
COSMIC Functional Size Automation of Java Web
Applications Using the Spring MVC Framework

Abdelaziz SAHABa and Sylvie TRUDELa[0000-0002-4983-1679]*

a Université du Québec à Montréal, Montreal, QC, Canada
sahab.aziz@gmail.com; trudel.s@uqam.ca

Abstract. Functional size measurement provides a solid basis for estimating
costs and maintaining good governance during software project lifecycle. As
measuring manually is more labor intensive, costly and error prone, automating
the measurement process has become a priority for researchers and practitioners
throughout the world. In order to measure functional size based on the COSMIC
method, this work targets to automate the functional size measurement from soft-
ware source code, and more particularly from Web Java applications using the
Spring Web MVC framework. This paper reports on activities carried out in order
to meet the following four objectives: 1) Reduce measurement effort with an ac-
curacy of more than 90% compared to experienced practitioner’s measurement;
2) Obtain functional size any time during the software lifecycle; 3) Offer a reus-
able and modular solution; and 4) Publish the solution as open source software.
To do this, we followed a five-phases methodology: 1-Start-up; 2-Prototyping;
3-Realization; 4-Evaluation; and 5-Publication. This methodology made it possi-
ble to create the CFP4J Library and publish it as open source software on the
GitLab source code repository. In the current state of the CFP4J Library, the four
objectives have been achieved. The contribution of this paper is in the definition
of mapping rules from code and a publicly available software library to automate
COSMIC functional size of Web Java applications that use the Spring MVC
framework. These rules and this library can be expanded to other technologies.

Keywords: COSMIC, Automation, Spring MVC, Functional Size.

1 Automating Functional Size Measurement

The rivalry and competition between organizations in the software development field
continues to increase. And to maintain a place in the market, each organization relies
on its internal information when making a decision. Functional size measurement has
become a useful tool for any organization that wants to be among the leaders in its
business domain. Measuring functional size makes it easier to estimate costs, improve
productivity (effort/size relationship), benchmark with other organizations and keep
good governance on the project [1].

* Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0).

1.1 Standardized Functional Size Methods

At the time of writing this paper, there was five ISO standards conforming to ISO/IEC
14143 [2] for the measurement of software functional size:

• International Function Point Users Group (IFPUG) [3];
• Mark II (MkII) [4];
• Netherlands Software Measurement Association (NESMA) [5];
• Finland Software Measurement Association (FiSMA) [6];
• Common Software Measurement International Consortium (COSMIC) [7];

While the first four methods are known to be “first generation” functional size meth-
ods (FSM), the COSMIC method [8] is the only one known as a “second generation”
type of method (i.e. principle-based, domain independent, open standard, etc. [9]), able
to measure various kinds of software (information systems, Web apps, Mobile apps,
embedded real-time, SOA components, etc.) For this reason, COSMIC was chosen as
a basis to develop a library that automates functional size measurement from Java
source code, more specifically the Spring Web MVC framework.

The COSMIC method is based on data movements within a functional process. A
functional process is an elementary part of Functional User Requirements (FUR: a sub-
set of user needs; requirements that describe what the software should do, in terms of
tasks and services) [2][8] of the software to be measured. There are four types of data
movements: Entry, eXit, Read, and Write (EXRW). Data movements are related to a
data group being used or produced by a functional process.

FUR can be derived from software engineering artifacts from analysis and design
phases (before the software existed) or can be derived from the software artifacts once
developed, such as the software code, data dictionary, or input-output elements (inter-
face definitions, screens and reports).

1.2 Problems with manual measuring

Manual FSM encounters two main problems. First, the measurement effort can be sig-
nificant, especially for less experienced measurers [10]. Although the measurement ef-
fort decreases a lot with experience, this effort can be considered as a hurdle when the
requirements prove to be ambiguous or incomplete because it forces the measurers to
go and ask questions to the project members, if they are still available. Second, inexpe-
rienced measurers tend to make measurement errors, mainly due to the ambiguities of
the requirements [10].

