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Abstract In the Internet of Things, it is a challenging task to inte-
grate & analyze high velocity sensor data with domain knowledge &
context information in real-time. Semantic IoT platforms typically con-
sist of stream processing components that use Semantic Web technologies
to run a set of fixed queries processing the IoT data streams. Configur-
ing these queries is still a manual task. To deal with changes in context
information, which happen regularly in IoT domains, queries typically
require reasoning on all sensor data in real-time to derive relevant sen-
sors & events. This can be an issue in real-time, as expressive reasoning
is required to deal with the complexity of many IoT domains. To solve
these issues, this paper presents DIVIDE. DIVIDE automatically derives
queries for stream processing components in an adaptive, context-aware
way. When the context changes, it derives through reasoning which sen-
sors & observations to filter, given the context & a use case goal, without
requiring any more reasoning in real-time. This paper presents the details
of DIVIDE, and performs evaluations on a healthcare example showing
how it can reduce real-time processing times, scale better when there are
more sensors & observations, and can run efficiently on low-end devices.

Keywords: Internet of Things - Context-aware query derivation - Rea-
soning - RDF stream processing - N3.

1 Introduction

In the Internet of Things (IoT), there exists a large collection of internet-
connected devices and sensors. IoT-enabled sensors constantly generate data.
The advantage of the IoT is that this data can be easily integrated and combined
with existing domain knowledge and context information. In this way, devices
and applications are able to process and analyze the combined sensor & context
data in order to perform context-aware monitoring of the environment [I8].
The data generated by IoT devices is typically voluminous, heterogeneous,
and has a high velocity [I]. As such, it is a challenging task to integrate and ana-
lyze this data on the fly, in order to extract meaningful insights and actuate on it.
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To deal with these challenges, Semantic Web technologies can be deployed [I8].
Typical semantic IoT platforms consist of one or more streaming components
that use queries to continuously process the generated data streams. The hetero-
geneous data is modeled in ontologies, and existing stream reasoning techniques
are used to perform the advanced data stream processing [12].

In different IoT applications domains, relevant information about the con-
text regularly changes. For example, in healthcare, the information contained in
a patient’s Electronic Health Record (EHR) continuously evolves throughout a
patient’s hospital stay. In the smart cities domain, changing contextual informa-
tion heavily impacts applications such as traffic management. This information
updates on a regular basis, as it includes unavailable traffic routes due to road
works, current music or sporting events, whether it is a holiday or not, etc.

The application context has an influence on how the components of an IoT
platform process and actuate on the generated sensor data. This context directly
impacts the sensors of which the observations should be monitored in detail by
the streaming components, and possibly filtered for further processing by other
platform components. For example, a patient’s diagnosis implies which sensors
in his/her hospital room require special attention, while blocked traffic roads
impact which intersection traffic streams should be closely monitored.

In existing semantic IoT platforms, the configuration of queries that run on
the streaming components is a manual, labor-intensive task. To deal with con-
text changes, two approaches are possible. The first approach uses fixed generic
queries. These queries reason on all sensor observations, to derive in real-time
which are the relevant sensors, and which observations of these sensors should be
filtered, given the current context. In this way, the queries should not be updated
when the context changes. However, ontologies in IoT domains are typically com-
plex. This requires expressive reasoning, which is computationally expensive [14].
This might imply problems in a real-time system, especially when the compo-
nent monitors many sensors, or when a high query frequency is required. The
second approach is to run queries that filter the individual sensors that are rele-
vant with the given context. These queries require less to no real-time reasoning,
which solves the issues of the first approach. However, designing and reconfig-
uring them should be done manually upon each context change. This is highly
impractical and infeasible if this needs to be maintained for a full-fledged IoT
network, such as in a hospital. Hence, this approach is almost never applied.

To solve the presented issues, this paper presents the DIVIDE system. In
general, DIVIDE can be seen as an additional component for a semantic IoT
platform, which allows to derive relevant queries for the platform’s streaming
components, based on the context and a defined use case goal. These queries are
derived by performing reasoning when the application context changes. Hence,
complex ontology concepts can be filtered in real-time from the observations of
the relevant sensors, without the need to perform any real-time reasoning on
all data. As DIVIDE is able to adaptively derive the individual, newly relevant
queries when the context changes, it actually removes the complexity issues of
the first approach by applying the second approach in an automated way.
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The remainder of this paper is organized as follows. In Section 2] related work
is discussed. Section [3]explains all details of the DIVIDE system. The set-up and
results of the system evaluation are presented in Sections [4] & [5] These results
are further discussed in Section [6] Finally, Section [7] concludes the paper.

