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Abstract. S-boxes of the Nyberg construction are one of the most important 

cryptographic primitives, which are used in the AES cryptographic algorithm 

and largely determines its effectiveness. Numerous researches have confirmed 

the high cryptographic quality of their component Boolean functions. Neverthe-

less, the cryptanalyst is not constrained in the methods used and can also use the 

mathematical apparatus of the functions of many-valued logic for cryptanalysis. 

This work is devoted to the research of the nonlinear properties of S-boxes of 

the Nyberg construction, presented in the form of component 4-functions and 

16-functions. The paper proposes a method for calculating the nonlinearity val-

ue of 16-functions, for which the formula of the recursive construction of hexa-

decimal Vilenkin-Chrestenson matrices of arbitrary order is discovered. The 

performed researches made it possible to establish that the nonlinearity values 

of component 4-functions and 16-functions of S-boxes of the Nyberg construc-

tion is not stable and depends on the type of irreducible polynomial used to 

construct them. In the paper we present the irreducible polynomial for which 

the nonlinearity values of component 4-functions and 16-functions is evenly 

high. At the same time, it was established that the same polynomial also pro-

vides the uniform minimization of the correlation coefficients between output 

and input vectors of the S-box. The specified polynomial can be recommended 

for the practical use. 
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1 Introduction and problem statement 

Block symmetric cryptographic algorithms are a very important component of mod-

ern information security systems. The main component of block symmetric crypto-

graphic algorithms, on which the overall quality of the cryptographic transform de-

pends, is a cryptographic S-box. Today, there are many constructive methods for the 

synthesis of high-quality S-boxes. As one of the most effective methods for S-boxes 

design the Nyberg construction can be mentioned [1]. S-boxes of this construction are 

used in the Rijndael cryptographic algorithm, which is approved as the AES encryp-

tion standard [2]. 



 

 

S-boxes of the Nyberg construction are determined by using a mapping in the form 

of multiplicatively inverse elements of the Galois field (2 )kGF  

 1 modd[ ( ), ], , (2 )ky x f z p y x GF  , (1) 

which is in general combined with an affine transform 

 , , (2 )kb A y a a b GF    , (2) 

where as ( )f z  the standard AES irreducible over the field (2)GF  polynomial is used 

8 4 3 1( ) zf z z z z     ; 

A  is the nonsingular affine transform matrix; 

 a  is the shift vector; 

 2p   is the characteristic of the extended Galois field, 10 0   is taken a-priory; 

  , , ,a b x y  are the elements of the extended Galois field, that can be considered as 

decimal numbers, or binary vectors, or polynomials of degree 1k  . 

A detailed research of the cryptographic properties of Nyberg construction S-boxes 

of length 256N   was performed in [3], where it was established that the crypto-

graphic quality of the S-box depends on the type of irreducible polynomial used. The 

number of irreducible polynomials is defined as 

   ( / )1 k d
k

d
d

W d p
k

 
 k

, (3) 

where d  are the divisors of the k , ( )d  is the Mobius function, the notation d k  

means that d  divides k . 

Moreover, to determine the cryptographic quality of S-boxes, the generally accept-

ed approach is to represent the S-box using the mathematical apparatus of Boolean 

algebra: the original S-box is decomposed into component Boolean functions, to each 

of which a generally accepted set of criteria for cryptographic quality is used. In this 

set of criteria, the criterion of high nonlinearity is adopted as the most important crite-

rion [4]. 

Nevertheless, when describing cryptographic algorithms, a cryptanalyst is not con-

strained in the facilities used, in particular, the mathematical apparatus of functions of 

many-valued logic can be used [5]. Today in the literature there are no researches of 

the nonlinear properties of S-boxes of the Nyberg construction, presented using the 

functions of many-valued logic. 

The purpose of this work is to research the nonlinear properties of the component 

many-valued logic functions of Nyberg construction S-boxes of length 256N   

based on the full set of irreducible polynomials. 



 

 

2 Possible representations of AES S-boxes by functions of 

many-valued logic 

We introduce the definition of the S-box which is necessary for further research and 

consider the possible forms of its representation. 