These two problems have a major impact on the indicators of a software project. In
this context, the automation of the measurement of functional size has become a re-
search target to overcome these problems. But measuring from written requirements
provides the theorical size of a software and the actual size of the developed software
should be measured or confirmed once that software is delivered. This can be done from
confirmed delivered requirements, or from the actual code.

The main reason why an organization would be interested to measure from the soft-
ware code is to first develop a baseline of the relationship between size and effort in the
form of an estimation model based on functional size. Also, size measured from code

reflects what has been delivered with more accuracy than from incomplete, ambiguous
or inadequate requirements, allowing some form of requirements-based sizing assess-
ment.

2 Related work: known automation alternatives to manual
measuring

Several tools exist that automate FSM from different inputs or using various techniques.
From textual requirements: Based on Natural Language Processing (NLP) or Artificial
Intelligence (AI), tools such as ScopeMaster detects data movements from FUR textual
descriptions in English [11]; Supervised text mining allows structuring information
contained in a document to extract ambiguities and FUR. Then, unsupervised text clus-
tering allows for identification of functional processes and data groups [12].

These techniques or tools only work with English texts that must be clear, which
may not be that common in the industry.

From Unified Modelling Language (UML) diagrams: Several studies used sequence
diagrams can be automatically interpreted to provide FSM, where messages between
objects or classes represent data movements [13] [14] [15]. Many UML editors are not
free. Quite often, software teams will draw their diagrams on a white board and take a
picture with a mobile phone, which image is stored in the product repository, not using
any UML editor [16]. Even when UML were defined, they are not always up-to-date,
or they cover only a small part of the software.

From reverse engineering of the source code, many FSM automation tools have been
published. Akca and Tarhan [17] have published the “measurement library” from a 3-
layers Java enterprise application, which was semi-automated as some manual trans-
formations were required on the source code to call upon the library methods. They
obtained a precision of 92% compared to manually done FSM, along with FSM cost
reduction of 280%. Later, the “measurement library” was updated with a static code
installer resulting in a 94% precision with a reported effort reduction of 97% [18]. Sag
and Tarhan [19] proposed the “COSMIC Solver” to measure Java business applications
while being executed. COSMIC Solver required that manual transformations be made
to source code or binary code using aspect-oriented programming. During execution,
the tool would generate UML sequence diagrams from which the FSM is done. A more
stable version of the “COSMIC Solver” was later published where an open-source Web
application using Java Swing was measured with a precision of 77% [19]. The JavaCFP
was published as a NetBeans plugin which analyzes the Java source code and generates
the COSMIC FSM results with a precision of 100% [20]. Unfortunately, the JavaCFP
is not listed as an official NetBeans plugin* and is tightly coupled with NetBeans.

We were not able to find trace of these tools while searching on popular open-source
repositories (i.e. GitHub, Bitbucket, Sourceforge, and GitLab). The next step would be
to try contact authors of these tools and ask them to provide a link to their tool, if pub-
licly available.

* http ://plugins.netbeans.org/PluginPortal/

Based on these sizing automation publications, we wanted to contribute to COSMIC
FSM automation by targeting a technology in which sizing was not yet automated, and
the Spring MVC framework became our first choice, mainly because the main author
had experience developing software with it.

3 Methodology to develop an automated measurement library

3.1 Definition of our project

We wanted to develop a tool to automate COSMIC FSM for Java applications using
the Spring MVC framework, where measurement would be done from the source code.
Knowing the size of several released applications and comparing this size to the effort
that was required to develop them is a good way to feed an organization’s productivity
baseline with very little effort compared to manual measurement. Our objectives were:

1. Reduce the measurement effort with an accuracy of more than 90% compared
to the measurement of an experienced practitioner;

2. Obtain the functional size measurement any time during the software lifecycle;
3. Offer a reusable and modular solution (a library) that could be integrated with

almost any source code analysis tool; and
4. Publish the solution as an open source software.

Since this project was developed as a master’s degree capstone project, it was im-

portant to limit its scope. Therefore, it was decided to measure applications having the
following characteristics: Java version 5 or higher; Web applications using Spring Web
MVC framework, version 5.x.x or above, since this framework is the most popular for
Java Web applications*; for data access, the library Spring Data is used.