2 Related Work

To deal with the presented challenges of the IoT, multiple platforms exist that
adopt different Semantic Web technologies [22J6/T317]. Most of these platforms
consist of both stream processing components and semantic reasoning compo-
nents. They all use different existing technologies for these components, but all
have in common that the configuration of queries on the streaming components
is not automated in an adaptive and context-aware way.

Stream Reasoning is the research area that focuses on the adoption of Seman-
tic Web technologies for streaming data [I2]. Different RDF Stream Processing
(RSP) engines exist [19], such as C-SPARQL, CQELS, and Yasper. These engines
require the registration of a set of fixed queries, which are used to continuously
filter the streaming data in real-time. Recently, a unifying semantic query model,
RSP-QL, has been designed by the W3C RSP Community Group [I1].

To infer new knowledge from the data, RSP engines try to incorporate se-
mantic reasoning techniques. The complexity of these techniques depends on the
expressivity of the underlying ontology [I4]. Different ontology languages exist,
ranging from RDFS to OWL 2 DL, with increasing expressivity.

Existing RSP engines support at most RDFS reasoning [19]. To perform
more expressive reasoning, dedicated semantic reasoners exist. Examples are
RDFox [15] and VLog [20], which are OWL 2 RL reasoners. OWL 2 RL contains
all constructs that can be expressed by simple Datalog rules. By design, these
engines are not able to handle streaming data. By adopting techniques from RSP
engines such as windowing, this could be possible. However, reasoning complexity
may be too high to provide real-time answers to high velocity data streams [12].
StreamQR [7] is an alternative approach that rewrites continuous RSP queries to
multiple parallel queries, supporting ontologies expressed in the ELHZO logic.

3 DIVIDE System

The goal of DIVIDE is the context-aware, adaptive derivation of continuous
queries running on the stream processing components of a semantic IoT plat-
form, filtering (possibly complex) ontology concepts from the IoT data streams,
without requiring real-time reasoning. This section details the DIVIDE system
step by step, but first starts with the introduction of a running example, that
will be used throughout the remainder of this paper.

3.1 Running Example

In a pervasive health context, smart hospitals of the future consist of ambient-
intelligent care rooms. These rooms are equipped with many IoT enabled devices,
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which contain sensors that continuously generate data. Examples are environ-
mental sensors (e.g., light and sound sensors) and body sensors (e.g., for heart
rate). Moreover, the existence of intelligent smart home devices allows to control
and automate the lighting, room temperature, and much more.

A smart hospital typically has a set of medical domain knowledge which is
spread out in a back-end database network. This includes, among others, known
diagnoses and corresponding medical symptoms, i.e., sensitivities. For example,
it may state that a concussion diagnosis implies sensitivities to light and sound,
with a maximum exposure to values of respectively 170 lumen and 30 decibels.
Moreover, all information the hospital knows about a patient, e.g., his diagnosis,
is contained in the patient’s EHR. These EHRs are also stored in this database
network, as well as other context information about room set-up, care staff etc.

Consider a semantic IoT platform set-up in a smart hospital that consists of a
back-end database network, and a local processing device in each room. Assume
that the domain knowledge & context information, including EHRs, is available
from a knowledge base on a central server, accessing this database network.

To filter all data generated by the sensors in the room, each local device runs
an RSP engine. The relevant sensors that should be monitored in each room, and
thus the relevant continuous RSP queries, depend fully on the context: which
patient is accommodated in the room, what his diagnosis is, what sensitivities
this diagnosis implies, and what thresholds are associated to these sensitivities.
Moreover, changes to the context occur frequently. Examples are updates to a
patient’s EHR, or changes in room occupation. From the viewpoint of a hospital
room, this may imply other relevant queries. Therefore, to automatically and
adaptively derive the relevant RSP queries based on the context, DIVIDE can be
used. Specifically, DIVIDE will look for all queries that filter observations which
require a certain action, corresponding to a crossed threshold. This action will
imply the automatic control of local devices influencing the involved property.
Locally handling the action and propagating it into the system, e.g., sending it to
the back-end to notify a nurse of the event, is left out of scope for this example.

3.2 Building Blocks
DIVIDE is built upon several existing building blocks, which are detailed below.

Ontology For the running example, the medical domain knowledge is described
by the CareRoomMonitoring ontology of the ACCIO continuous care ontol-
ogy [16], including all imports of other ACCIO ontologies and external ontologies
such as SAREF [10], SOSA and SSN [8]E| This ACCIO ontology contains a pat-
tern that links observations with certain types of actions. It defines four generic
ontology classes: Observation, SymptonEl, Fault and Action. To illustrate how
these are linked, consider the following ontology definitions:

4 The corresponding ontology files are available at https://github.com /IBCNServices/
DIVIDE/tree/master/saw2019/ontology. This page also contains a figure and addi-
tional explanation about the described ontology observation pattern.

