
Validation of IfcOWL datasets using SHACL

Sander Stolk1 and Kris McGlinn2

1 Semmtech BV, Amsterdam, the Netherlands
sanderstolk@semmtech.nl

2 ADAPT Centre, Trinity College, Dublin, Ireland
kris.mcglinn@adaptcentre.ie

Abstract. Standardisation is an important part of ensuring data
interoperability. Industry Foundation Classes (IFC) is the current leading
standard for BIM in the Architecture Engineering and Construction
(AEC) industry and ifcOWL is a Resource Description Framework
(RDF) representation of IFC, which enables the interlinking of IFC
models with other building and building related data that are also
represented using RDF, such as devices, sensor data, geolocation, etc.
IFC has a complex schema, designed to support parametric modelling
in AEC and adherence to this schema is required to support importing
IFC models into popular CAD tools such as Autodesk and ArchiCAD.
Therefore, for those wishing to create ifcOWL models which can then be
imported into these tools, a process of validation of the output must be
done. In this paper, we present a method for validating ifcOWL models
using SHACL which can be reused by anyone generating ifcOWL models
and which returns a report highlighting any issues identified. The method
is tested to validate the outputs of a conversion of geospatial data into
IFC using a declarative mapping approach called R2RML.

Keywords: Industry Foundation Classes · SHACL · Linked Data

1 Introduction

Standardisation is an important part of ensuring data interoperability.
Industry Foundation Classes (IFC), developed by buildingSMART3, is the
current leading standard for sharing building data in the Architecture
Engineering and Construction (AEC) industry. IFC has serializations in STEP,
XML and RDF alongside an OWL version of IFC4, called ifcOWL [4], which is
built upon Linked Data principles and can therefore support interlinking between
other data sets expressed using RDF, over the Web, of which the benefits have
been highlighted in numerous research papers [16][12]. As of today, though, the
major tool vendors (ArchiCAD [6], Revit [1], etc.) do not support ifcOWL, and
still export & import IFC in the XML or STEP file format. Therefore, for those
who wish to use ifcOWL with these tools, a process of conversion into one of
these formats is required.

3 www.buildingsmart.org

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

91

Copyright © LDAC2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Approaches exist to convert ifcOWL into STEP [21], but if the initial ifcOWL
file does not support the IFC schema correctly, the conversion may not fail,
but the tools will not correctly import the file. A challenge for those who wish
to use ifcOWL is therefore creating ifcOWL models which adhere correctly to
the schema. This is non-trivial as the IFC schema, based on the EXPRESS
data modelling language, maintains a complex component hierarchy. For those
who wish to generate ifcOWL, a method to support the validation of generated
ifcOWL models that can inform them about issues would be beneficial, and
provide support to those who are not familiar with IFC’s complex schema.

In this paper we present a method for validating ifcOWL using SHACL
constraints. SHACL is a standard for validating asserted RDF data, and was
published as a W3C Recommendation in 2017 [9]. By expressing constraints
using SHACL terminology, one can indicate what information needs to be present
in models in order for them to be considered accurate and complete. Tooling that
supports this standard, readily available, can afterwards be used to provide a
report on the conformance of a model to the captured set of constraints. As
a case study, the SHACL constraints are tested on data generated during the
conversion of geospatial data into ifcOWL using R2RML rules. The paper details
the methodology, the SHACL constraints, and analysis and findings with respect
to the approach.

2 Related Work

2.1 Building Information Modelling, Industry Foundation Classes
and Linked Data

Building Information Modelling (BIM) is a concept created to support the
maintenance and management of data generated across a building’s life cycle
(BLC) and describes an integrated data model for storing information, typically
relating to the functional and physical characteristics of a building [3]. Its
primary focus includes a 3D model of the architectural design, detailing positions
and dimensions of a building’s walls, rooms, windows etc. as well as non-physical
building features such as the building costs, accessibility, safety, security and
sustainability [17].

The leading standard for BIM are the Industry Foundation Classes4 (IFC),
a STEP-based format for describing buildings in their entirety. The main goal of
IFC is to enable open data exchange within and between all available disciplines
of the building and construction sector and serve as interoperable standard
between the different authoring tools. In theory, this should enable one to
export data to an IFC in one application, and build up precisely the same
data in the same, or in another application, although there are limits to this
with for example the buildings geometry, due to the different implementations
of geometric kernels, application logic, and levels of detail [12].

Models described within the IFC format can be serialized in different
serialization schemas: STEP-based (.ifc), XML-based (.ifcXML), and RDF-based
(.rdf or .ttl). The latter example support the application of Linked Data (LD), an

4 https://www.buildingsmart.org/about/what-is-openbim/ifc-introduction/

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

92

approach to expose, share, and connect related data, which was not previously
linked, on the Web [2]. LD makes use of the Resource Description Format (RDF)
to represent, store, and link data. RDF expresses data as triples, within a
directed graph. Concepts (and individuals) are represented as nodes, and the
relationship between these as edges. Using this approach, relationships can be
created between data resources linking different domains across the Web. This
interlinking of domains has significant potential in the AEC industry, where data
related to different domains are generated and consumed across the BLC. Each
stage of the BLC, from design to construction and maintenance, requires data
sourced from a large set of disparate domains; building geometry and topology
data, product data, sensor data, geospatial data, etc.