Definition 1. S-box is a substitution of the form 

  
0 1

0 1
N

N
y y 

 , (4) 

where the first row is a sequence of numbers from 0 to 1N  , the second row is a 

sequence { }iy  consisting of elements of the first row, rearranged according to the law 

specified by the designers of the S-box. The second row of the substitution (4) is 

called  as the coding Q-sequence and denoted { }iQ y , 0,1,..., 1i N  . 

Each coding Q-sequence can be unambiguously represented in the form of 

logqk N  its component q-functions, where q  belongs to the set of such values that 

the length N  of the S-box can be represented in the form kN q . 

Obviously, the Nyberg S-boxes used in the AES cryptoalgorithm can be uniquely 

represented using component Boolean functions (2-functions), using component 4-

functions, and also using component 16-functions. Moreover, each of these functions 

completely determines the structure and cryptographic quality of the S-box in the 

sense of the corresponding logic. 

For example, consider the S-box of the Nyberg construction (1) based on a poly-

nomial 8
1

3
0

4( ) 283 1f z z zz z      used in the AES cipher in the form of its 

coding Q-sequence 

 

Q={0    1  141  246  203   82  123  209  232   79   41  192  176  225  229  199  
116  180  170   75  153   43   96   95   88   63  253  204  255   64  238  178   58
110   90  241   85   77  168  201  193   10  152   21   48   68  162  194   44   69
146  108  243   57  102   66  242  53   32  111  119  187   89   25   29  254   55
103   45   49  245  105  167  100  171   19  84   37  233    9  237   92    5  202
76   36  135  191   24   62   34  240   81  236   97   23   22   94  175  211   73

166   54   67  244   71  145  223   51  147   33   59  121  183  151  133   16  181
186   60  182  112  208    6  161  250  129  130  131  126  127  128  150  115
190   86  155  158  149  217  247    2  185  164  222  106   50  109  216  138

132  114   42   20   159  136  249  220  137  154  251  124   46  195  143  184
101   72   38  200   18   74  206   231  210   98   12  224   31  239   17  117  120
113  165  142  118   61  189  188  134   87   11   40   47  163  218  212  228   15
169   39   83    4   27  252  172  230  122    7  174   99  197  219  226  234  148

139  196  213  157  248  144  107  177   13  214  235  198   14  207  173    8   78
215  227   93   80   30  179   91   35   56   52  104   70    3  140  221  156  125

160  205   26   65   28}.

 (5) 

We consider the possible representations of the S-box (5) using the functions of 

many-valued logic, bringing as an example the first of the corresponding component 

q-functions. So, the S-box (5) can be represented as 8 component Boolean functions, 

the first of which is given as an example 



 

 

 

1 {0110101101100111000111010110100000011101100100000
10011000101111110111111101101111010001100001011001110010
11111111111010000001010101001001011101000010000001010101
00110100000010000111101100110011

Fbin 

011000111101000010111000
101100111010011001110011100001010101010}.

 (6) 

The S-box (5) can also be represented as four component 4-functions 

, 1,2,...,4iFfour i  , the first of which has the form 

 

1 {0112323103100113002313030310302222211101120100220
120312221033311123311113033011110120033022010132233122303
133313133101202002121232302322321132102221020220301012302
33010202223220033110112211023

Ffour 

3033200313303002232313220301
100311232231023310233300023010101210}.

 (7) 

And also, the S-box (5) can be represented as two component 16-functions, the 

first of which we give as an example 

 

1 {01D6B2B18F90015744AB9B0F8FDCF0E2AEA15D891A85
0422C52C3962250F7B99DE77D15974B34599DC5AC47F8E201C17
6EF39663471F331B977505AC60061A123EF063E6BE597294EA2D8
A42A4F89C9ABCE3F858682AE722C0FF15815E6DDC67B

Fhex 

8F3A44F
9734BCC6A7E35B2A4B45D80B1D6B6EFD8E73D0E3B384863CDC

D0DA1C}.

 (8) 

3 Method for determining the nonlinearity value of many-

valued logic functions 

The most important characteristic of the cryptographic quality of S-boxes is its non-

linearity distance. The binary case is classical, in which the nonlinearity distance is 

defined as the minimum Hamming distance between Boolean function f  and all 

codewords of an affine code [6] 

 
12 min( ( , )), 0,1,...,2 1k

f jN dist f j   A . (9) 

Definition 2. For an arbitrary positive integer k , an affine code ( , )N kA  of length 

2kN   is defined as the set of all rows of those Boolean functions whose algebraic 

degree of nonlinearity does not exceed 1, that is  ( , ) | ,deg 1f kN k f F f  A A  [7]. 

