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Abstract

We introduce a novel learning-based approach to synthesize safe and robust con-
trollers for autonomous Cyber-Physical Systems and, at the same time, to generate
challenging tests. This procedure combines formal methods for model verification
with Generative Adversarial Networks. The method learns two Neural Networks:
the first one aims at generating troubling scenarios for the controller, while the
second one aims at enforcing the safety constraints. We test the proposed method
on a variety of case studies.

1 Introduction

Controlling Cyber-Physical Systems (CPS) is a well-established problem in classic control theory [6]. State
of the art solutions apply to all those models in which a complete knowledge of the system is available,
i.e., scenarios in which the environment is supposed to follow deterministic rules. For such models a high
level of predictability, along with good robustness, is achieved. However, as soon as these unpredictable
scenarios come into play, traditional controllers are challenged and could fail. Ongoing research is trying
to guarantee more flexibility and resilience in this context by using Deep Learning [9] and, in particular,
Reinforcement Learning for robust control [1]. State of the art solutions perform reasonably well, but
they still present evident limits in case of unexpected situations. The so called open world scenarios are
difficult to model and to control, due to the significant amount of stochastic variables that are needed in
their modelling and to the variety of uncertain scenarios that they present. Therefore, while trying to
ensure safety and robustness, we need to be cautious about not trading them with model effectiveness.

In this work we investigate autonomous learning of safe and robust controllers in open world scenarios.
Our approach consists in training two neural networks, inspired by Generative Adversarial Networks
(GAN) [4], that have opposite goals: the attacker network tries to generate troubling scenarios for the
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defender, which in turn tries to learn how to face them without violating some safety constraints. The
outcome of this training procedure is twofold: on one side we get a robust controller, whereas on the other
we get a generator of adverse tests.

The learned controller is a black-box device that should be able to deal with adverse or unobserved
scenarios, but that does not provide worst-case guarantees. In this regard one could additionally rely on a
shield-based approach, as proposed in [2].

2 Problem Statement

Safety of a system is guaranteed by the satisfaction of a set of requirements. Checking the satisfiability
of properties in hybrid systems, where both discrete and continuous components are involved, is often
too computationally complex or undecidable [10]; this especially holds true in the presence of stochastic
components. A popular approach to mathematically express safety requirements is by means of Signal
Temporal Logic (STL) [8]. Temporal logic is a logical formalism used in the context of formal verification
to formalize the behaviour in time of systems. It extends propositional logic with a set of modal operators
capturing the temporal properties of events [5]. STL, in particular, deals with properties of continuous-time
signals [8] (i.e. multivariate time series), featuring time-bounded since and until modal operators. In our
application, we rely on STL quantitative semantics, which returns a real valued measure of satisfiability
capturing how much the input signal can be shifted without changing the truth value. Such measure is
often referred to as robustness and is exploited in this work as the objective function of an optimization
problem.

We model the interaction of an agent with an adversarial environment as a zero-sum game, similarly
to the strategy behind GANs [8]. The concept of zero-sum game is borrowed from game theory and
denotes those situations in which one player’s gain is equivalent to another’s loss. In such situations, the
best strategy for each player is to minimize its loss, while assuming that the opponent is playing at its
best. This concept is known in literature as minmax strategy. In practice, we use GAN architectural and
theoretical design to reach two main objectives: a controller, that safely acts under adverse conditions,
and an attacker, which gains insights about troubling scenarios for the opponent.

Agent-Environment Model. Due to coexistence of continuous and discrete components, CPSs are
typically represented as hybrid models: the continuous part is represented by differential equations that
describe the behaviour of the plant; the discrete part, instead, identifies the possible states of the controller.
We decompose our model in two interacting parts: the agent a and the environment e. Both of them are
able to observe at least part of the whole state space S, i.e. they are aware of some observable states
O ⊂ S. By distinguishing between the observable states of the agent Oa ⊆ O and of the environment
Ob ⊆ O, we are able to force uneven levels of knowledge between them.

Let Ua and Ue be the spaces of all possible actions for the two components. We discretize the
evolution of the system as a discrete-time system with step ∆t, which evolves according to a function
ψ : S × Ua × Ue × R −→ S. By taking control actions at fixed time intervals of length ∆t, we obtain a
discrete evolution of the form si+1 = si +ψ(si, u

i
a, u

i
e, ti), where ti := t0 + i ·∆t, ui := u(ti) and si := s(ti).