3.2 A five-phases approach

Our software library was developed applying a five-phases approach as follows:
Start-up: getting prepared to develop the solution, including justifying technology

choices (Java, Spring Web MVC, and GitLab as the open-source code repository), in-
stalling the development environment (Eclipse IDE, Maven, and Git) and selecting an
open-source sample Java application (“Spring PetClininc Sample†”) to test our initial
solution, which would also be manually measured with COSMIC.

Prototyping our evolutive solution: the aim was to experiment our early solution
with the selected open-source sample Java application, which required to identify and
implement mapping rules and procedures from Spring MVC source code to COSMIC
components (see section 4.1).

Implementation: formalizing the design of our CFP4J library, refining it along
with mapping rules, improving our code quality, and perform testing with other identi-
fied open-source Java Spring Web MVC applications.

* According to jetbrains.com, accessed in April 2019.
† https://github.com/spring-projects/spring-petclinic

Evaluation: validating our solution with two other Spring Web MVC application
with the aim of refining the mapping rules to increase accuracy of results.

Publication: publishing our library as an open-source solution on GitLab, includ-
ing a developer’s guide in GitLab’s wiki pages to ensure any developer who is new to
the project would be able to rapidly contribute to evolve the CFP4J library*. This paper
also serves as a means to communicate its existence to the community.

4 The resulting automated measurement library

4.1 FSM Rules and Procedures

As written on the Java T Point website, “A Spring MVC is a Java framework which is
used to build web applications. It follows the Model-View-Controller design pattern.”
Specific Spring MVC methods related to the model, the view or the controller should
then be linked with specific COSMIC data movements.

In order to apply the COSMIC method adequately, it was important to ensure all
phases of the COSMIC method were applied:

1. Measurement strategy phase: the purpose is to measure automatically the func-
tional size of a Spring Web MVC application which scope include all .java
files. Functional users other than human must be identified while measuring.
The level of granularity relates to all methods in Java classes being noted
@Controller as they contain the triggering Entries of functional processes, at
least those triggered by a human functional user.

2. Mapping phase: the functional processes correspond to any method being
noted as @PostMapping, @GetMapping or @RequestMapping within an
@Controller class. Objects of interest (OoI) correspond to a Java class repre-
senting a business domain entity within the software. Data groups correspond
to data within the view (e.g. graphical interface). As it is a Web application,
the view is coded in HTML language, which does not fall within the scope of
our library analyzing Java classes, but the Spring MVC framework is respon-
sible for mapping the view’s attributes into a data group corresponding to a
Java class presented as an input parameter to a method of a controller type
Java class, which allows identification of data groups and data movements.
Data attributes are any attribute of an entity. Data movements identification
and mapping was defined thoroughly in Table 1 as a set of twelve mapping
rules (MR).

3. Measurement phase: Counting one COSMIC Function Point (CFP) per data
movement, avoiding counting multiple occurrences of the same data move-
ment on the same data group within any single functional process.

Table 1 provides the list of mapping rules that were implemented for the Spring

MVC framework. These rules can be expanded to other technologies. It was necessary
to layout an inventory of Spring MVC methods to analyze which movement type each
method represents in its context.

* To access the CFP4J library refer to https://gitlab.com/asahab/cfp4j

Table 1. Data movement mapping rules.

Mapping rule definition
MR01 Any OoI found among the input parameters of the method with one of the annotations

@PostMapping, @GetMapping, @RequestMapping or @ModelAttribute is consid-
ered an Entry data movement.

MR02 All input parameters having the annotation @RequestParam of a method having one
of the annotations @ModelAttribute, @PostMapping, @GetMapping or
@RequestMapping are considered as a single Entry data movement, which represents
criteria of a search filter. A search criterion is excluded from the filter if it represents
an attribute of an OoI found among the input parameters of the method.

MR03 Input parameters with the annotation @PathVariable of a method having one of the
annotations @ModelAttribute, @PostMapping, @GetMapping or @RequestMapping
are considered as an Entry data movement representing an attribute of an OoI which
is not among the input parameters of the method.