In turn, the nonlinearity distance of the entire S-box is determined by the worst 

from its component Boolean functions, i.e. as 

 22 min{2 }, 1,2,...,
iS FN N i k  . (10) 

Moreover, since the set of codewords of the non-inverse part of the affine code co-

incides with the rows of the Walsh-Hadamard matrix, the nonlinearity distance of the 

component Boolean functions can also be found in the domain of the Walsh-

Hadamard transform coefficients in accordance with the following formula 



 

 

 
2

1 1
2 2 max ( )

2 k

k
f f

v Z
N W v


  , (11) 

where ( )f NW v f A   is the vector of coefficients of the Walsh-Hadamard transform 

of the component Boolean function f , NA  is the Walsh-Hadamard matrix, which is 

constructed in accordance with the following recurrence rule 

 12

2 2

2 2

k k

k

k k

A A
A

A A


 
  

 
, (12) 

where 1 1A  . 

Applying formulas (9) or (11) to the first component Boolean function (6) of the S-

box (5), it is easy to verify that its nonlinearity distance is equal to 
1

112FbinN  , 

while the nonlinearity distances of all component Boolean functions of the S-box (5) 

are equal to {112,112,112,112,112,112,112,112}, 1,2,...,8
iFbinN i  . 

Nevertheless, formulas (9) and (11) are not applicable for the estimation of the 

nonlinearity value of functions of many-valued logic, in particular, for the 4-functions 

and 16-functions that we are researching. 

Estimation of the nonlinearity value of 4-functions is an important problem, which 

was solved in [8, 11]. The proposed method for estimating the nonlinearity value of 4-

functions is based on finding the coefficients of the Vilenkin-Chrestenson transform 

f f V   of the investigated 4-function f , where the investigated 4-function f  

and the Vilenkin-Chrestenson matrix V  are presented in exponential form using the 

unique transformation 

 

2 2 2 2
0 1 2 3

4 4 4 4{0,1,2,3}
j j j j

e e e e

   
     

  
  

. (13) 

The Vilenkin-Chrestenson matrix is constructed according to the following recurrence 

rule 

 1

4 4 4 4

4 4 4 4

4
4 4 4 4

4 4 4 4

1 2 3

2 2

3 2 1

k k k k

k k k k

k

k k k k

k k k k

V V V V

V V V V
V

V V V V

V V V V



 
 

  
 
  
 

    

, (14) 

where the summation is performed modulo 4, and 



 

 

 4

0 0 0 0

0 1 2 3

0 2 0 2

0 3 2 1

V

 
 
 
 
 
 

. (15) 

Based on the Vilenkin-Chrestenson transform coefficients, a generalized formula 

for estimation of the nonlinearity value of q-valued logic functions is introduced in [8] 

 

 

 1

max , 2;

1
2 max , 2.

2

k
f

f
k

f

q q

qN
W q

   


 
  


 (16) 

Same to the binary case, the nonlinearity value of the S-box is determined by its 

worst component q-function, respectively, min{ }, 1,2,...,
iS F qqN qN i k  . 

Using expression (14), it is easy to construct the Vilenkin-Chrestenson matrix over 

the alphabet {0,1,2,3}  of order 256N  , with help of which we can find the coeffi-

cients of the Vilenkin-Chrestenson transform of sequence (7). Further, using expres-

sion (16), it is not difficult to determine that the nonlinearity value of the 4-function 

(7) is equal to 
1

4 219.5034FN  . The nonlinearity value of the remaining component 

4-functions are equal to 4 {219.5034  221.9412  216.5538  219.2849}
iFfourN  , 

1,2,3,4i  . Accordingly, the nonlinearity value of the entire S-box (5) is equal to 

4 216.5538SN  . Note that, in contrast to the binary case, the nonlinearity values of 

the component 4-functions of S-boxes of the Nyberg construction are different for 

different component 4-functions [12-13]. 