Currently, no commercialized BIM authoring tools support the use of the
RDF-based serialisations of IFC, called ifcOWL. The ifcOWL ontology [15]
is based on a conversion procedure that transforms the EXPRESS schema of
IFC into an OWL ontology, thereby allowing direct queries and inferences using
semantic query languages (SPARQL) and rule languages (e.g., SWRL, N3Logic,
SPIN and SHACL). ifcOWL strictly follows the EXPRESS schema of IFC in
order to allow bidirectional conversion, resulting in an ontology which is complex
and aims to capture the entire building data within one schema. Although efforts
were made to split the ifcOWL into modules representing different domains [18],
the ifcOWL is still closer related to concepts introduced within EXPRESS, STEP
and IFC than to those of the Semantic Web. For those who wish to import their
models into BIM authoring tools, it is therefore necessary to convert the resulting
ifcOWL file back into STEP.

Methods exist which support the conversion of ifcOWL back into STEP, such
as the openly available ifcOWL-to-ifcSTEP converter [21]. Still, when converting
there is no checking to ensure the output adheres to IFC in a way that will
be understood by the authoring tools. The ifcOWL model must therefore be
validated to identify any issues in the model prior to conversion.

SHACL, published as a W3C Recommendation in 2017 [9], is a standard
for validating asserted RDF data. By expressing constraints using SHACL
terminology, one can indicate what information needs to be present in models in
order for them to be considered accurate and complete. Tooling that supports
this standard, readily available, can afterwards be used to provide a report on the
conformance of a model to the captured set of constraints. Since its publication,
SHACL has been adopted in norms for validating exchanged information on the
built environment.5

2.2 Validation using OWL

Before SHACL was published, data validation was not uncommonly done using
terminology from OWL. The Web Ontology Language (or OWL) builds on
top of RDF to allow for ontological facts to be expressed. These facts include
whether relations between two concepts (or, rather, classes) are transitive,

5 See, for instance, the Dutch norm NTA8035 for modelling such information on assets.
https://www.nen.nl/NEN-Shop-2/Standard/NTA-80352020-nl.htm

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

93

intransitive, symmetric or asymmetric. Moreover, OWL offers terminology to
capture restrictions. This modelling construct allows one to better define a given
class by indicating what holds for any of its instances, e.g., all instances of the
class Trike have exactly three wheels as parts.

OWL, like the languages it has been built on top of (i.e., RDF and RDFS),
was designed for inferencing. As has been pointed out, ”OWL restrictions are not
actually data constraints, but rather describe inferences to be applied based on
them” [8]. In other words, OWL was not meant to be used to validate instances
in the same way as one would validate data captured in XML against an XML
Schema. Instead, reasoners following the specifications of OWL will interpret
property restrictions as axioms to add information to instances that seems to
be missing. According to the design principles of OWL, such absent information
may simply not yet have been captured or may be captured elsewhere; what
is known as the Open World Assumption. Stating that any Trike must have
exactly 3 wheels as parts, for instance, indicates that OWL reasoners may infer
the existence of 3 wheels for any instance of a Trike where they have not yet
been mentioned and to add that information to the dataset at hand.

Even though OWL is intended to be used for inferencing, it has not
been uncommon to see it used for data validation purposes instead. The
modelling construct of OWL property restrictions lent itself well to express data
constraints, for which similar information tends to be captured (e.g., minimum
cardinality, maximum cardinality, value ranges) [8]. In effect, the appropriation
applies a Closed World Assumption to validate the data at hand. Indeed,
this is the approach that has been taken with ifcOWL. The risk with such
an approach, however, is that information expressed in this manner can be
interpreted incorrectly by applications as its use deviates from the standard.
The consortium behind OWL, W3C, has therefore worked on an alternative
precisely for expressing data validation constraints: SHACL.

2.3 Validation using SHACL

The Shapes Constraint Language (or SHACL) was published as W3C
recommendation in 2017 [9]. The vocabulary allows one to model data
constraints by means of so-called shapes. A shape consists of a set of restrictions
placed on certain data elements, such as classes. In such a case, all instances of
that class will be validated using the set of restrictions described by the shape. As
mentioned earlier, such restrictions on classes are currently expressed in ifcOWL
using OWL terminology where, instead, SHACL would be more appropriate.

