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Abstract. Researchers seek to identify biological markers which accu-
rately differentiate cancer subtypes and their severity from normal con-
trols. One such biomarker, DNA methylation, has recently become more
prevalent in genetic research studies in oncology. This paper proposes to
apply these findings in a study of the diagnostic accuracy of DNA methy-
lation signatures for classifying metastasis samples. Very high classifica-
tion performance measures were obtained from differentially methylated
positions and regions, as well as from selected gene signatures. Perfect
accuracy was achieved with the top 5 feature-selected genes using three
similar cases and the K-nearest neighbor classifier. This work contributes
to the path toward the identification of biological signatures for oncology
samples using case-based reasoning.
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1 Introduction

The term epigenetics was first introduced into modern biology by Conrad Wadding-
ton as a means of defining interactions between genes and their products that
result in phenotypic variations. Waddington’s landscape presents a cell becom-
ing more differentiated as time goes on. One of the events that can cause this
differentiation is methylation. Methylation is a covalent attachment of a methyl
group to cytosine. Figure 1 shows the addition of this methyl group to cytosine.
Cytosine (C) is one of the four bases that construct DNA and one of only two
bases that can be methylated. While adenine can be methylated as well, cytosine
is typically the only base that’s methylated in mammals. Once this methyl group
is added, it forms 5-methylcytosine where the 5 references the position on the
6-atom ring where the methyl group is added. Under the majority of circum-
stances, a methyl group is added to a cytosine followed by a guanine (G) which
is known as CpG. While the methyl group is added onto the DNA, it doesn’t
alter the underlying sequence but it still has profound effects on the expression
of genes and the functionality of cellular and bodily functions. Methylation at
these CpG sites has been known to be a fairly stable epigenetic biomarker that
usually results in silencing the gene. Further, the amount of methylation can be
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increased (known as hypermethylation) or decreased (known as hypomethyla-
tion) and improper maintenance of epigenetic information can lead to a variety
of human diseases.

Fig. 1: Attachment of a methyl group to the 5 position of cytosine.

DNA methylation, has recently become more prevalent in genetic research
studies in oncology. This paper proposes to apply these findings in a study of
the diagnostic accuracy of DNA methylation signatures for classifying metastatic
samples in breast cancer. This paper outlines the methods used to be able to
apply case-based reasoning (CBR) and instance-based learning to methylation
data, most often analyzed through statistical methods. Methylation data require
a preprocessing pipeline leading to improved analysis, as this article shows. First,
potential confounding factors such as batch effect and potential covariates are
eliminated. Following, varied methods for the selection of subsets of methylation
probes from the 485,577 highly dimensional dataset are applied. Feature selection
methods further refine and select appropriate probes, eventually grouping them
in genomic regions. These stages amount to case elaboration and constitute the
bulk of the work for classification or prediction. This paper shows that the case
elaboration mechanisms greatly improves the classification capability of case-
based reasoning. Following sophisticated case elaboration processes, very high
classification performance measures were obtained from differentially methylated
positions and regions, as well as from selected gene signatures.

Specifically, we offer the following significant contributions:

1. One of the first applications of CBR using methylation data. While
studies using gene expression data in a CBR context have been performed
previously, very few (if any), applications using methylation data have been
produced.

2. Multi-level case elaboration and refinement which examine biolog-
ical and statistical differences. Significantly different methylation levels
in the DNA, both at the microarray probe level and with a higher-order
cluster of probes that serve similar functions were utilized and compared.
Lastly, these probes are mapped to genes and ranked through a feature
selection stage that attempted to locate the smallest possible signature of
differential methylation.