MR04 Input parameters having the type MultipartFile of a method having one of the annota-
tions @ModelAttribute, @PostMapping, @GetMapping or @RequestMapping are
considered as an Entry data movement representing an attribute of an OoI.

MR05 Each Entry data movement of a method having one of the annotations @PostMap-
ping, @GetMapping or @RequestMapping must not be an eXit data movement of a
method having @ModelAttribute annotation.

MR06 If at least one Read data movement or a Write data movement has been recorded, and
no Entry data movement has been associated with an input parameter of a method
having one of the annotations @ModelAttribute, @PostMapping, @GetMapping or
@RequestMapping, then an Entry data movement representing a trigger for this func-
tional process must be added.

MR07 If a method with one of the annotations @PostMapping, @GetMapping or @Request-
Mapping has at least one input parameter annotated with @Valid or of type Bind-
ingResult or a method Delete was called during the execution of this method, then an
eXit data movement is associated with the output message corresponding to the vali-
dation of the input parameter or to the confirmation of the deletion.

MR08 Each added OoI as a new element to one of the instances Map, Model, ModelMap or
ModelAndView in the body of a method having one of the annotations @ModelAttrib-
ute, @PostMapping, @GetMapping or @RequestMapping, is considered as an eXit
data movement. The OoI occurrence must not be a local occurrence (e.g. new Ob-
jectInterest ()).

MR09 Each method with the annotation @ResponseBody and one of @PostMapping,
@GetMapping or @RequestMapping annotations is a method returning an OoI which
is considered as an eXit data movement.

MR10 Each call to one of the findById, existsById, findAll, getOne, count or findAllById
methods of a Spring Data Repository class, recursively from a method having one of
the annotations @ModelAttribute, @PostMapping, @GetMapping or @RequestMap-
ping, is considered as a Read data movement.

MR11 Each call to one of the methods save, saveAll, saveAndFlush, deleteInBatch, dele-
teAllInBatch, deleteById, delete or deleteAll of a Spring Data Repository class, recur-
sively from a method having one of the annotations @ModelAttribute, @PostMap-
ping, @GetMapping or @RequestMapping, is considered as a Write data movement.

MR12 Each call to a custom method of a class implementing the Spring Data Repository
class, recursively from a method having one of the annotations @ModelAttribute,
@PostMapping, @GetMapping or @RequestMapping, is considered a data move-
ment. If this method has a return type, then the data movement is Read. On the con-
trary (void), the data movement is Write.

In order to avoid counting multiple occurrences of the same movement on a single

data group within a functional process, some processing was needed. After all mapping
rules are applied, these duplicated data movements are discarded.

To test the CFP4J library integration, a sample module called "CFP4J-Application"
was implemented and published on the GitLab repository (for more details see the de-
veloper’s guide).

Once the test processing is complete, the user obtains a JSON file with measure-
ment strategy and measurement details,

as well as an Excel spreadsheet which is displayed on screen (see Fig.1).
No post-processing is necessary once the CFP4J has completed its execution.

Fig. 1. Example of Excel spreadsheet output on screen a CFP4J result.

4.2 Solution internal quality

As an open-source project, we considered important to ensure maintainability and usa-
bility of the CFP4J library. The CFP4J library consists of 1,343 source lines of code,
18 classes, 65 methods, and 61 automated unit tests with a coverage of 79.5%. To verify
and validate these quality characteristics, SonarQube was used to analyze the CFP4J
source code to detect any code smell or flaw. None were found.

5 Evaluation of the CFP4J Library with three applications

Our approach consists of comparing the manually counted functional size of three soft-
ware applications with the automated FSM using the CFP4J library. The aim was to

quantify the accuracy in terms of percentage of automatically counted data movements
over manually counted data movements. Also, the measurement effort was quantified
for manual measurement and for the required setup and execution of the CFP4J library.