® Note the difference between Symptom (e.g. ThresholdSymptom) and MedicalSymptom.
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LightIntensityAboveThresholdFault C Fault
LightIntensityAboveThresholdFault = Observation and
(hasSymptom some LightIntensityAboveThresholdSymptom) and
(madeBySensor some (isSubsystemOf some (hasLocation some
(isLocation0f some (
(hasDiagnosis some (hasMedicalSymptom some SensitiveToLight))
and (hasRole some PatientRole))))))
LightIntensityAboveThresholdSymptom =
ThresholdSymptom and (forProperty some LightIntensity)
HandleHighLightInRoomAction T AboveThresholdAction
HandleHighLightInRoomAction = LightIntensityAboveThresholdFault
and (madeBySensor some (isSubsystemOf some (hasLocation some
(isLocationOf some LightingDevice))))
HandleHighLightInRoomAction =
AboveThresholdAction and (forProperty some LightIntensity)

Logic and Reasoner DIVIDE uses the rule-based Notation3 Logic (N3) [5].
N3 is a superset of RDF /Turtle [9], which means that the RDF /Turtle represen-
tation of the ACCIO ontology is valid N3. A reasoner supporting N3 can reason
within the OWL profile OWL 2 RL [I4]. DIVIDE uses the EYE reasoner, which
runs in a Prolog virtual machine [21].

To run the EYE reasoner, a goal can be defined that tells EYE for which
RDF /Turtle triples it should look for evidence. This goal is defined as a rule,
which serves as a filter for EYE. When EYE reasons on its N3 inputs, it con-
structs a proof where this rule is the last rule applied. Within DIVIDE, the rea-
soner goal should specify the ontology concept that the eventual queries should
filter, which in real-time would require reasoning to derive from an Observation.

For the running example, the goal is to filter observations which require an
action corresponding to a crossed threshold. Hence, it is defined as follows.

{ ?x a AboveThresholdAction . } => { ?x a AboveThresholdAction . } .

3.3 Sensor Query Rule

To use DIVIDE to derive the queries that need to run on a stream process-
ing engine, a generic formalism has been designed. This formalism defines the
generic pattern of such a query, together with information on when and how to
instantiate it. Each such description is called a sensor query rule.

The presented formalism builds further on SENSdesc [3], which is the result
of previous research. The theoretical SENSdesc work has initiated the idea and
format to describe sensor queries in such a way that they can be combined with
formal reasoning to retrieve queries contributing to a user defined goal. In this
paper, this format is further generalized and improved, in order to be practically
usable for generic use cases in DIVIDE.

A sensor query rule consists of three parts. To explain this with an example,
consider the sensor query rule for the running example as defined in Listing [T}

Relevant Context In the antecedence of the rule, the context in which the
query might become relevant is described in generic fashion. In Listing [} this
part is described in lines 1-10. It looks for a patient who has a certain diagnosis
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Listing 1. Sensor query rule for the running example. Prefix declarations are omitted.

{ ?p DUL:hasRole [ a RoleCompetenceAccio:PatientRole ] ;
DUL:hasLocation 71 ;
CareRoomMonitoring:hasDiagnosis [
CareRoomMonitoring:hasMedicalSymptom [
SSNiot:hasThreshold [
DUL:hasDataValue 7threshold ;
SSNiot:isThresholdOnProperty [ a ?prop 1 1 1 1
?sensor a sosa:Sensor ; sosa:observes [ a ?prop ] ;
SSNiot:isSubsystemOf [ DUL:hasLocation 71 ]
?prop rdfs:subClass0Of sosa:0ObservableProperty . }

=>

{ _:q a sd:Query ; sd:pattern :pattern-1 ;
sd:inputVariables (("?th" ?threshold) ("?s" ?sensor) ("?prop" ?prop)) ;
sd:outputVariables (("?v" _:v) ("?0" _:0))