The incorrect use of OWL for modelling data validation constraints is one
acknowledged by the editors of SHACL. In fact, there is ample information
available on what it means to migrate from OWL to SHACL for data constraints.
Holger Knublauch, one of the editors of SHACL, has written a comparison
of SHACL and OWL [8]. This comparison includes a table that indicates
counterpart terminology for OWL and SHACL, which facilitates migrating data
validation from the former to the latter. Using counterpart terminology, it is
therefore possible to capture the data constraints present in ifcOWL using
SHACL instead of OWL. Doing so enables the leveraging of readily-available

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

94

SHACL tooling6 for validating IFC models for conformance to the STEP file
format and associated EXPRESS schema.

3 Methodology & Results

3.1 Obtaining SHACL Shapes for ifcOWL

As mentioned, ifcOWL currently captures its data validation constraints using
terminology from OWL. To capture that same information using counterpart
SHACL terminology instead, this paper explores two methods.

Method 1: Applying rules to ifcOWL. The first method in obtaining
SHACL for ifcOWL involves two steps: (1) extracting the data validation
information from ifcOWL and (2) transforming it to appropriate SHACL data.
For this approach, we employ querying and transformation mechanisms available
for RDF and apply these to ifcOWL.

The mechanisms used in this paper for this method are SPARQL and SHACL
Advanced Features [19][20]. These allow one to model, in RDF, queries (using
the standard querying language SPARQL) and rules that infer new information
based on the selection (which are expressed using SHACL Advanced Features).
Thus, the process can rely on an explicit, RDF model and be performed in an
automated manner using open-source tooling that supports these features.7 The
explicit model effectively acts as input that specifies what needs to be selected
and how it ought to be transformed. This input model, created for this paper,
is shown in Listing 1.3 and will henceforth be referred to as the rules model.

The rules model contains three main elements. The first is an ontology
resource which, most notably, is used to declare prefixes used in SHACL rules.
The second element is a SHACL rule which will be executed for every instance of
an owl:Class. This rule contains a query that constructs SHACL data based on
its selection of OWL property restrictions that apply to the Class instance. The
WHERE-clause of the query retrieves every possible pattern of OWL property
restrictions in ifcOWL and combines these through UNIONs before the SHACL
data is constructed based on this information. The third element in the rules
model is a function called getIfcClassForShape, which retrieves valid value types
for properties.8

The rules model is executed on an ifcOWL model using one of the available,
open-source SHACL applications. By providing the application with ifcOWL (in
this paper, ifcOWL version IFC2X3 TC1) as its ’datafile’ and the rules model as
its ’shapesfile’, the application fetches the required information and constructs
the desired SHACL data corresponding to the data validation restrictions in the
original ifcOWL. Listing 1.1 contains an example snippet showing the results of
the transformation for the ifcOWL class IfcDoorPanelProperties.

6 See, for instance, TopBraid SHACL API (https://github.com/TopQuadrant/shacl)
and pySHACL (https://github.com/RDFLib/pySHACL).

7 See the previous footnote.
8 This function is elaborated on after the description of both methods to obtain

SHACL shapes.

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

95

Listing 1.1: ifcOWL data constraints in OWL (left) and SHACL (right)

ifc:IfcDoorPanelProperties

rdf:type owl:Class ;

rdfs:subClassOf

[

rdf:type owl:Restriction ;

owl:allValuesFrom ifc:IfcPositiveLengthMeasure ;

owl:onProperty ifc:panelDepth_IfcDoorPanelProperties

] ;

rdfs:subClassOf

[

rdf:type owl:Restriction ;

owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger ;

owl:onProperty ifc:panelDepth_IfcDoorPanelProperties ;

owl:onClass ifc:IfcPositiveLengthMeasure

] ;

rdfs:subClassOf

[

rdf:type owl:Restriction ;

owl:allValuesFrom ifc:IfcDoorPanelOperationEnum ;

owl:onProperty ifc:panelOperation_IfcDoorPanelProperties

] ;

rdfs:subClassOf

[

rdf:type owl:Restriction ;

owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ;

owl:onProperty ifc:panelOperation_IfcDoorPanelProperties ;

owl:onClass ifc:IfcDoorPanelOperationEnum

]

.

ifc:IfcDoorPanelProperties

rdf:type sh:NodeShape ;

sh:property

[

sh:class ifc:IfcPositiveLengthMeasure ;

sh:path ifc:panelDepth_IfcDoorPanelProperties

] ;

sh:property

[

sh:qualifiedMaxCount 1 ;

sh:path ifc:panelDepth_IfcDoorPanelProperties ;

sh:qualifiedValueShape

[

sh:class ifc:IfcPositiveLengthMeasure

]

] ;

sh:property

[

sh:class ifc:IfcDoorPanelOperationEnum ;

sh:path ifc:panelOperation_IfcDoorPanelProperties

] ;

sh:property

[

sh:qualifiedMinCount 1 ;

sh:qualifiedMaxCount 1 ;

sh:path ifc:panelOperation_IfcDoorPanelProperties ;

sh:qualifiedValueShape

[

sh:class ifc:IfcDoorPanelOperationEnum

]

]

.

