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Abstract. Double auctions have been widely employed and studied
throughout history. Two particular variants are most commonly em-
ployed: The Call Market (CALL), also known as the Periodic Double
Auction, and the Continuous Double Auction (CDA). While numerous
automated trading strategies exist for the Continuous Double Auction,
there is a lack of high performing strategies for CALL. The former auc-
tion variant is becoming increasingly popular in the context of energy-
related auctions in Smart Grids. Therefore, there is a need for efficient
trading strategies. This paper explores whether a well-performing trad-
ing strategy designed for CDA, namely Zero-Intelligence Plus (ZIP) can
be used in CALL. We first study the performance of the ZIP trader in
CALL without any modifications. We then design several strategies and
demonstrate that we can significantly improve the performance of ZIP in
CALL while retaining the market’s high efficiency. As a result, our mod-
ified ZIP trader can be employed by autonomous agents, e.g. for trading
energy in a CALL in the Smart Grid domain.3
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1 Introduction

An auction type that has seen a rise in popularity in recent years is the Call
Market (CALL), also referred to as a Periodic Double Auction. The CALL mech-
anism collects incoming orders (also called shouts) in an order book and attempts
to clear as many of them as possible at specific time intervals. Upon reaching such
an interval the auction is called, meaning a call price cp is calculated and bids
with price ≥ cp and asks with price ≤ cp are all matched. This contrasts with the
Continuous Double Auction (CDA) mechanism which attempts to continuously
clear incoming orders. CALL has been utilized in modern financial exchanges
[10] and in electricity markets [14, 20]. Automated traders are expected to be-
come ever more important in Smart Grids applications, as they allow individual
households to better manage their energy consumption and injection. One can-
not expect these households to manage the purchase and selling of electricity on

3 Copyright 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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their own. This responsibility will be given to an autonomous intelligent trader,
fully modelling the preferences of the household, which will participate in the
electricity auction in name of the household. While CDA are quite efficient for
high liquidity assets (e.g. currency) CALL are very well suited for low liquidity
assets such as e.g. energy [10]. As the latter is therefore envisioned to be em-
ployed in Smart Grids [11, 19], having a wide array of adequately performing
trading strategies is vital. However, the availability of highly-performing
and well-described trading strategies for this popular auction type is
severely lacking. Most automated traders have been designed for CDA and
they have not been tested in a CALL setting.

In this paper we therefore present the following contributions:

– Zero-Intelligence Plus (ZIP) is a highly-performing trading strategy [6] de-
signed for CDA settings. We extensively investigate how it performs in a
CALL setting.

– We design several strategies aiming to improve the performance of ZIP in
CALL. We demonstrate that our best performing strategies greatly increase
the original ZIP performance in a CALL setting.

2 Call Market

Similarly to the traditional CDA such as the one described by Vytelingum et
al. [18] traders in a CALL submit shouts which are collected and matched.
However, contrary to the CDA, these are not matched immediately but rather
at a specified point time. Upon reaching such a predetermined point the auction
is called, meaning a call price cp is calculated and bids with price b ≥ cp and
asks with price a ≤ cp are matched. There is no standard definition for the cp
calculation and various methods have been employed by authors:

Satterthwaite and Williams [16] All submitted shouts are sorted in increas-
ing order s1 ≤ s2 ≤ ... ≤ s2m with cp = sm+1 and m representing the number
of participating buyers (the authors assume there are as many sellers as buy-
ers).

Arifovic and Ledyard [1] All bids are ordered b1 ≥ b2 ≥ ... ≥ bN while asks
are ordered a1 ≤ a2 ≤ ... ≤ aN . The authors then define k as the highest
number such that bk ≥ ak after which they define cp = (Z + z)/2 with

Z = min{bk, ak+1}

z = max{ak, bk+1}

Another way of calculating cp would be to utilize the shout price which clears
the largest number of units. If there would be a tie the average of possible call
prices would then be utilized.
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3 Related work

When looking at available traders for CALL settings we encounter a barren land-
scape. The majority of high-performing trading strategies such as ZIP [6], Adap-
tive Attitude (AA) [13] and Adaptive Aggressiveness (AAgr) [18] were all de-
signed for CDA settings and would thus need modifications to function properly
in CALL. Traders specifically designed for the latter are very hard to find, with
brokers developed for the PowerTAC competition [11] coming closest. While the
broker agents can be considered as CALL traders, they are specifically tailored
towards the PowerTAC competition setting, employing various aspects made
available by the simulation. AgentUDE utilizes energy consumption patterns in
order to set shout prices while TacTex incorporates imbalance fees (coming from
the balancing market) for its pricing strategy. Due to the complexity of the com-
petition, and the incorporation of various data sources for pricing strategies in a
wholesale market, the broker parts responsible for participating in the wholesale
market cannot easily be generalized towards CALL.