_:0 a sosa:0Observation ; sosa:madeBySensor ?sensor ; sosa:hasResult

[ a SSNiot:QuantityObservationValue ; DUL:hasDataValue _:v ] ;
SSNiot:hasSymptom [

a SSNiot:ThresholdSymptom ; ssn:forProperty [ a ?prop ] 1 . }

:pattern-1 a sd:QueryPattern ; sh:prefixes :prefixes ; sh:construct """
CONSTRUCT { 7o a CareRoomMonitoring:AboveThresholdAction ;
ssn:forProperty ?prop . }
FROM NAMED WINDOW :win ON <http://idlab.ugent.be/grove>
[RANGE PT1S TUMBLING]
WHERE { WINDOW :win {
70 a sosa:0bservation ; sosa:madeBySensor ?s ;
sosa:hasResult [ DUL:hasDataValue ?v ] ; sosa:resultTime 7?7t ;
General:hasId [ General:hasID ?7id ] .
FILTER (xsd:float(?v) > xsd:float(?th)) } }
ORDER BY DESC(?t) LIMIT 1"""

that is linked to a MedicalSymptom. This MedicalSymptom (sensitivity) needs
to be linked with a threshold on a specific property, e.g., LightIntensity. If
there exists a sensor in the same room that is observing that specific property,
the query described in the next step might be relevant.

Generic Query In the first part of the rule’s consequence, the generic query
is described. This query is written in RSP-QL format, and is defined using the
SHACL standard. In addition, the query’s input variables are defined, which
need to be instantiated to make the query specific for the relevant context. This
will happen through the rule evaluation during the query derivation.

In Listing [I] lines 12-14 and 21-31 describe the generic query. Lines 22—
31 describe the actual RSP-QL query that should run on an RSP engine. The
WHERE clause specifies that the query filters observations made by a certain
sensor (7s), that are higher than a certain threshold (?th). For any filtered
observation individual, new triples are constructed specifying that it is of type
AboveThresholdAction linked to a certain property (?prop). Note that this
class exactly matches the class specified in the reasoner’s goal in Section[3.2] This
makes sense, as the goal is used to specify the ontology concepts that the queries
need to filter. If this certain linked property is for example LightIntensity, it
follows from the ontology definitions in Section that this is equivalent to
a HandleHighLightInRoomAction. In addition to the RSP-QL query, line 13
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New or changed (e.g., for a patient or room)

Output: filtering queries
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Figure 1. Overview of the components, inputs and outputs of the DIVIDE system

of the sensor query rule defines that the specific sensor, threshold and prop-
erty variables should be substituted into the query to instantiate it. During the
query derivation process, the actual values for these variables will depend on the
matching query context defined in the rule’s antecedence.

Ontology Consequences The second part of the rule’s consequence describes
the effects of a query result. A result is obtained when the rule’s antecedence
holds, and an instantiated version of the query actually filters an observation.
This part defines the consequences of this observation in terms of the ontology.

In Listing [1} this part is in lines 16-19. If a sensor observation above a de-
fined threshold is filtered, represented by the blank node _: o, this Observation is
linked to a ThresholdSymptom for the considered property. For LightIntensity,
this is equivalent with a LightIntensityAboveThresholdSymptom.

Note that the sensor query rule of the running example is generic in the
sense that it can be used for any property that is threshold-based, as all steps
use the variable ?prop. In this way, the rule should only be defined once, in
order to be used generically in a hospital context. Moreover, when defining the
context for the query derivation, it should not be explicitly stated that a patient
is sensitive to this property. By defining the diagnosis of a patient, the relevant
ontology definitions and sensor query rule will enable a rule-based reasoner to
automatically derive the associated sensitivities.

3.4 Context-Aware Query Derivation with DIVIDE

Given the generic sensor query rule defined in the previous section, the DIVIDE
system can be used to automatically derive relevant RSP queries in a context-
aware fashion. Figure [I| shows the different system components, including their
inputs and outputs. Two components can be distinguished: apart from the actual
query derivation, DIVIDE can first be used to preprocess the ontology.

Ontology Preprocessing The domain ontology is considered not to change
throughout the lifetime of the application, in contrast with the context data.
Therefore, this ontology can be preprocessed upfront by DIVIDE using the EYE
reasoner, in order to speed up the actual query derivation process.
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The preprocessing process consists of three steps. First, an N3 copy of the full
ontology is created. Second, specialized ontology-specific rules are created from
the original rules taken from the OWL 2 RL profile descriptimﬂ Starting the
EYE reasoning process from these specialized rules will reduce the computational
complexity of the reasoning [2]. Third, an image of the EYE reasoner, which has
already loaded the ontology and specialized rules, is compiled within Prolog. In
this way, they do not need to be loaded into the reasoner each time it is called.

Query Derivation The DIVIDE query derivation process is called each time
a part of the context in the central knowledge base changes, e.g., the context
related to a specific patient or room in the hospital use case.