This approach has two main advantages compared to the second method.
Firstly, it is easy to set up as it reuses SHACL mechanisms. The SHACL
tooling used in this paper, for instance, contains functionality both for running
data validations and for executing SHACL rules. The second advantage is that
information of ifcOWL, and all relations between them, have already been linked
(in an RDF form) and can be queried easily.

Method 2: Incorporating into ifcOWL generation. The second method
explored in this paper to obtain SHACL constraints for ifcOWL is to make it part
of the process in which ifcOWL itself is formed. The tool with which ifcOWL
is generated from standardized EXPRESS schemas (used with the STEP file
format) is done with a tool called EXPRESStoOWL [15]. The functionality
of this tool can be extended so that the ifcOWL data validation restrictions
that it outputs are expressed using SHACL instead of OWL. We found that
such alterations are best captured in a new Writer class added to the code: a
SHACLWriter.java next to the existing OWLWriter.java. Listing 1.4 contains
snippets of both these Java classes, in which OWL terminology used for data
validation in OWLWriter.java has been replaced by SHACL terminology in
SHACLWriter.java.

This second method of obtaining SHACL would allow incorporating SHACL
in the very creation process of ifcOWL. If, in the future, OWL restrictions
were indeed discarded for newer iterations of ifcOWL (when favouring SHACL,
for instance), this method will still be capable of producing appropriate data
constraints expressed with SHACL. Unfortunately, implementing this method
presents a greater challenge to implement than the first-mentioned method and
has not yet been completed at the time of writing (and has therefore not been
tested fully). The next section will elaborate on this matter.

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

96

Basic datatypes and data constraints. IfcOWL contains a number of
properties that can be used in models. These properties should always have
values of a certain type. The property length value, for instance, can be said
to always need values of type IfcLengthMeasure. This restriction, taken from
ifcOWL version IFC2x3 TC1, is shown in the RDF snippet below.

[a owl:Restriction
owl:onProperty ifc:lengthValue_IfcQuantityLength ;
owl:allValuesFrom ifc:IfcLengthMeasure]

In effect, as OWL terminology is used to capture this restriction, it ought to
be read as an inference axiom: Use of the property for length value, regardless
of whether it leads to a valid value or not, will be inferred to (also) be of type
IfcLengthMeasure. Such inferred information may be desired if an ifcOWL model
with instance data is valid and correct, but it would be misleading when applied
to invalid values – such as when a date is asserted as length value.

With SHACL it is possible to express the information as data constraint
instead. IfcOWL models then ought to have a value typed as IfcLengthMeasure
when asserting a length value. An RDF snippet to that extent is shown below.
It could be further improved, however, by taking into account current practices.

[sh:path ifc:lengthValue_IfcQuantityLength ;
sh:class ifc:IfcLengthMeasure]

Tooling available to transform IFC data from a STEP file to an ifcOWL
model, types values of the property length value as express:REAL rather than
IfcLengthMeasure [21]. Doing so may be a pragmatic choice. The last-mentioned
type is, in fact, a specialization of the former. Capturing a value on the more
generic level (i.e., express:REAL) allows the reuse of such values for multiple
purposes instead of only as value to the property length value. For practical
purposes, the value itself (e.g., ”12.4”) will remain unchanged. As a consequence,
it begs the question whether data validation of ifcOWL models should treat
captured real numbers for a length value as invalid when that value is not
expressed at the most specific level (i.e., IfcLengthMeasure) but at the most
generic level (i.e., express:REAL). In both situations, it would still be possible
to convert the information to a correct STEP file that can be read by CAD
tooling.

In order to consider both specific and generic levels of typing values in an
ifcOWL model correct, the SHACL restriction regarding relevant properties
ought to require (at the minimum) the most generic datatype available. To
illustrate, the case described thus far would then be captured in SHACL as
follows:

[sh:path ifc:lengthValue_IfcQuantityLength ;
sh:class express:REAL]

This stance has already been incorporated in the first method described in
this paper. In fact, the function getIfcClassForShape in the rules model takes
care of exactly this selection. If a more generic datatype (i.e., stemming from

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

97

EXPRESS) can be used in a constraint for a property value, it is preferred
over the most specific one.9 Implementing this stance in the first method was
relatively easy, since the hierarchy between different datatypes can be queried.
Implementing it in the second method, however, will take more effort. There, this
hierarchy is still to be made accessible in code before it can be used in writing
the desired SHACL output. The next section will demonstrate how models can
be validated once SHACL shapes are available (regardless of which method has
been used to create them).

3.2 Validating IFC models using SHACL

Once SHACL shapes have been obtained that express the data constraints for
IFC models (obtained for this article by means of the first-mentioned method),
data validation can be done with any SHACL-compliant tool. SHACL compliant
tooling validates whether instances of ifcOWL classes in the IFC model conform
to the constraints placed on them. The resulting output is a validation report in
RDF, indicating whether the entire IFC model conforms to the constraints and,
if it does not conform, which violations are present. For this paper, we have used
the same open-source tool that has been utilized for generating SHACL data in
’Method 1’ above.10 Listing 1.2 contains an RDF snippet of a validation report
created for an IFC model that was generated based on geospatial data.