2 Related Work

The utility of DNA methylation for the purposes of classification has been re-
cently studied to differentiate blood samples in mental disorder subtypes [2] and
cancer tumor tissue from normal tissue. This section will discuss a few such ex-
amples before concluding with the inspiration for the project outlined in this
paper. The first such example is a prognostic classifier developed by Dos Reis
et al., [10] for well-differentiated thyroid carcinoma (WDTC) based on 21 DNA
methylation probes that predicted a poor outcome in patients with 63% sensi-
tivity and 92% specificity for their internal data and 64% sensitivity and 88%
specificity for data from The Cancer Genome Atlas. Similarly, Mundbjerg et
al., [8] constructed an aggressiveness classifier from 25 methylation probes that
could determine aggressive versus non-aggressive subtypes of prostate cancer.
Testing on 496 prostate samples from tumors and adjacent-normal (AN) tissue,
they found 97.4% specific and a 96.2% sensitivity.

Hao et al., [5] determined that DNA methylation could predict cancer versus
normal tissue with accuracies above 95% in a three-cohort study of four common
cancers. Testing in breast, colon, liver and lung cancer, differentially methylated
CpG sites were used to classify tumor versus normal tissue. Hao et al., [5] used
whole-genome methylation data from The Cancer Genome Atlas to construct a
training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue
samples, and a validation cohort of 791 tumor samples and 93 matched adja-
cent normal tissue samples. The correct diagnosis rate for their training set was
98.4%, which was then replicated in the validation cohort for a statistically sim-
ilar rate of 97.1%. A third, independent cohort of Chinese cancer samples (394
tumor samples and 324 matched adjacent normal tissue samples) resulted in a
correct diagnosis rate of 95.0%. Methylation patterns were also able to correctly
identify 29 of 30 colorectal cancer metastases in the liver, 32 of 34 colorectal
cancer metastases in the lung and 19 of 20 breast cancer metastases [5]. This
particular study promoted a positive outlook on the utility of DNA methylation
for the classification and characterization of cancer.

Within the domain of CBR, there exist several applications using microar-
ray data. Anaissi, Goyal, Catchpoole, Braytee, and Kennedy [1], for example,
attempted to navigate the complexity of the highly-dimensional and imbalanced
datasets often found in microarray analysis by focusing on case retrieval. Their
framework uses a k-nearest neighbor (kNN) classifier with a weighted feature-
based similarity measure to retrieve similar patients from a case base of acute
lymphblastic leukemia. Gene expression data is employed to determine this sim-
ilarity, and the treatment and outcome is used to propose solutions. Feature
selection, dimensionality reduction, and feature weighting is used to handle the
high-dimensionality of the data and removal of irrelevant features. They utilize
oversampling to deal with the imbalanced classes. More specifically, they use the
synthetic minority oversampling technique (SMOTE) methodology which artifi-
cially creates minority samples based on interpolation between members of the
original minority class. After these pre-processing stages, a new sample is given
to the kNN classifier to retrieve similar cases.



Ramos-Gonzalez et al., [9] used a two-level feature selection process for gene
expression data in squamous cell carcinoma and adenocarcinoma. Their method-
ology has a preliminary feature selection which uses a non-parametric Mann-
Whitney test to locate genes whose expression levels variation are statistically
differentiated between subtypes. Following is a feature selection stage with Gra-
dient Boosted Regression Trees that further refines the feature list into a greatly
reduced subset that still maintains a high classification accuracy. A distance-
based approach is used to retrieve similar cases, while additional diagnostic in-
formation may be requested that assists in correcting the prediction.

More recently, Lamy, Sekar, Guezennec, Bouaud and Seroussi [7] proposed
a CBR method that visualizes results. The CBR system was rather straight-
forward, retrieving cases through a distance measure, though their specialization
was in the explainability. Qualitative attributes between cases were shown us-
ing rainbow boxes, where labeled and colored rectangles extend through columns
that represent the cases, clearly showing what was similar or dissimilar between
cases. Quantitative attributes are provided in scatter plots that center on the
query case and accurately displays the similar cases.