The first process step starts from the EYE Prolog image compiled in the
preprocessing step. It reads in the considered context, the sensor query rule and
the reasoner goal. Given these inputs, EYE constructs a proof that derives all
instances of the ontology concept defined in the goal. To get from the context
to the goal, the evaluation of the sensor query rule is crucial. If the antecedence
of the rule holds one or multiple times, it means that the rule can be evaluated.
If the triples in the rule’s consequence also allow the reasoner to derive the
ontology concept defined in the goal, the rule will actually be evaluated for the
antecedence’s context and will appear in the proof. This means that the generic
query will also be evaluated, with the query’s input variables being instantiated.

Once the proof has been constructed by EYE, the second step looks for all
queries in the proof. This is done by a simple reasoning step in EYE, looking for
all proof steps that include the generic pattern in lines 12-13 of Listing

In a third and final step, the system transforms the generic RSP-QL query,
defined in the sensor query rule, into an instantiated query. This happens for each
pattern extracted from the proof in step 2, through another forward reasoning
step with EYE. As such, the system outputs all queries that filter the ontology
concept defined in the goal: if this query filters an observation, it can immediately
be concluded that this observation is an instance of this concept, without the
need to perform the reasoning step anymore. This holds as long as that part of
the context does not change. When it does change, the DIVIDE query derivation
process should run again to (possibly) update the relevant queries.

Considering the running example, the goal of the EYE reasoner is to de-
rive instances of the concept AboveThresholdAction. To do so, it follows from
the definitions in Section that the reasoner will — among others — try to
look for individuals of the subclass HandleHighLightInRoomAction. To de-
rive that an Observation individual is of this type, the reasoner requires —
among other triples — a LightIntensityAboveThresholdSymptom linked to the
Observation via the hasSymptom object property. This is equivalent to the
second part of the consequence of the sensor query rule in Listing [1] (lines
16-19). Hence, if all other requirements are fulfilled to derive an instance of
HandleHighLightInRoomAction, the rule will be evaluated for each situation in
the input context where the antecedence holds for ?prop being LightIntensity.

5 lhttps://www.w3.org/TR/owl2-profiles/#OWL_2_RL
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For example, in CareRoomMonitoring, the Concussion diagnosis is linked
to a sound sensitivity with threshold 30, and a light sensitivity with threshold
170. Consider the context of a hospital room consisting of a patient diagnosed
with concussion, containing a light sensor A0, and at least one lighting device.
For this context, the output of the query derivation process will contain a query
filtering observations of sensor A0 higher than 170. If the room also contains a
sound sensor Al and at least one device influencing the room’s sound level, the
output will also contain a query filtering observations of sensor Al above 30. If
a new patient is brought into the room that has a different diagnosis with other
sensitivities, rerunning the query derivation process will no longer output these
queries, but others depending on the exact context and ontology definitions.

4 Evaluation Set-up

In this section, the DIVIDE system is evaluated. Three evaluations are per-
formed, which all consider the use case and ontology of the running example
described in Section [3.1] The context considered in each evaluation is one single-
person hospital room, containing a patient diagnosed with concussion.

4.1 DIVIDE Performance Evaluation

To assess the performance of the DIVIDE system presented in Section [3.4] the
duration of the ontology preprocessing and query derivation processes is mea-
sured. The evaluation considers the described evaluation context, with 10 sensors
in the concussion patient’s room, including one light sensor and one sound sen-
sor. The reasoner goal and sensor query rule are as described in Section and
Listing[I} Given these inputs, two queries will be outputted: one for the light sen-
sor and one for the sound sensor[] The evaluation is performed on a device with
a 2800 MHz quad-core Intel Core 15-7440HQ CPU and 16 GB DDR4-2400 RAM.

4.2 Comparison of DIVIDE with Real-Time Reasoning Approaches

The DIVIDE approach allows the detection of complex events in the sensor
stream, without performing real-time reasoning. Alternatively, one could use
other traditional approaches, which do require real-time reasoning. Therefore,
the real-time filtering approach used in DIVIDE is compared with two real-time
reasoning approaches, both using the same reasoning profile as DIVIDE, i.e.,
OWL 2 RL. Both approaches use RDFox, as this is known as one of the fastest
OWL 2 RL reasoning engines [I5]. For each approach, the goal is to detect any
AboveThresholdAction individual in the sensor stream.
The following set-ups are consideredf] which are visualized in Figure

" All evaluation files (scripts, inputs & outputs) are available at https://github.com/
IBCNServices/DIVIDE/tree/master /saw2019 /evaluations/divide-performance,

® The queries running on each set-up are available at https://github.com/
IBCNServices/DIVIDE /tree/master/saw2019/evaluations/real-time-comparison.
For the windowing, Esper (https://www.espertech.com/esper) is used.
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Figure 2. Overview of the compared evaluation set-ups

DIVIDE approach using C-SPARQL without reasoning: regular C-
SPARQL engine [4]. No ontology or context data is loaded into the engine,
and no reasoning is performed during the continuous query evaluation. The
two RSP-QL queries outputted by DIVIDE (see Section are translated to
the C-SPARQL syntax and running continuously on the C-SPARQL engine,
each with their own logical tumbling window of 1 second.