Although the general formula for the nonlinearity value for an arbitrary q was in-

troduced in [8], however, a specific mechanism for finding the nonlinearity value of 

16-functions was not shown, and in order to evaluate the nonlinearity values of the 

component 16-functions of the Nyberg construction S-boxes, it is necessary to devel-

op recurrence algorithm for constructing Vilenkin-Chrestenson matrices over the 

alphabet 

 

2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7

16 16 16 16 16 16 16 16

2 2 2 2 2 2 2 2
8 9 10 11 12 13 14 15

16 16 16 16 16 16 16 16

0 1 2 3 4 5 6 7

8 9
.

j j j j j j j j

j j j j j j j j

e e e e e e e e

A B C D E F

e e e e e e e e
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       

       

       









 (17) 

Obviously, the affine functions of a 1k   variable over the alphabet (17) have a 

general form 1 1 1 0( )i x a x a   . Taking 0 0a  , we construct 16 affine 16-functions 

1 16,...,   



 

 

 

1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10

0 0000000000000000
0123456789ABCDEF

2 02468ACE02468ACE
3 0369CF258BE147AD
4 048C048C048C048C
5 05AF49E38D27C16B
6 06C28E4A06C28E4A
7 07E5C3A18F6D4B29
8 0808080808080808
9

x
x
x
x
x
x
x
x





















 1

11 1

12 1

13 1

14 1

15 1

16 1

092B4D6F81A3C5E7
0A4E82C60A4E82C6
0B61C72D83E94FA5
0C840C840C840C84
0DA741EB852FC963
0ECA86420ECA8642
0FEDCBA987654321

x
Ax
Bx
Cx
Dx
Ex
Dx















. (18) 

The resulting set of the first 16 affine 16-functions (18) determines the Vilenkin-

Chrestenson matrix of order 16N   

 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 A B C D E F
0 2 4 6 8 A C E 0 2 4 6 8 A C E
0 3 6 9 C F 2 5 8 B E 1 4 7 A D
0 4 8 C 0 4 8 C 0 4 8 C 0 4 8 C
0 5 A F 4 9 E 3 8 D 2 7 C 1 6 B
0 6 C 2 8 E 4 A 0 6 C 2 8 E 4 A
0 7 E 5 C 3 A 1 8 F 6 D 4 B 2 9
0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8
0 9 2 B 4 D 6 F 8 1 A 3 C 5 E 7
0 A 4 E 8 2 C 6 0 A 4 E 8 2 C 6
0 B 6 1 C 7 2 D 8 3 E 9 4 F A 5
0 C 8 4

V 

0 C 8 4 0 C 8 4 0 C 8 4
0 D A 7 4 1 E B 8 5 2 F C 9 6 3
0 E C A 8 6 4 2 0 E C A 8 6 4 2
0 F E D C B A 9 8 7 6 5 4 3 2 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. (19) 

In view of the fact that for our purposes of researching the nonlinearity values of 

component 16-functions of S-boxes of the Nyberg construction of length 256N  , 

we need a Vilenkin-Chrestenson matrix of order 256N  . Note that the previously 

used method [9] for constructing Vilenkin-Chrestenson matrices for arbitrary q is 

complex. It makes the task of developing of simple method for the synthesis of Vilen-

kin-Chrestenson matrices over the alphabet (17) actual. Researches allowed us to 

derive a formula for the recurrence construction of Vilenkin-Chrestenson matrices of 

any given order 16kN   
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 


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14 12 10 8 6 4 2
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8 12
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       
        

 

(20) 

By constructing the Vilenkin-Chrestenson matrix with the help of (20), and also 

multiplying it by the component 16-function (8) of the S-box (5), it is easy to obtain 

the Vilenkin-Chrestenson transform coefficients of the 16-function (8). Further, ap-

plying formula (16), we find that the nonlinearity value of the 16-function (8) is equal 

to 
1

16 213.8184FhexN  . Moreover, the nonlinearity value of the second component 

16-function is equal to 
2

16 212.4385FhexN  , and, accordingly, the nonlinearity value 

of the entire S-box is equal to 16 212.4385SN  . 