3 Material

Methylation data for breast cancer (BRCA, 1) was downloaded from The Cancer
Genome Atlas (TCGA, 2) using the R package TCGAbiolinksGUI [3]. Molec-
ular data was filtered for only the Illumina Human Methylation 450 platform
and prepared as an RStudio object. This data pertained to 892 samples and the
485,577 probes that exist on the Illumina Human Methylation 450 beadchip.
The methylation β values were then extracted. β values are an estimation of the
methylation levels between 0 and 1 with 0 being completely non-methylated and
1 being completely methylated. Similarly, the BRCA clinical data was down-
loaded and subset for variables of relevance. These variables were the sample
definition (describes whether the sample is a primary solid tumor, normal tis-
sue, or the metastatic site), tumor stage, year of birth, tissue of origin, gender
and race. This study focuses on classifying sample as either normal or a sample
from a metastatic, stage 4 tumor.

4 Methods

4.1 Data Preprocessing

Metastatic tissue samples (those pertaining to the metastasized site, not the
primary cancer site) were discarded, as well as samples from males. Year of birth
was subtracted from the current year as a measure of the subject’s age, regardless
of whether the subject was alive or deceased. These subjects were then assigned

1 https://portal.gdc.cancer.gov/projects/TCGA-BRCA
2 https://www.cancer.gov/tcga



an age group with those less than 50 being in group 1, between 50 and 60 being
in group 2, 60 to 70 in group 3, 70 to 80 in group 4, 80 to 90 in group 5, and those
over 90 in group 6. The 10 stage 4 primary solid tumor samples were used to
define the Metastatic group (M), while 95 solid tissue normal samples defined the
Normal group (N). Removal of probes associated with covariate variables were
then performed using the R package SVA and ComBat. The resulting dataset
after pre-processing was 120,681 sites for 105 samples.

4.2 Case-based Classification

Classification was performed in several stages that further elaborated and re-
fined the cases and carried out using the Waikato Environment for Knowledge
Analysis (WEKA) [4] and the K-nearest neighbor algorithm. In each classifica-
tion step, training was first performed through iterative removal of one sample
for testing while the other samples were retained for training. For the testing
sample, the nearest one, two or three cases were retrieved by calculating the
Euclidean distance based on the similarity of features. The classification label
for these cases were retrieved, with the label that was in the majority being
reused for the testing sample. Despite the class imbalance, we elected not to
use oversampling or undersampling. Oversampling the minority class can swiftly
lead to overfitting, while undersampling the majority class can potentially lead
to leaving out an important instance with crucial differences that could aid in
the identification of the minority class. Instead, we utilized performance mea-
sures that adjusted for the class imbalance by calculating a balanced accuracy
(BACC, computed using the average of per-class accuracy) and the weighted
average area under the ROC curve (AUC).

4.3 Case Elaboration and Refinement

First results on all features after pre-processing proved to be unsatisfactory and
attempts were made to refine the cases by focusing on the differentially methy-
lated probes between the two groups (normal and metastatic), then on the dif-
ferentially methylated regions. Finally feature selection methods were attempted
to define a methylation signature on the metastatic samples.

Differentially Methylated Positions Differentially methylated positions (DMP)
were identified using the Chip Analysis Methylation Pipeline (ChAMP) for R.
This package uses limma to identify statistically different probes between the
groups, using a Benjamin-Hochberg adjusted p-value of 0.05 for significance.
107,497 probes were found to be differentially methylated, and these sites were
tested to observe differences in classification performance.

Differentially Methylated Regions The DMRcate method within ChAMP
was used to extract the differentially methylated regions (DMR). Regions are



clusters of probes that serve a similar function in gene transcriptional regula-
tion. Cross-hybridizing probes and sex-chromosome probes were removed prior
to operation to further account for potential confounding factors such as gender.
A false-discovery rate of 0.05 and a minimum probe number of 15 were provided
as primary thresholding parameters with an adjusted p-value of 0.01 as the sig-
nificance threshold. Probes within the located regions were then used to build
the dataset for this stage. 788 probes were located within these regions.