Every difference between the manual count and the automatic count was analyzed
by comparing the application source code, the detailed manual count and the detailed
automatic count in order to understand the reason behind that difference. In most case
where the manual count was smaller, it was because there were some data movements
that could not have been seen from executing these applications, in which case the au-
tomatic count was more accurate. In few cases where the manual count was larger than
the automatic count, the analysis revealed that two different functional processes were
actually implemented using the same code, which in turn revealed a design flaw within
the code as these two functional processes were likely to evolve differently.

Table 2. Physical and functional sizes of the selected Java Spring Web MVC applications.

Application #SLOC # Java
classes

CFP
Manual

CFP
Automatic Accuracy

Spring PetClinic 960 24 56 62 90,3%
Mini ToDo Management 374 10 17 16 93,7%
Java Blog Aggregator 4,140 69 172 173 99,4%

Total: 5,474 103 245 251 97,6%
Note 1: Accuracy is calculated as the absolute difference between manual and automatic
counts, divided by the automatic count then subtracted from 1 to obtain the percentage.
Note 2: The manual count was performed by one of the authors and verified by the other au-
thor. Both authors are certified COSMIC measurers.

Manually measuring these three applications took between 1 and 6 hours, with an
average varying from 1.94 to 3.75 minutes per CFP. Manual measurement effort of
these applications includes installing them on the measurer computer and executing
them in order to go through every functionality, while trying our best not to forget any.
Preparing the environment to include the CFP4J library only take 10 minutes to do.
Once integrated, using the library took between 3 to 6 seconds to execute. The FSM
automation using CFP4J reduced the measurement effort by 98% on average.

6 Limitations and future work

Technological scope has been voluntarily limited. The CFP4J library needs to support
other libraries to communicate with a database and with other third-party services ap-
plying the HTTP protocol. The effort required to expand the CFP4J library was way
beyond the effort requirement of a 6-credits capstone project. Other projects in a near
future could expand the CFP4J library to include communication with other protocols
and services.

Another limitation is the fact that not all software code is compliant with the rec-
ommended Java coding convention and expected MVC architecture. For that reason,
there is a possibility that a developer has been developing in such a way that the defined
mapping rules may be insufficient.

In order to improve CFP4J, testing it with more applications is required, not only
to test different code structures but also to test sizing larger software applications. More
testing may result in added or modified mapping rules.

CFP4J does not provide a manual calibration function. Manual calibration could
be useful in the future to handle different code structures.

Also, future work should consider integrating with libraries communicating with
components and databases such as JPA, Hibernate, and Spring JDBC Template, and
with third-party services using HTTP protocol such as Apache HTTP-Client.

An expanded version of CFP4J could include publishing it on a Maven repository
to facilitate its integration for any project wishing to use CFP4J. The community should
consider expanding CFP4J to other Java application types such as JSF and Java Swing.
CFP4J could also be implemented as a SonarQube plugin, providing the functional size
as the entire code is being analyzed on a daily basis, which would provide the advantage
of monitoring functional size growth over time.

7 Conclusion

With the development of the CFP4J library, all of our four objectives have been
achieved:
• Reduce the measurement effort with an accuracy of more than 90% compared to

the measurement of an experienced practitioner → The average accuracy was of
97.6% with an average reduction of effort of 98%.

• Obtain the functional size measurement any time during the software lifecycle →
CFP4J can be used anytime during the development or after the release of an ap-
plication.

• Offer a reusable and modular solution (a library) that could be integrated with al-
most any source code analysis tool → A JAR file is available and can be integrated
as a dependence of an application source code.

• Publish the solution as an open source software → This objective achieved through
https://gitlab.com/asahab/cfp4j.

The contribution of this paper is in the definition of mapping rules from code and

a publicly available software library to automate COSMIC functional size of Web Java
applications that use the Spring MVC framework. These rules and this library can be
expanded to other technologies.

Acknowledgements

While validating the CFP4J library, few points needed to be clarified and questions
were asked to COSMIC Measurement Practice Committee members. The authors are
grateful to those who have promptly answer, namely Arlan Lesterhuis (Netherlands)
and Jean-Marc Desharnais (Canada).