Listing 1.2: RDF snippet that contains a SHACL data validation report.

1 @prefix ifc: <http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#> .
2 @prefix sh: <http://www.w3.org/ns/shacl#> .
3 @prefix data: <http://data.geohive.ie/resource/ifcbuilding/> .
4

5 [a sh:ValidationReport ;
6 sh:conforms
7 false ;
8 sh:result
9 [a sh:ValidationResult ;

10 sh:focusNode
11 data:IfcGloballyUniqueId_361c76fd-cdd3-4c56-aae1-848f3baecf77IfcOwnerHistory ;
12 sh:resultMessage
13 "Value must be an instance of ifc:IfcChangeActionEnum" ;
14 sh:resultPath
15 ifc:changeAction_IfcOwnerHistory ;
16 sh:resultSeverity
17 sh:Violation ;
18 sh:sourceConstraintComponent
19 sh:ClassConstraintComponent ;
20 sh:sourceShape
21 [] ;
22 sh:value
23 <http:ifcowl.openbimstandards.orgIFC2X3_TC1#ADDED>
24] ;
25 sh:result
26 [a sh:ValidationResult ;
27 sh:focusNode
28 data:IfcGloballyUniqueId_361c76fd-cdd3-4c56-aae1-848f3baecf772IfcWallStandardCase ;
29 sh:resultMessage
30 "Value must be an instance of ifc:IfcOwnerHistory" ;

9 The only exception are enumerations, since validation will require to know which
exact kind of enumeration is necessary for a certain property.

10 https://github.com/TopQuadrant/shacl

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

98

31 sh:resultPath
32 ifc:ownerHistory_IfcRoot ;
33 sh:resultSeverity
34 sh:Violation ;
35 sh:sourceConstraintComponent
36 sh:ClassConstraintComponent ;
37 sh:sourceShape
38 _:b2 ;
39 sh:value
40 data:IfcGloballyUniqueId_361c76fd-cdd3-4c56-aae1-848f3baecf772IfcOwnerHistory
41] ;
42 .

The validation report in Listing 1.2 indicates that the IFC model provided
does not conform to the SHACL shapes for ifcOWL. Two results can be seen
that are violations (see lines 17 and 34). The first violation in the IFC model is a
resource with a property changeAction that does not contain a valid value. The
value required ought to be one out of an enumeration, but instead a flawed value
was present (see line 23; forward slashes required in the URI value are absent).
The second validation result shown in this report indicates that a value of the
property ownerHistory has not been typed, as is mandatory, as an instance of
the IFC class IfcOwnerHistory. Thus, it is possible to obtain a list of these and
other violations in order to make corrections to the IFC model – or, in this case,
the conversion process that generates the model from available geospatial data
– and ensure that the IFC model can afterwards be transformed to the STEP
format successfully and read by existing IFC software that relies on valid STEP
input.

4 Validation of sample ifcOWL model

To further test the SHACL constraints, a sample ifcOWL model was used
which was generated as part of ongoing work to convert geospatial data
directly into ifcOWL using the Relational Database to Resource Description
Framework Language (R2RML)[5], a standardised declarative mapping language
which allows one to convert non-RDF resources into RDF while relying on the
underlying relational database technology (usually SQL) to manipulate the data.
R2RML enables the user to create mappings which include target vocabularies,
so that for example, columns in a table can be assigned specific definitions given
by existing vocabularies on the web. This is a powerful tool that enables the
re-use of common vocabularies to describe data sets and for bringing semantics
to tabular data through conversion to RDF.

In parallel work (under peer review), R2RML has been used to convert
subsets of the Ordnance Survey Ireland (OSi, Ireland’s national mapping agency)
Prime2 data set (information of over 50 million spatial objects including road
segments, buildings, fences, etc.) using R2RML [7][11][13][12]. Recent work
has seen the publication of over 200 thousand buildings (polygon foot print,
geodetic coordinate), being made available as RDF using the GeoSPARQL
vocabulary [10]11. This data meets some basic requirements for BIM. R2RML
has been demonstrated to provide a method for generating 3D semantic BIM

11 http://data.geohive.ie/downloadAndQuery.html

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

99

from relatively simple geospatial inputs (a 2D footprint), which is an important
step towards making BIM models open and available to support a wide range of
use cases. The mappings and resulting ifcOWL model can be found here: 12.

A major challenge when converting into ifcOWL is related to the complexity
of the IFC schema and its RDF representation as ifcOWL. ifcOWL maintains
a complex set of relationships which includes, for example, lists to represent
nested placement of entities within a building along with their orientation, and
lists to represent each dimension of a coordinate as a single value [14], and
lists to represent geolocation [12]. Each list requires its own mapping within the
R2RML file. IFC also includes a lot of metadata with each model, such as the
different units used, the creator of the file and the application used to generate
it. The R2RML mapping for this purpose should therefore correctly model all
the relationships required.