4.4 Feature Selection

Feature selection was carried out on the dataset after initial pre-processing mea-
sures were performed, as well as on the data after differentially methylated posi-
tion analyses. Prior to feature selection, each probe was mapped to its associated
gene. Four algorithms in WEKA consisting of the Information Gain Attribute
Evaluation, Correlation Attribute Evaluation, SMO Classifier Attribute Evalu-
ation and Naive Bayes Classifier Attribute Evaluation were performed. An en-
semble was then created using all of the results by tallying the rankings for each
gene in the results of each algorithm. In each list, the best gene would be ranked
first and the second best would be ranked second and so forth. The first stage
was to take the top 5 percent of genes. The top 5 percent after pre-processing
equated to 6,036 genes, while the top 5 percent after DMP equated to 5,377
genes. Balanced accuracy and the AUC were again used as performance mea-
sures.

Finally, features were ranked and a search by trial-and-error was performed
to determine the smallest possible methylation signature.

5 Results

5.1 Classification after pre-processing

The resulting dataset after pre-processing was classified using leave-one-out-
cross-validation (LOOC) using one, two or three cases to serve as a baseline for
the comparison of case elaboration and refinement strategies. Table 1 displays the
classification results as well as the number of metastatic samples (M) identified
out of 10 total M samples. The results show that only 75% of the samples were
correctly classified. This is a difficult problem due to the very large number of
features (120,681).

5.2 Differentially Methylated Positions

The first case elaboration strategy consisted in selecting differentially methy-
lated probes between normal and metastatic cases. 107,497 probes were found to
be differentially methylated, and these sites were tested to observe differences in
classification performance. The resulting balanced accuracies, AUC, and M sam-
ples identified is in Table 2. This table shows that results improved only slightly.
The problem remains hard to the still large number of features (107,497).



Table 1: Classification results of 120,681 sites after pre-processing. BACC: Balanced
Accuracy. AUC: Area Under the Curve. M: Metastatic

Classifier BACC AUC Correct M Samples

1 case 70% 0.700 4
2 cases 65% 0.750 3

3 cases 75% 0.800 5

Table 2: Classification results of 107,497 sites after differentially methylated position
analyses. BACC: Balanced Accuracy. AUC: Area Under the Curve. M: Metastatic

Classifier BACC AUC Correct M Samples

1 case 75% 0.750 5
2 cases 70% 0.800 4

3 cases 75% 0.850 5

5.3 Differentially Methylated Regions

The second case elaboration and refinement strategy consisted in selecting differ-
entially methylated regions. 788 probes were located within these regions, which
greatly reduced the number of features. The balanced accuracies, AUC and M
samples identified after classification at this stage is in Table 3. It is interesting to
notice that the classification results significantly improve as measures by AUC.
In addition the classification efficiency is greatly improved due to the significant
reduction in number of features.

Table 3: Classification results of 788 sites after differentially methylated region analyses.
BACC: Balanced Accuracy. AUC: Area Under the Curve. M: Metastatic

Classifier BACC AUC Correct M Samples

1 case 75% 0.750 5
2 cases 70% 0.850 4

3 cases 75% 0.897 5

5.4 Feature Selection

Finally feature selection was applied to determine a methylation signature of the
metastatic cases. The top 5 percent after pre-processing equated to 6,036 genes,
while the top 5 percent after DMP equated to 5,377 genes. Balanced accuracy
and the AUC were again used as performance measures. The results for the top
5 percent after pre-processing is available in Table 4 and after DMP in Table 5.
This method generates significantly improved balanced accuracy and AUC over
the previous methods.