. StreamFox: streaming version of RDFox. Consists of one engine that pipes

Esper for windowing with RDFox for reasoning, via a processing queue. Ini-
tially, the ontology and context data are loaded into the data store of the
RDFox engine, and a reasoning step is performed. Two generic SPARQL
queries are registered. Query 1 looks for observations above a threshold
within the valid context, and creates a ThresholdSymptom for them; it can
be seen as the SPARQL alternative for the generic sensor query rule in List-
ing [I} Query 2 retrieves any (derived) AboveThresholdAction individual.
Windowing is performed with a logical tumbling window of 1 second. On each
window trigger, the window content is added as one event to a processing
queue. When available, RDFox takes an event from the queue, incrementally
adds it to the RDFox data store (i.e., it performs incremental reasoning
with the event scheduled for addition), and executes the registered queries
in order. If query 1 yields a non-empty result, this is incrementally added to
the store, before query 2 is executed. Finally, RFDox performs incremental
reasoning with the event scheduled for deletion (i.e., incremental deletion).
C-SPARQL piped with (non-streaming) RDFox: Initially, the RDFox
data store contains the ontology and context data, and a reasoning step is
performed. For the C-SPARQL engine, query 1 of set-up [2] is modified to
run as a continuous C-SPARQL query on a logical tumbling window of 1
second of the observation stream, and on the ontology and context triples.
C-SPARQL does not perform reasoning during the query evaluation. It sends
each query result to the event stream of the non-streaming RDFox engine,
which adds it to a processing queue. Upon processing time, it incremen-
tally adds the event to the data store, executes query 2 of set-up [2| and
incrementally deletes the event from the data store.

The amount of sensors in the context depends on the evaluated scenario. During
each scenario run, every sensor produces one observation per second, for a du-
ration of 25 seconds. In all evaluated scenarios, there is always exactly one light
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sensor that consistently produces a value higher than 170 lumen, which is the
threshold for concussion patients. Hence, this Observation will always be an
AboveThresholdAction, given the considered context. Regardless of the exact
amount of sensors, no observations by any other sensor are filtered by any query.

For all evaluated scenarios, the total execution time metric has been calcu-
lated for each window. This time refers to the time starting from the Esper
window trigger until the moment where the found AboveThresholdAction in-
dividuals are outputted by the corresponding query. For the DIVIDE set-up
the maximum time over the two filtering queries is taken. For set-up [2| and
this total execution time ends when RDFox yields the results of query 2.

All evaluations for each set-up are run on a processing device suited for the
IoT: an Intel NUC, model D54250WYKH. It has a 1300 MHz dual-core Intel
Core i5-4250U CPU (turbo frequency 2600 MHz) and 8 GB DDR3-1600 RAM.

4.3 Real-Time DIVIDE Performance on a Raspberry Pi

To evaluate how well the filtering approach of the DIVIDE system performs on
a low-end device, the DIVIDE set-up [1| of Section is also evaluated on a
Raspberry Pi 3, Model B. This Raspberry Pi model has a Quad Core 1.2GHz
Broadcom BCM2837 64bit CPU, 1GB RAM and MicroSD storage. Besides the
physical machine, the same evaluation conditions as in Section apply.

5 Evaluation Results

This section presents the results for the evaluation set-ups described in Section [4
All results are averaged over 30 runs, excluding 3 warm-up and 2 cool-down runs.

5.1 DIVIDE Performance Evaluation

Figure[3|shows the distribution of the execution times of the ontology preprocess-
ing and query derivation processes of the DIVIDE system, over the evaluation
runs. On average, the ontology preprocessing takes 4.100 seconds, and the query
derivation process 1.215 seconds. Both processes have a quite constant duration.