References

1. Trudel, S.: Course notes: Measures and software development, summer 2018, UQAM,
Montreal, Canada (2018).

2. ISO/IEC 14143-1: Information technology — Software measurement — Functional size
measurement — Part 1: Definition of concepts, 2nd edn, International Organization for
Standardization (ISO), Geneva, Switzerland (2007).

3. ISO/IEC 20926: Software and systems engineering - Software measurement - IFPUG func-
tional size measurement method 2009, 2nd edn, ISO, Geneva, Switzerland (2009).

4. ISO/IEC 20968: Software engineering - Mk II Function Point Analysis - Counting Practices
Manual, 1st ed., Dec-2002, ISO, Geneva, Switzerland (2002).

5. ISO/IEC 24570: Software engineering - NESMA functional size measurement method -
Definitions and counting guidelines for the application of function point analysis, 2nd ed.,
ISO, Geneva, Switzerland (2018).

6. ISO/IEC 29881: Information technology - Systems and software engineering - FiSMA 1.1
functional size measurement method, 1st ed., ISO, Geneva, Switzerland (2010).

7. ISO/IEC 19761: Software engineering - COSMIC: a functional size measurement method,
2nd ed., ISO, Geneva, Switzerland (2011, reviewed and confirmed in 2019).

8. Abran, A. et al. (2020). COSMIC Measurement Manual for ISO 19761, Part 1: Principles,
Definitions & Rules, version 5.0, March 31st, 2020. Available from https://www.cosmic-
sizing.org, accessed 2020/06/10.

9. COSMIC (2020). Second Generation Functional Size Measurement by Design, Available
from https://cosmic-sizing.org/cosmic-sizing/functional-size-measurement/second-genera-
tion/, last accessed 2020/08/30.

10. Trudel, S. and Abran, A.: Functional Size Measurement Quality Challenges for Inexperi-
enced Measurers. In: International Workshop on Software Measurement (IWSM-
Mensura) 2009. pp. 157–169, Springer, Heidelberg (2009).

11. Ungan, E, Hammond, C. Abran, A.: Automated COSMIC Measurement and Requirement
Quality Improvement Through ScopeMaster® Tool. In: IWSM-Mensura 2018. Beijing,
China (2018).

12. Hussain, I., Ormandjieva, O., Kosseim. L.: Mining and Clustering Textual Requirements to
Measure Functional Size of Software with COSMIC. Software Engineering Research and
Practice, pp. 599–605, (2009).

13. Bévo, V., Lévesque, G., Abran, A.: UML notation for functional size measurement method,
In: IWSM 1999, Lac-Supérieur, Canada (1999).

14. Fehlmann, T.M., Kranich, E.: COSMIC functional sizing based on UML sequence diagrams.
MetriKon, Kaiserslautern (2011).

15. Karim, S., Liawatimena, S., Trisetyarso, A. et al.: Automating functional and structural
software size measurement based on XML structure of UML sequence diagram. In: IEEE
International Conference on Cybernetics and Computational Intelligence 2017 (Cybernet-
icsCom). IEEE, pp. 24–28. (2017).

16. Christopher, F.: Course notes on Advanced software design, winter 2017. Montreal, Can-
ada (2017).

17. Akca, A.A., Tarhan, A.: Run-time measurement of COSMIC functional size for java busi-
ness applications: Initial results. In: IWSM-Mensura 2012. IEEE, pp.226–231. (2012).

18. Gonultas, R., Tarhan, A.: Run-time calculation of COSMIC functional size via automatic
installment of measurement code into Java business applications. 41st Euromicro Confer-
ence on Software Engineering and Advanced Applications. IEEE, pp.112–118. (2015).

19. Sag, M.A., Tarhan, A.: Measuring COSMIC software size from functional execution traces
of Java business applications. IWSM-Mensura 2014, IEEE, pp.272–281. (2014).

20. Chamkha, N., Sellami, A., & Abran, A.: Automated COSMIC Measurement of Java Swing
Applications throughout their Development Life Cycle. In: WSM-Mensura, pp. 20-33.
(2018).