 

 

4 Research of the Nyberg construction S-boxes of length 

N=256 based on the full class of irreducible polynomials 

To compare nonlinearity values, it is convenient to use such perfect algebraic con-

structions as bent-functions [10], which have the minimum possible value of the max-

imal Vilenkin-Chrestenson transform coefficient equal to 2
k

q , and, accordingly, the 

maximum nonlinearity value equal to 

 2
k

k
fqN q q  . (21) 

Thus, in our case for 4q   and 4k   the maximum value of nonlinearity is equal 

to 4 240fN  , while for 16q   and 2k   the maximum value of nonlinearity will 

also reach the value 16 240fN  . 

Using the proposed method for estimating 2-nonlinearity, 4-nonlinearity and 16-

nonlinearity values of S-boxes of Nyberg construction of length 256N  , it is not 

difficult to estimate the nonlinearity values for all S-boxes that can be built over a 

field (256)GF . These values are summarized in Table 1. 

Table 1. The values of nonlinearity for Nyberg construction S-boxes of length N=256. 

No. Irreducible polynomial 2 SN  4 SN  16 SN  

1 283 112 216.5538 212.4385 

2 285 112 217.7901 208.0271 

3 299 112 213.4794 215.6620 

4 301 112 212.9187 211.2972 

5 313 112 215.7508 213.2651 

6 319 112 211.2786 213.6862 

7 333 112 215.5031 215.3282 

8 351 112 213.4794 219.9423 

9 355 112 212.9187 216.2035 

10 357 112 217.5292 219.6070 

11 361 112 211.8186 215.3785 

12 369 112 216.3011 212.2766 

13 375 112 219.1218 213.1083 

14 379 112 219.1218 200.4 

15 391 112 216 214.2562 

16 395 112 214.7689 220.3838 

17 397 112 215.5031 217.4026 

18 415 112 210.6569 202.9546 

19 419 112 221.4746 215.3345 

20 425 112 215.9500 213.2825 

21 433 112 219.7785 217.0560 

22 445 112 215.7508 218.4184 

23 451 112 217.3736 218.5131 

24 463 112 213.6208 211.3523 



 

 

25 471 112 211.2786 218.9588 

26 477 112 217.9474 209.9110 

27 487 112 217.5292 207.0381 

28 499 112 218.4234 219.6522 

29 501 112 214.2388 217.5087 

30 505 112 210.3930 212.3652 

 

The data presented in Table 1 show that all Nyberg construction S-boxes of length 

256N   based on the full set of irreducible polynomials have a nonlinearity distance 

of component Boolean functions 2 112SN  . However, different polynomials provide 

different values of nonlinearity in the sense of 4-functions and 16-functions. So, an S-

box based on a polynomial 019 1419f   has the highest nonlinearity values of compo-

nent 4-functions, while the S-box based on a polynomial 016 1395f   has the highest 

nonlinearity values of component 16-functions. Moreover, both nonlinearity values of 

the component 4-functions and the nonlinearity values of the component 16-functions 

of S-box based on the polynomial 28 10499f   are optimal. Earlier in [3], it was found 

that the polynomial 28 10499f   (however, like polynomial 9 10355f  ) also provides 

the most uniform minimization of the matrix of correlation coefficients. From our 

perspective, this S-box can be recommended for practical use in the AES crypto-

graphic algorithm from the point of view of nonlinearity criteria for component func-

tions of many-valued logic [14]. 

5 Conclusions 

Let us to summarize the main results of the research: 

1. The nonlinearity values of component 4-functions and 16-functions of S-boxes of 

Nyberg construction of length 256N   based on the full set of irreducible poly-

nomials has been researched. It has been determined that the S-boxes of the 

Nyberg construction, which have the same nonlinearity distance of component 

Boolean functions, are at the same time characterized by different nonlinearity val-

ues of 4-functions and 16-functions for various irreducible polynomials. It was 

found that the nonlinearity values of the component 4-fucntions and component 

16-functions of the S-box based on the polynomial 28 10499f   are optimal, there-

fore this polynomial can be recommended for practical use. 

2. The method for researching the nonlinearity value of 4-functions was adapted to 

the case of 16-functions. This technique can be applied to S-boxes of other practi-

cally valuable constructions. 

3. A recursive rule is proposed for constructing hexadecimal Vilenkin-Chrestenson 

matrices of an arbitrary order. 
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