The work of Chowdhury et al. [5] is a first attempt at decoupling the wholesale
market aspect from the rest of the competition, with the authors describing
some strategies for short-term energy markets (in this context a CALL) used
to balance demand on the power grid. While being more generic than other
wholesale market strategies the design is still centred around this particular
structure rather than a more generic CALL design.

ZIP has also been adapted and tested in the context of first- and second-price
sealed-bid auctions [3, 2]. However, those are out of the scope of this article.

4 Zero-Intelligence Plus

The Zero-Intelligence Plus (ZIP) trader as described by Cliff and Bruten in their
1997 paper [6] was introduced in the context of a CDA as a response (and im-
provement) over the Zero-Intelligence (ZI) trader proposed by Gode and Sunder
[8]. Unlike the ZI trader, ZIP “employs an elementary form of machine learn-
ing” [12] and achieves a performance significantly closer to available human data
when compared to ZI traders.

Each ZIP agent keeps track of a profit margin “which determines the differ-
ence between its limit price and the shout price to be submitted” [22]. For sellers
the limit price represents the minimum amount the agent needs to receive for
a unit in order to consider a trade. Buyers have a similar limit price where it
represents the maximum amount the agent is willing to pay for a unit. If the
agent had a successful transaction in the previous round it then increases its
profit margin. Failed transactions decrease the profit margin, respectively. Our
definition of a round is identical to that of [18]:

“A trading round is the period during which bids and asks are submitted
until there is a match and a transaction occurs.” [18]
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Most importantly, this profit margin update is performed after each successful
(or failed) transaction – whether own transaction or that of another trader. Thus,
all ZIP agents update their respective profit margin after each transaction.

For the sake of completeness, we include here the complete set of rules for
the ZIP strategy. For ZIP sellers the following rules are specified [6]:

– If the last shout was accepted at a price q
1. Any seller who asked a price lower or equal to q (pi ≤ q) raises its profit

margin.
2. If the last shout was a bid any seller who asked a price higher or equal

to q (pi ≥ q) lowers its profit margin.
– Else

1. If the last shout was an offer any seller who asked a price higher or equal
to q (pi ≥ q) lowers its profit margin.

For ZIP buyers the following rules are specified [6]:

– If the last shout was accepted at a price q
1. Any buyer who bid a price higher or equal to q (pi ≥ q) raises its profit

margin.
2. If the last shout was an offer any buyer who asked a price lower than or

equal to q (pi ≤ q) lowers its profit margin.
– Else

1. If the last shout was a bid any buyer who asked a price lower than or
equal to q (pi ≤ q) lowers its profit margin.

The profit margin is updated using the Widrow-Hoff with momentum learning
rule as introduced by [21]:

∆i(t) = βi ∗ (τi(t)− pi(t)) (1)

Here βi is the employed learning rate, pi the price at which the trader submitted
its shout and τi the so-called target price which is calculated based on the shout
that was most recently submitted to the auction. After a trader observes any
submitted shout at a particular time t it updates its profit margin µi according
to equation 2 (copied from [4]).

µi(t+ 1) =
pi(t) + Γi(t+ 1)

li − 1
(2)

with li representing the trader’s limit price and Γi(t+1) being calculated through
equation 3 (copied from [4]).

Γi(t+ 1) = γi(t) + (1− γi(t)) ∗∆i(t) (3)

where γi represents the so-called momentum coefficient. Finally, when the trader
has to submit a shout at time t it will calculate a shout price through equation
4.

pi(t) = li ∗ (1 + µi(t)) (4)
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5 Experimental setup

The ZIP strategy will be tested in three different auctions:

Non-persistent CDA An implementation which follows the auction design
described in the original ZIP paper [6] and the more recent work of [18].
Characterized by the fact that shouts do not persist between rounds we will
refer to this auction type as npCDA.

Persistent CDA Based upon the auction described by [17] we try to provide
a more realistic (when compared to real-life auctions such as the New York
Stock Exchange) auction setting where shouts are not removed upon sub-
mission of an improved bid/ask but rather persist until they are matched.
We will refer to this auction type as pCDA.

Call Market An example implementation, henceforth referred to as CALL,
which follows the design of the CALL described by [1].

To compare the performance of the ZIP strategy in the above three auctions we
use the following two objectives, which are commonly employed:

Market Efficiency How much of the theoretically available surplus was ac-
quired by traders participating in the auction [7, 17, 9]. Ideally this would
be 100%, implying that all traders are trading at equilibrium prices (i.e. the
price at which demand equals supply). It is defined as [9]:∑

i
p(i)
a∑

i
p
(i)
e

where p
(i)
a represents the actual surplus generated by a trader i over the

entire trading period while p
(i)
e represents the theoretical surplus generated

by a trader i if it had traded its goods at equilibrium price.
Market Surplus How much surplus (i.e. profit) was generated over the course

of an auction [15, 17, 9, 13], where we focus on the Average Market Surplus
(AMS): ∑

i
p(i)
a

i

This allows us to reason about the amount of surplus we could expect from
a typical ZIP trader when being deployed in a particular auction setting.