Table 4: Classification results of 6,036 feature selected genes after pre-processing was
conducted. BACC: Balanced Accuracy. AUC: Area Under the Curve. M: Metastatic

Classifier BACC AUC Correct M Samples

1 case 90% 0.900 8
2 cases 90% 0.900 8

3 cases 85% 0.900 7

Table 5: Classification results of 5,377 feature selected genes after DMP was conducted.
BACC: Balanced Accuracy. AUC: Area Under the Curve. M: Metastatic

Classifier BACC AUC Correct M Samples

1 case 90% 0.900 8
2 cases 85% 0.900 7

3 cases 85% 0.900 7

5.5 Incremental Testing of the Highest Ranked Features

To determine a methylation signature, the top 1 feature-selected gene, top 2
feature-selected genes and so forth were selected, until reaching the top 15
feature-selected genes. The balanced accuracies and AUC for the top 1, top
5, top 10 and top 15 genes after pre-processing are available in Table 6. The
balanced accuracies and AUC for the top 1, top 5, top 10 and top 15 genes
after DMP are available in Table 7. Comparisons between case-based classifi-
cation and alternate methods such as Naive Bayes and Random Forest, which
showed highest classification performance, were performed. These tables show
that the case-based classifiers performed at least as well as the best classifiers
in this domain. Therefore, the case elaboration and refinement strategies proved
very effective at reducing the search space and once this task accomplished the
case-based approach is just as effective, if not more, with the advantage of be-
ing more explainable through the possibility of showing the cases used for the
classification process.

Table 6: Sequential classification of the top 1, top 5, top 10, and top 15 genes from
feature selection after pre-processing. BACC: Balanced Accuracy. AUC: Area Under
the Curve

Number of Genes 1 1 5 5 10 10 15 15

Classifier BACC AUC BACC AUC BACC AUC BACC AUC
NB 100% 1.0 99% 0.999 99% 0.999 98% 0.999

RF 50 % 0.040 85% 1.0 95% 1.0 74% 0.853
1 case 95% 0.950 95% 0.950 100% 1.0 100% 1.0

2 cases 95% 0.950 99% 0.999 100% 1.0 100% 1.0
3 cases 95% 0.949 100% 1.0 100% 1.0 100% 1.0



Table 7: Sequential classification of the top 1, top 5, top 10, and top 15 genes from
feature selection after DMP. BACC: Balanced Accuracy. AUC: Area Under the Curve

Number of Genes 1 1 5 5 10 10 15 15

Classifier BACC AUC BACC AUC BACC AUC BACC AUC
NB 100% 1.0 99% 0.999 99% 0.999 99% 0.999

RF 50% 0.040 90% 1.0 95% 1.0 95% 1.0
1 case 95% 0.950 100% 1.0 100% 1.0 100% 1.0

2 cases 95% 0.950 100% 1.0 100% 1.0 100% 1.0
3 cases 95% 0.949 100% 1.0 100% 1.0 100% 1.0

6 Discussion

These experiments show the usefulness of feature selection to both improve the
efficiency and effectiveness of classification on highly dimensional data. What-
ever the feature selection method selected, classifying on 1 to 15 features yielded
improved results in most cases. In comparison with Anaissi et al., [1], we retrieve
similar cases and perform classification using multiple levels which further re-
fine the case information. We also opted out of using a synthetic oversampling
technique which we believed may have reduced variance and impacted feature
selection.

Bioinformatics is particularly interested in finding gene signatures for dis-
eases, therefore appreciates feature selection over other methods [6]. It is there-
fore not surprising that this paper confirms the importance of this method in
bioformatics and its usefulness to deal with high dimensional data.

7 Conclusion

In this paper, we have proposed to apply case-based classification to the task of
classifying samples between normal and primary tumor with metastasis. Differ-
ent strategies for case elaboration and refinement were attempted to reduce the
high dimensionality of the methylation data. Our results show that case-based
classification performs at least as well as the best classifiers in this domain, after
selecting a pertinent methylation signature. This methylation signature will be
invaluable for interpreting the deeper pathophysiological processes involved in
the disease process. Some limitations of this work is that we have analyzed only
one type of cancer - breast - which yielded a small dataset with only 105 cases,
including 10 primary tumors from metastatic cancer. More work on independent
data remains to perform to confirm 1) the reproducibilty of the results on these
independent datasets, and 2) the validity of the selected genetic signature.
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