If these are not modelled correctly, the generated ifcOWL will be incorrect
and if, for example, one wishes to convert the ifcOWL back into STEP so that it
can be imported into a CAD tool, using the openly available ifcOWL-to-ifcSTEP
converter [21], the generated IFC STEP will fail on import. SHACL therefore
provides an important step in the validation of the ifcOWL and the R2RML, by
ensuring that the generated ifcOWL is valid. The validation reports that, using
the aforementioned method, have been generated have assisted in fine tuning the
R2RML transformation to ensure the model’s conformance and completeness for
processing in BIM CAD tools.

5 Conclusion & Future Work

This paper has demonstrated the process for data validation of ifcOWL
models by means of SHACL. Unlike OWL, which was designed for inferencing,
SHACL was designed specifically for data validation. By migrating ifcOWL data
constraints expressed as OWL restrictions to SHACL shapes, ifcOWL models can
benefit from the use of standardized and readily-available data validation tooling.
The validation reports generated by SHACL tools highlight issues identified in a
model. A sample of such a report has been included in this paper for an ifcOWL
model created through a conversion of geospatial data.

Performing data validations is an important part in ensuring data
interoperability. The described data validation process using SHACL allows
one to identify mistakes in a model and make corrections before processing it
further – such as importing the model into popular CAD tools. Future versions
of ifcOWL, then, would benefit from incorporating SHACL shapes. Steps to
gradually adopt SHACL for data validation, and incorporating it into the very
generation process of the ifcOWL standard, are therefore recommended.

References

1. Autodesk: Revit (2017), https://www.autodesk.eu/products/revit

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (jul 2009)

12 https://www.scss.tcd.ie/∼mcglink/r2rml/

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

100

3. Borrmann, A., König, M., Koch, C., Beetz, J.: Building Information Modeling:
Technology Foundations and Industry Practice. Springer International Publishing
(2018), ISBN: 978-3-319-92861-6

4. buildingSMART International Ltd.: ifcOWL - buildingSMART Technical (2019),
https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl/

5. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping
Language. W3C Recommendation (September 2012), 1–34 (2012),
https://www.w3.org/TR/r2rml/

6. Graphisoft: ARCHICAD (2016), https://www.graphisoft.com/archicad/
7. Ireland, O.S.: GeoHIVE - Bringing Irish Geospatial Data to the Web (2019),

http://data.geohive.ie/
8. Knublauch, H.: SHACL and OWL Compared (2017), https://spinrdf.org/shacl-

and-owl.html
9. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL) (August

2016), 1–88 (2017), https://www.w3.org/TR/shacl/
10. Lopez, X.: GeoSPARQL - A geographic query language for RDF data

A proposal for an OGC Draft Candidate Standard p. 13 (2012),
https://www.opengeospatial.org/standards/geosparql

11. McGlinn, K., Debruyne, C., McNerney, L., O’Sullivan, D.: Integrating Ireland’s
Geospatial Information to Provide Authoritative Building Information Models.
In: Proceedings of the 13th International Conference on Semantic Systems -
Semantics2017. vol. 13, pp. 57–64. ACM Press (2017)

12. McGlinn, K., Wagner, A., Pauwels, P., Bonsma, P., Kelly, P., O’Sullivan, D.:
Interlinking geospatial and building geometry with existing and developing
standards on the web. Automation in Construction pp. 235–250

13. O’Donovan, J., O’Sullivan, D., McGlinn, K.: A method for converting IFC
geometric data into GeoSPARQL. In: CEUR Workshop Proceedings. vol. 2389,
pp. 7–20 (2019)

14. Pauwels, P., Krijnen, T., Terkaj, W., Beetz, J.: Enhancing the ifcOWL ontology
with an alternative representation for geometric data. Automation in Construction
80, 77–94 (2017)

15. Pauwels, P., Terkaj, W.: EXPRESS to OWL for construction industry: Towards
a recommendable and usable ifcOWL ontology. Automation in Construction 63,
100–133 (2016)

16. Pauwels, P., Zhang, S., Lee, Y.C.: Semantic web technologies in AEC industry: A
literature overview (jan 2017). https://doi.org/10.1016/j.autcon.2016.10.003

17. Taylor, J., Bernstein, P.: Paradigm Trajectories of Building Information Modeling
Practice in Project Networks. Journal of Management in Engineering - J MANAGE
ENG 25 (2009)

18. Terkaj, W., Pauwels, P.: A method to generate a modular ifcOWL ontology.
In: Borgo, S., Kutz, O., Loebe, F., Neuhaus, F. (eds.) Proceedings of the 8th
International Workshop on Formal Ontologies meet Industry. CEUR Workshop
Proceedings, vol. 2050. Bolzano, Italy (2017)

19. W3C: SPARQL 1.1 Query Language. https://www.w3.org/TR/sparql11-query/
(2013), accessed: 28-Mar-2020

20. W3C: SHACL Advanced Features. https://www.w3.org/TR/shacl-af/ (2017),
accessed: 28-Mar-2020

21. Zhang, B.: Roundtrip converters from IFC STEP files to IfcOWL RDF files,
https://github.com/BenzclyZhang/IfcSTEP-to-IfcOWL-converters

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

101

Listing 1.3: RDF that captures SHACL rules for obtaining SHACL from ifcOWL.