5.2 Comparison of DIVIDE with Real-Time Reasoning Approaches

Figure [4] shows the comparison of the total execution time for different amounts
of sensors, averaged over multiple runs, and over the executions within the en-
gine’s runtime during each run. Looking at 1 to 20 sensors (Figure , the av-
erage total execution times for the DIVIDE set-up and the C-SPARQL-RDFox
pipe set-up remain more or less constant, respectively in the range 9-12 ms and
75-85 ms. For the StreamFox set-up, the average total execution time increases
exponentially for an increasing amount of sensors: 26 ms for 1 sensor, 100 ms
for 10 sensors, and 7861 ms for 20 sensors. Looking at the results for up to 80
sensors (Figure , the DIVIDE set-up only slightly increases to 17 ms for 80
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Figure 3. Performance results of the DIVIDE system
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Figure 4. Comparison of the total execution time for different numbers of sensors,
averaged over the engine’s runtime and over multiple runs (on Intel NUC)

sensors, while the C-SPARQL-RDFox pipe set-up goes up to 228 ms. No results
were measured for StreamFox for more than 20 sensors, due to the infeasibility
of properly measuring the exponentially increasing total execution times.

To further inspect the set-up behaviors over the engines’ runtime, Figure
shows a timeline comparing the total execution time, averaged per window num-
ber, for a context with 20 sensors. For StreamFox, this shows that for each run-
time, the total execution times also exponentially increase over the windows.
This shows the accumulation of the event processing: for window 1, this time is
only 486 ms; for window 10, it is 3430 ms; and for window 20, it is 15844 ms.
For the other two set-ups, the total execution times are somewhat higher at the
start, caused by starting up C-SPARQL. Note that the last windows are omitted
from the results, as StreamFox did not finish the processing of these windows.

5.3 Real-Time DIVIDE Performance on a Raspberry Pi

Figure [3| shows the results of the evaluation of the DIVIDE set-up on the Rasp-
berry Pi. It shows a distribution of the total execution times for scenarios with
different amounts of sensors. Going from 1 to 80 sensors, there is a small increase
in average total execution time from 38 ms to 81 ms. In general, there are some
outliers with a higher total execution time, especially for higher amounts of sen-
sors. Comparing the results with the results in Figure [} where the device was
the only difference in evaluation conditions, the average total execution times
on the Raspberry Pi are always a factor 3 to 4 times those on the Intel NUC.
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Figure 5. Timeline with the comparison of the total execution time, averaged per
window number, for a set-up with 20 sensors (on Intel NUC)
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Figure 6. Total execution time distribution (over engine’s runtime & multiple runs)
for DIVIDE set-up, with different numbers of sensors (on Raspberry Pi 3, Model B)

6 Discussion

An important advantage of the DIVIDE system, is the removal of the need to
perform real-time reasoning. The evaluation results in Sections [5.2] & [5.3] prove
that this advantage has a significantly positive impact on the total execution
time to derive the conclusions relevant for the use case. Applied on the running
healthcare example, the usage of DIVIDE in combination with the well-known
RSP engine C-SPARQL significantly outperforms the evaluated alternatives.

Before discussing these results in more detail, note that they show the per-
formance of the compared set-ups for multiple amounts of sensors. In all set-ups,
each individual measure is calculated on the window content of a 1 second tum-
bling window. As each sensor had an event rate of 1 observation per second, the
amount of sensors always equaled the amount of observations in each window.
Hence, apart from the amount of sensors in the context, the results generalize
to other situations with more or less sensors, but a lower or higher event rate,
leading to the same amount of incoming observations per second. Therefore, they
also give an idea of the general throughput of each set-up.

Considering the StreamFox set-up, the results show how its performance
degrades with an increasing amount of sensors. Inspecting the timeline for 20
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sensors in Figure |5 it is clear that the total execution time exponentially in-
creases as the scenario goes on. This happens because the RDFox reasoning
time increases per evaluated window. When the amount of observations in the
window content increases, the initial incremental reasoning step to add the event
takes longer. In incremental reasoning, the most expensive operation is however
the removal of facts [I5]. Hence, the duration of the incremental deletion step
increases the most. As this step happens after query 2 has outputted the actions,
it does not influence the total execution time for that event. However, for a larger
amount of sensors, the total processing time of one event, including the removal,
surpasses the 1 second threshold. Hence, when the next window triggers and the
event is added to the processing queue, its processing cannot immediately start.
In this way, the removal of the previous event impacts the total execution time
of this new event. As the scenario goes on, this impact accumulates, and the
waiting time for windowed events in the queue gets longer and longer. Regard-
ing this, two things should be noted. First, as a consequence, the average total
execution times over the StreamFox runtime, as reported in Figure[da] are highly
dependent on the amount of consecutive non-empty windows, i.e., the scenario
duration. This was 25 seconds for this evaluation, but increasing or decreasing
this will also increase or decrease these average values. Second, the large in-
crease in reasoning times, especially for the event removal, is caused by the large
amount of rules extracted from the ACCIO ontology by RDFox. However, this
is realistic for complex IoT domains such as healthcare, where large bodies of
complex domain knowledge are required to correctly analyze the sensor streams.