Therefore, we are able to simulate the entire evolution of the system over a time horizon H via ψ and to
obtain a complete trajectory ξ = s0 . . . sH−1 in the state space.
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Optimization strategy. The proposed framework builds on GAN architectural design, in which two
NNs compete in a minmax game to reach opposite goals. One network, denoted by A, represents the
attacker, while the other, denoted by D, represents the defender. The aim of the former is to generate
environment configurations in which the defender is not able to act safely, whereas, the latter tries to keep
the CPS as safe as possible. In practice, the defender D can be interpreted as a controller for the agent.
The safety requirement is expressed as a Signal Temporal Logic formula Φ over a finite time horizon H.
We are leveraging the notion of robustness in quantitative semantics to measure the satisfiability of the
STL property and to determine how safe the system is in a given configuration. We denote robustness
as a function RΦ : SH → R, measuring the maximum shift that can be applied to a given trajectory
ξ = s0 . . . sH−1 without violating the requirements of Φ. It is straightforward to use this measure as the
objective function in the minmax game. When the system is in a state s0, the evolution of ξ is obtained
by evaluating ψ at time steps ti = t0, . . . , tH−1 over two sequences of actions ua = (u0

a, . . . , u
H−1
a ) and

ue = (u0
e, . . . , u

H−1
e ). We introduce two policy functions, ΠA for the attacker and ΠD for the defender, with

the aim of reducing the output dimension. The two policies ΠA : ΘA × R→ Ue and ΠD : ΘD × R→ Ua

are represented by a finite set of basis functions of time, with coefficients given by the output of the
networks; in this work they are polynomial functions. For example, ΠA can encode the output θA of
network A as a polynomial function of degree dA

ue(t) = ΠA(θA, t) :=
dA∑

j=1
θAjt

j

and the resulting ue(t) is evaluated at each time step, from t0 to tH−1, to produce the desired sequence
of actions ue. The same reasoning holds for ΠD and ua. These policies have the benefit of producing a
smoothing of the chosen actions, that prevents incoherent behaviours at subsequent instants.

Let wA be the weights of the attacker’s network A and wD the weights of the defender’s network
D. The formalism introduced by the two policies transfers the problem of finding the best sequences of
actions, ua and ue, to that of finding the best networks’ parameters, wD and wA. The minmax game can
now be expressed in terms of the loss function L (wA,wD) = −RΦ(s0,wD,wA) as

min
wD

max
wA

L (wA,wD).

In this setting, the defender aims at generating safe actions by tuning its weights in favour of a loss
minimization (i.e. robustness maximization). The attacker, instead, aims at generating troubling scenarios
for the opponent by maximizing the loss (i.e., minimizing the robustness).

3 Experimental Results

Car platooning. A platoon [3] is a group of vehicles travelling together very closely and safely. This
problem is usually faced with techniques that coordinate the actions of the entire pool of vehicles as a single
entity [7]. This approach, though, requires specific hardware and a distributed system of coordination
that might be difficult to realise in complex scenarios. Our method, instead, builds a robust controller for
individual decision-making, hence it fits into the autonomous driving field. In this setting, we assume that
all vehicles are equipped with an hardware component called LIDAR scanner, which is able to measure
the distance between two cars by using a laser beam.
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Figure 1: The leader acts according to the attacker’s policy, while followers are controlled by copies of the
same defender’s network. Initial configuration: distance d0 = 6.33 m and velocity v0 = 2.87 m for all cars.

Training and Testing. Platooning involves n cars that can only move forward along a straight line.
We first consider the simple case of two cars, one leader l and one follower f , whose internal states
are position x, velocity v and acceleration a. The follower f acts as the agent of this system, while the
leader l is considered to be part of the environment, representing for instance a cyber-attack scenario.
They have the same observable states oa = oe = (vl, vf , d), given by their velocities and by their relative
distance d. The policy functions ΠA and ΠD output the accelerations ua = (af ) and ue = (al), which
are used to update the internal states of both cars. We describe the dynamic of a car with mass m
and velocity v as mdv

dt = main − νmg, where ain is the input acceleration provided by one of the two
policies, ν is the friction coefficient and g is the gravity constant. We impose the STL requirement
Φ = globally(d ≤ dmax ∧ d ≥ dmin) on the distance d = xl − xf between the two vehicles, where dmin and
dmax are the minimum and maximum distances allowed. Note that the globally operator forces the STL
condition to hold for the whole trajectory of the car.

Results. Car platooning problem trivially extends to the case of n cars, where the first one is the
leader and each of the other cars simply follows the one in front. Our simulations start from an initial
configuration of equispaced vehicles, thus the first couple of subsequent cars acts as described in the
two-cars model, while the other followers are controlled by copies of the same defender’s network.

This model has been tested in four different adverse configurations. The leader in Figure 1 acts
according to the attacker’s policy, with sudden accelerations and brakes, and all followers are able to
manage the unpredictable behaviour of the attacker by maintaining their relative distances within the
safety range. We ran 10k simulations of different trajectories for each possible scenario. At each time step
we computed the total percentage of safe trajectories and 100% of them achieved positive robustness.

4 Conclusions

Classical control theory fails in giving adequate safety guarantees in many complex real world scenarios.
New reinforcement learning techniques aim at modelling the behaviour of complex systems and learning
optimal controllers from the observed data. Therefore, they are particularly suitable for stochastic optimal
control problems where the transition dynamics and the reward functions are unknown. We proposed a
new learning technique, whose architecture is inspired by Generative Adversarial Networks, and tested its
full potential against the vehicle platooning problem. Our approach has been able to enforce safety of the
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model, while also gaining insights about adverse configurations of the environment. As future work, we
plan to test more scenarios and investigate the scalability of this approach. We also plan to extend this
control synthesis strategy to stochastic hybrid systems.1
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