1 @prefix : <http://example.org/rules/ifcowl-to-shacl/> .
2 @prefix sh: <http://www.w3.org/ns/shacl#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
5 @prefix owl: <http://www.w3.org/2002/07/owl#> .
6 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
7 @prefix list: <https://w3id.org/list#> .
8 @prefix expr: <https://w3id.org/express#> .
9 @prefix dct: <http://purl.org/dc/terms/> .

10

11 : a owl:Ontology ;
12 rdfs:label "Rules: IfcOWL to SHACL"@en ;
13 rdfs:comment "SHACL-AF rules to infer SHACL shapes from ifcOWL."@en ;
14 dct:creator <https://www.universiteitleiden.nl/en/staffmembers/sander-stolk> ;

15 owl:imports sh: ;

16 sh:declare
17 [sh:prefix "" ;
18 sh:namespace "http://example.org/rules/ifcowl-to-shacl/"^^xsd:anyURI ;],
19 [sh:prefix "sh" ;
20 sh:namespace "http://www.w3.org/ns/shacl#"^^xsd:anyURI ;] ,
21 [sh:prefix "rdf" ;
22 sh:namespace "http://www.w3.org/1999/02/22-rdf-syntax-ns#"^^xsd:anyURI ;],
23 [sh:prefix "rdfs" ;
24 sh:namespace "http://www.w3.org/2000/01/rdf-schema#"^^xsd:anyURI ;],
25 [sh:prefix "owl" ;
26 sh:namespace "http://www.w3.org/2002/07/owl#"^^xsd:anyURI ;],
27 [sh:prefix "xsd" ;
28 sh:namespace "http://www.w3.org/2001/XMLSchema#"^^xsd:anyURI ;] .
29

30

31 owl:Class a sh:NodeShape ;
32 sh:rule [
33 a sh:SPARQLRule ;
34 sh:prefixes : ;
35 sh:construct """
36 CONSTRUCT {
37 $this a rdfs:Class .
38 $this a sh:NodeShape .
39 $this sh:property ?tgtPropertyShape .
40 ?tgtPropertyShape sh:path ?onProperty .
41 ?tgtPropertyShape sh:datatype ?datatype .
42 ?tgtPropertyShape sh:class ?shacl_class .
43 ?tgtPropertyShape sh:in ?enumList .
44 ?tgtPropertyShape sh:minCount ?shacl_minC .
45 ?tgtPropertyShape sh:maxCount ?shacl_maxC .
46 ?tgtPropertyShape sh:qualifiedValueShape ?shacl_qVS .
47 ?tgtPropertyShape sh:qualifiedMinCount ?shacl_minQC .
48 ?tgtPropertyShape sh:qualifiedMaxCount ?shacl_maxQC .
49 ?tgtPropertyShape sh:hasValue ?hasV .
50 }
51 WHERE {
52 $this rdf:type/(rdfs:subClassOf)* owl:Class .
53 OPTIONAL {
54 $this rdfs:subClassOf ?restriction .
55 ?restriction owl:onProperty ?onProperty .
56 OPTIONAL {
57 ?onProperty rdfs:range ?range .
58 BIND ((STRSTARTS(str(?range), str(xsd:)) || (?range = rdf:langString)) AS

?isDatatype) .↪→
59 BIND (IF(?isDatatype, ?range, ?null) AS ?datatype) .
60 BIND (IF(! ?isDatatype, ?range, ?null) AS ?nonDatatype) .
61 OPTIONAL {

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

102

62 ?range owl:oneOf ?enumList .
63 } .
64 BIND (IF((!bound(?enumList)), ?nonDatatype, ?null) AS ?rangeClass) .
65 BIND (IF(bound(?rangeClass), :getIfcClassForShape(?rangeClass), ?null) AS