Inspecting the results of the set-up piping C-SPARQL with RDFox, the main
conclusion is that this set-up does not scale as badly with an increasing amount
of sensors. An increase in total execution time is noticeable, but slightly for up
to 60 sensors. Nevertheless, it consistently takes at least 6 times longer than with
the DIVIDE set-up. Important to note here is that the RDFox execution time
does not depend on the amount of sensor observations, as only one observation
is filtered by C-SPARQL in all evaluation cases. The main difference is in the
C-SPARQL query execution times, which take longer because they are executed
on a model that also contains all triples in the context and the ontology.

In contrast to the two alternatives, the DIVIDE set-up on the Intel NUC does
almost not suffer from an increasing amount of sensors. This is because more
sensors in the context do not influence the queries derived by DIVIDE, given no
other context changes. As the queries are only executed on the streams, do not
take into account ontology or context data, and not require reasoning, the impact
on the actual query execution time is also minimized. In addition, the results in
Figure [ show that C-SPARQL can also run the DIVIDE queries efficiently on a
low-end device like a Raspberry Pi. The total execution times are larger than on
the Intel NUC, but for up to 80 sensors, most still remain below 150 ms. This is
an advantage when deploying the system, for example in all rooms of a hospital,
as no large scale investment in expensive high-end hardware is required.

The reasoning required by DIVIDE is not performed on the observations
stream, but only on the ontology and context data. The query derivation pro-
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cess is triggered by context changes, which typically have a frequency that is
several factors smaller than the observation data frequency. Hence, the amount
of reasoning steps is significantly reduced. The evaluation results in Section [5.1
show that such a query derivation takes approximately 1.2 seconds for a realistic
context of a hospital room with 1 patient and 10 sensors, on a normal pc. This
time is of course highly dependent on the input data, but optimizations are al-
ways possible. By doing the ontology preprocessing, the query derivation process
duration can also be largely reduced; for this paper’s example, this reduction was
approximately 77 %. Note as well that when using DIVIDE in a real set-up, this
reasoning will be performed on a central server with many resources, introducing
possibilities for parallelization and process acceleration. By using EYE and N3,
the flexibility also exists to extend the rule set beyond OWL 2 RL.

Importantly, the usage of DIVIDE also has other benefits that do not relate
to execution times. Being able to locally derive certain conclusions, e.g., actions
the system should take, gives an IoT set-up the local autonomy to react on
certain events in a responsive way. Moreover, in contrast to other set-ups, no
context information should be known and kept up to date locally. This removes
synchronization issues, but also avoids potential privacy and security concerns.

The DIVIDE system produces RSP-QL queries for a given context, which
can be translated to the correct RSP engine syntax to continuously run on it.
By adding a module to DIVIDE that automatically calls the query derivation
process upon context changes and performs this translation, the whole query
configuration of RSP engines could be fully automated and adaptive. Hence,
with DIVIDE, this will no longer be a manual, labor-intensive task.

7 Conclusion

In this paper, the DIVIDE system is presented, which can serve as a component
of a semantic IoT platform. The main goal of DIVIDE is to automatically derive
queries for an IoT platform’s stream processing components, which filter the data
streams, in an adaptive and context-aware way. Whenever the application con-
text changes, DIVIDE can derive the queries that filter the observations of inter-
est for the use case, based on this changed context. By performing the reasoning
upon context changes, relevant sensors & their observations can be filtered with-
out the need to perform reasoning while evaluating the continuous queries. The
evaluation results show that this approach allows to greatly reduce the real-time
processing times, and scales much better when the amount of events or sensors
in the data stream increases. In this way, the real-time filtering can be performed
efficiently on low-end devices. When used in a IoT platform, DIVIDE can di-
vide the amount of queries that need to be deployed at any given time and thus
conquer the scalability & performance issues of reasoning on large data streams.

Future work consists of further generalizing the sensor query rule descrip-
tion, to reduce the configuration required for using DIVIDE. One possibility is
to integrate dynamic observation patterns into the queries, that could be part of
the stream metadata. In addition, it should be researched how the query instan-
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tiation could be extended to other query parameters, such as the window pa-
rameters, possibly by integrating context metadata such as device information.
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