6 Experiments

6.1 Employed parameters

We implemented the ZIP traders as specified by [6] employing the same param-
eter configurations:

β Each trader generates a random value from a uniform distribution U (0.1, 0.5).
γ Randomly generated for each trader from a uniform distribution U (0, 0.1)
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Fig. 1. Comparing the performance of various auction/trader combinations. Results are
median values obtained after 1000 runs with each run ending after 1000 transactions
were submitted.

µ Randomly generated for each trader from a uniform distribution U (0.05, 0.35)
c Perturbations were also randomly generated for each trader from a uniform

distribution U (0, 0.05)

All participating traders have a limit price, in this scenario again randomly
generated from a uniform distribution U (0.75, 3.5). All auction types have 200
participating traders, 100 buyers and 100 sellers, with shouts concerning one
single unit. Results are always averaged over 1000 runs.

6.2 Original ZIP performance in all auctions

For our first experiment we implemented the ZIP traders as specified in Section
6.1. Performance was measured as the AMS and observed market efficiency as
obtained after 1000 transactions submitted. ZI traders serve as a “baseline” since
these do not employ any intelligence. Results can be seen in Figure 1. ZIP traders
outperform their ZI counterpart in npCDA which matches results published in
other research [6]. Looking at pCDA we see that, although being more efficient,
pCDA ZIP obtains a smaller AMS than pCDA ZI which can be attributed to
the fact we employ the original ZIP implementation designed for a npCDA (a
modified version adapting it for pCDA was proposed by [17]). This was done
to ensure we compare the same trader, thereby providing a fair playing field.
At the same time we emphasise the need for adaptation when utilizing ZIP in
a new auction setting. The latter behaviour can also be observed in our CALL:
original ZIP actually performs worse than ZI on both performance metrics.
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Fig. 2. Comparing the performance of our ZIP strategies in CALL. Results are median
values obtained after 1000 runs with each run ending after 100 market calls.

The low performance of the ZIP strategy in CALL can be attributed to
how shouts are received by traders. In a CDA, participating traders receive
information of exactly one shout at a time, i.e. whether the submitted shout was
matched or not. In CALL setting, participating traders receive information of
all submitted shouts right after the market was called. One supposes that the
order in which these shouts are presented to ZIP agents after the CALL is called
influences how their profit margins (and hence new shouts) are updated. For
this particular experiment, after calling the market all shout information was
provided to traders in the same random order in which they were submitted to
the auction.

6.3 Improving CALL-ZIP performance

As mentioned before, ZIP traders in a CDA setting update their behaviour one
shout at a time, while their CALL counterparts receive a list of all successfully
matched shouts and failed shouts after the market is called. A relevant question
is then: How, and in what order, should this list be provided to participating
traders, in order to maximize Market Efficiency and Average Market Surplus?
We designed several strategies specifying the sequence in which shouts are pre-
sented to ZIP traders after the market is called:

original Order in which shouts were submitted (i.e. random).
bidAsk All bids are provided first followed by the asks.
askBid All asks are provided first followed by the bids.
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Fig. 3. Comparison of our best CALL ZIP strategy with default ZIP implementations.

sucFail Successful shouts are provided first followed by the failed ones.
failSuc Failed shouts are provided first followed by the successful ones.
agentType Variant of sucFail where ZIP buyers only receive bids while ZIP

sellers only receive asks.

For our second experiment we compared the performance of these six strate-
gies in terms of AMS and Market Efficiency as obtained after 100 market calls,
with results visible in Figure 2. The performance of sucFail and agentType is
interesting to see, with both strategies significantly outperforming the others.
While sucFail and agentType achieve comparable performance, we will focus on
the latter as it reduces the amount of computational work for each trader.
In our third and final experiment we can then compare the performance of our
best performing strategy, i.e. agentType, with the original ZIP implementations
for both CDA settings. Results can be seen in Figure 3: The increase in perfor-
mance (marked by the arrow) is evident, achieving levels comparable with the
best performing CDA implementation (pCDA ZIP).

7 Conclusions

We demonstrated that the original ZIP trading strategy performs poorly with
respect to average market surplus, when employed in a CALL. We developed
several strategies with the aim to increase the performance of ZIP traders to a
level comparable with those observed in both CDA settings. Two of our strate-
gies, namely sucFail and agentType greatly improve the average market surplus
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of ZIP in CALL and result in a slightly higher CALL efficiency. The resulting
performance of our modified ZIP agent in CALL becomes comparable to that
observed in both the npCDA and pCDA settings. Autonomous traders can thus
use our modified ZIP agent when trading energy in a CALL in the Smart Grid
domain.

Future work will focus on further improving the best strategies, e.g. by testing
additional orders of bids/asks in the agentType strategy. We will also repeat the
above experiments on real data from electricity markets in the context of micro-
grids.
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