?shacl_class) .↪→
66 } .
67 {
68 ?restriction owl:cardinality ?c .
69 BIND (?c AS ?minC) .
70 BIND (?c AS ?maxC) .
71 } UNION {
72 ?restriction owl:minCardinality ?minC .
73 } UNION {
74 ?restriction owl:maxCardinality ?maxC .
75 } UNION {
76 ?restriction owl:minQualifiedCardinality ?minQC .
77 ?restriction owl:onClass ?onClass .
78 BIND (:getIfcClassForShape(?onClass) AS ?shacl_qVS) .
79 } UNION {
80 ?restriction owl:maxQualifiedCardinality ?maxQC .
81 ?restriction owl:onClass ?onClass .
82 BIND (:getIfcClassForShape(?onClass) AS ?shacl_qVS) .
83 } UNION {
84 ?restriction owl:qualifiedCardinality ?qC .
85 ?restriction owl:onClass ?onClass .
86 BIND (?qC AS ?minQC) .
87 BIND (?qC AS ?maxQC) .
88 BIND (:getIfcClassForShape(?onClass) AS ?shacl_qVS) .
89 } UNION {
90 ?restriction owl:allValuesFrom ?allVF .
91 BIND (:getIfcClassForShape(?allVF) AS ?shacl_class) .
92 } UNION {
93 ?restriction owl:someValuesFrom ?someVF .
94 BIND (1 AS ?minQC) .
95 BIND (:getIfcClassForShape(?someVF) AS ?shacl_qVS) .
96 } UNION {
97 ?restriction owl:hasValue ?hasV .
98 } .
99 BIND (BNODE() AS ?tgtPropertyShape) .

100 BIND (STRDT(?minC, xsd:integer) AS ?shacl_minC) .
101 BIND (STRDT(?maxC, xsd:integer) AS ?shacl_maxC) .
102 BIND (STRDT(?minQC, xsd:integer) AS ?shacl_minQC) .
103 BIND (STRDT(?maxQC, xsd:integer) AS ?shacl_maxQC) .
104 } .
105 }""" ;] .
106

107

108 :getIfcClassForShape
109 a sh:SPARQLFunction ;
110 rdfs:comment "Returns the EXPRESS superclass of $op1, if it exists, otherwise $op1

itself." ;↪→
111 sh:parameter [
112 sh:path :op1 ;
113 sh:description "The node" ;
114] ;
115 sh:prefixes : ;
116 sh:select """
117 SELECT ?result
118 WHERE {
119 $op1 a ?type .
120 OPTIONAL {
121 $op1 rdfs:subClassOf* ?superClass .
122 FILTER (STRSTARTS(STR(?superClass), "https://w3id.org/express#")) .
123 FILTER (?superClass != <https://w3id.org/express#ENUMERATION>) .
124 }
125 BIND (COALESCE(?superClass, $op1) AS ?result) .
126 }""" .

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

103

Listing 1.4: EXPRESStoOWL’s OWLWriter.java (top) and new
SHACLWriter.java (bottom)

122 private void outputOWLproperty(BufferedWriter out, PropertyVO property) {
123 try {
124 if (property.isList() || property.isArray()) {
125 out.write("ifc:" + property.getLowerCaseName() + "\r\n");
126 out.write("\trdfs:label \"" + property.getOriginalName()//

getOriginalNameLowerCase()↪→
127 + "\" ;\r\n");
128 out.write("\trdfs:domain ifc:" + property.getDomain().getName() + "

;\r\n");↪→

...

148 if (!property.getRangeNS().equalsIgnoreCase("expr")) {
149 // write List range if necessary
150 if (!property.isSet()) {
151 if (property.isListOfList()) {
152 if (!listPropertiesOutput.contains(property.getRange() +

"_List")) {↪→
153 // property not already contained in resulting
154 // OWL file
155 // (.TTL) -> no need to write additional
156 // property
157

158 listPropertiesOutput.add(property.getRange() + "_List");
159

160 out.write(property.getRangeNS() + ":" +
property.getRange() + "_List_EmptyList" + "\r\n");↪→

161 out.write("\trdf:type owl:Class ;" + "\r\n");
162 out.write("\trdfs:subClassOf list:EmptyList, " +

property.getRangeNS() + ":" + property.getRange() +
"_List_List" + " ." + "\r\n" + "\r\n");

↪→
↪→

122 private void outputSHACLproperty(BufferedWriter out, PropertyVO property) {
123 try {
124 if (property.isList() || property.isArray()) {
125 if (!property.getRangeNS().equalsIgnoreCase("expr")) {
126 // write List range if necessary
127 if (!property.isSet()) {
128 if (property.isListOfList()) {
129 if (!listPropertiesOutput.contains(property.getRange() +

"_List")) {↪→
130 // property not already contained in resulting
131 // OWL file
132 // (.TTL) -> no need to write additional
133 // property
134

135 listPropertiesOutput.add(property.getRange() + "_List");
136

137 out.write(property.getRangeNS() + ":" +
property.getRange() + "_List_List" + "\r\n");↪→

138 out.write("\trdf:type sh:NodeShape ;" + "\r\n");
139

140 out.write("\tsh:property" + "\r\n");
141 out.write("\t\t[" + "\r\n");
142 out.write("\t\t\tsh:path list:hasContents ;" + "\r\n");
143 out.write("\t\t\tsh:class " + property.getRangeNS() + ":"

+ property.getRange() + "_List" + "\r\n");↪→
144 out.write("\t\t] ;" + "\r\n");

Proceedings of the 8th Linked Data in Architecture and Construction Workshop - LDAC2020

104

