appearing
at the beginning of the decade. Raven [10] was the first active learning ap-
proach for link discovery and used perception learning to detect accurate LS.
Other approaches were subsequently developed to learn LS within the active
learning setting [3, 11, 12]. Unsupervised learning approaches for monogamous
relations [11–13] rely on different pseudo-F-measures to detect links without
any training data. Positive-only learning algorithms [17] address the open-world
characteristic of the Semantic Web by using generalization algorithms to detect
LS. The work presented by [14] proposes an active learning approach for link
prediction in knowledge graphs. Ligon differs from the state of the art in that
it does not assume that it deals with perfect oracles. Rather, it uses several
noisy oracles to achieve an F-measures close to those achieved with perfect ora-
cles. An active learning approach with uncertain labeling knowledge is proposed
by [1], where the authors used diversity density to characterize the uncertainty
of the knowledge. A probabilistic model of active learning with multiple noisy
oracles was introduced by [18] to label the data based on the most perfect oracle.
For Crowdsourcing scenarios, [16] propose a supervised learning algorithm for
multiple annotators (oracles), where the oracles’ diverse reliabilities were treated
as a latent variables.

7 Conclusions and Future Work

We presented Ligon, an active learning approach designed to deal with noisy
oracles, i.e., oracles that are not guaranteed to return correct classification re-
sults. Ligon relies on a probabilistic model to estimate the joint odds of link
candidates based on the oracles’ guesses. Our experiments showed that Ligon
achieves 95% of the learning accuracy of approaches learning with perfect ora-
cles in the link discovery setting. Moreover, we showed that Ligon is (1) not
dependent on the underlying active learning algorithm and (2) able to deal with
other classification problems. In future work, we will evaluate Ligon within real
crowdsourcing scenarios. A limitation of our approach is that it assumes that
the confusion matrix of the oracles is static. While this assumption is valid with
the small number of iterations necessary for our approach to converge, we will
extend our model so as to deal with oracles which change dynamically. Further-
more, we will extend Ligon to handle n-ary classification problems and evaluate
it on more stat-of-the-art approaches from the deep learning domain.

Acknowledgments. This work has been supported by the EU H2020 project Know-

Graphs (GA no. 860801) as well as the BMVI projects LIMBO (GA no. 19F2029C)

and OPAL (GA no. 19F2028A).

11

References

1. M. Fang and X. Zhu. Active learning with uncertain labeling knowledge. Pattern
Recognition Letters, 43(Supplement C):98 – 108, 2014. ICPR2012 Awarded Papers.

2. M. A. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The WEKA data mining software: an update. SIGKDD Explorations, 2009.

3. R. Isele and C. Bizer. Active learning of expressive linkage rules using genetic
programming. J. Web Sem., 23:2–15, 2013.

4. A. Jentzsch, R. Isele, and C. Bizer. Silk - generating RDF links while publishing
or consuming linked data. In Proceedings of the ISWC Posters & Demons, 2010.

5. M. Kejriwal and D. P. Miranker. Semi-supervised instance matching using boosted
classifiers. In The Semantic Web. Latest Advances and New Domains. 2015.

6. H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on
real-world match problems. Proc. VLDB Endow., 3(1-2):484–493, Sept. 2010.

7. C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval,
2008.

8. M. Nentwig, M. Hartung, A. N. Ngomo, and E. Rahm. A survey of current link
discovery frameworks. Semantic Web, 8(3):419–436, 2017.

9. A. N. Ngomo and S. Auer. LIMES - A time-efficient approach for large-scale link
discovery on the web of data. In Proceedings of the International Joint Conference
on Artificial Intelligence, Spain, 2011.

10. A.-C. Ngonga Ngomo, J. Lehmann, S. Auer, and K. Höffner. RAVEN - active
learning of link specifications. In Proceedings of the 6th International Workshop
on Ontology Matching, Germany, 2011.

11. A.-C. Ngonga Ngomo and K. Lyko. Eagle: Efficient active learning of link specifi-
cations using genetic programming. In Extended Semantic Web Conference, pages
149–163. Springer, 2012.

12. A.-C. Ngonga Ngomo, K. Lyko, and V. Christen. Coala–correlation-aware active
learning of link specifications. In Extended Semantic Web Conference, 2013.

13. A. Nikolov, M. d’Aquin, and E. Motta. Unsupervised learning of link discovery
configuration. In Extended Semantic Web Conference. Springer, 2012.

14. N. Ostapuk, J. Yang, and P. Cudré-Mauroux. Activelink: deep active learning for
link prediction in knowledge graphs. In The World Wide Web Conference, 2019.

15. O. G. R. Pupo, E. Pérez, M. del Carmen Rodŕıguez-Hernández, H. M. Fardoun,
and S. Ventura. JCLAL: A java framework for active learning. J. Mach. Learn.
Res., 2016.

16. F. Rodrigues, F. Pereira, and B. Ribeiro. Learning from multiple annotators:
Distinguishing good from random labelers. Pattern Recognition Letters, 2013.

17. M. Sherif, A.-C. Ngonga Ngomo, and J. Lehmann. WOMBAT - A Generaliza-
tion Approach for Automatic Link Discovery. In 14th Extended Semantic Web
Conference, Slovenia. Springer, 2017.

18. W. Wu, Y. Liu, M. Guo, C. Wang, and X. Liu. A probabilistic model of active
learning with multiple noisy oracles. Neurocomputing, 2013.

19. H. Yu, Z. Shen, C. Miao, and B. An. Challenges and opportunities for trust
management in crowdsourcing. In Proceedings of the The 2012 IEEE/WIC/ACM
WI-IAT ’12, USA, 2012.

20. C. Zhang, C. Liu, X. Zhang, and G. Almpanidis. An up-to-date comparison of
state-of-the-art classification algorithms. Expert Systems with Applications, 2017.

12

